



**Preston Smith** Manager of Research Computing Support

9/16/2014





- Welcome (Donna Cumberland, Executive Director, Research Computing)
- Introduction (Dr. Gerry McCartney, System CIO)
- Research Data Depot (Preston Smith, Manager of Research Computing Support)
- 2014-2015 Computation Plans (Michael Shuey, HPC Technical Architect)





# Since Steele in 2008, Research Computing has deployed many world-class offerings in computation



# **SIX COMMUNITY CLUSTERS**

# STEELE

7,216 cores Installed May 2008 Retired Nov. 2013

# COATES

8,032 cores Installed July 2009 24 departments 61 faculty

#### 61 faculty Retired Sep. 2014

# HANSEN

9,120 cores Installed Sept. 2011 13 departments 26 faculty

# CARTER

10,368 cores Installed April 2012 26 departments 60 faculty #175 on June 2013 Top 500

# ROSSMANN

11,088 cores Installed Sept. 2010 17 departments 37 faculty

# CONTE

9,280 Xeon cores (69,600 Xeon Phi cores) Installed August 2013 20 departments 51 faculty (as of Aug. 2014) #39 on June 2014 Top 500

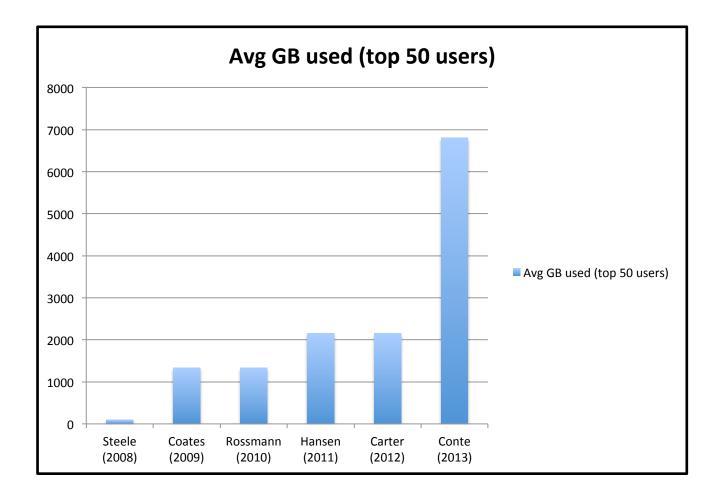
# TOP TEN CAMPUS SUPERCOMPUTERS

| U.S. CAMPUS<br>Ranking | UNIVERSITY                          | June 2013 Top 500<br>Name W | ORLD RANKING |
|------------------------|-------------------------------------|-----------------------------|--------------|
| 1                      | PURDUE                              | CONTE                       | 28           |
| 2<br>3                 | INDIANA<br>UNIVERSITY               | <b>BIG RED II</b>           | 46           |
| 3                      | USC                                 | HPCC                        | 53           |
| 4                      | RENSSELAER<br>POLYTECHNIC INSTITUTE | BLUE GENE/Q                 | 76           |
| 5                      | CLEMSON<br>UNIVERSITY               | PALMETTO 2                  | 115          |
| 6                      | UNIVERSITY OF<br>ROCHESTER          | BLUESTREAK                  | 170          |
| 7                      | PURDUE                              | CARTER                      | 175          |
| 8                      | UNIVERSITY OF<br>COLORADO           | JANUS                       | 239          |
| 9                      | USC                                 | HPC                         | 242          |
| 10                     | UNIVERSITY OF<br>CHICAGO            | MIDWAY                      | 301          |





- Research computing has historically provided some storage for research data for HPC users:
  - Archive (Fortress)
  - Actively running jobs (Cluster Scratch Lustre)
  - Home directories

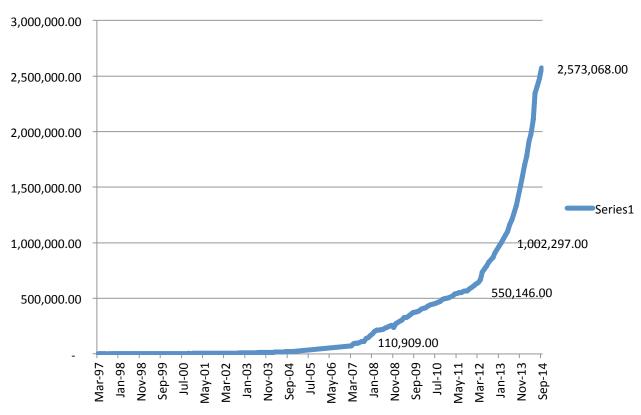

... And Purdue researchers have PURR to package, publish, and describe research data.





# SCRATCH

#### Scratch needs are climbing

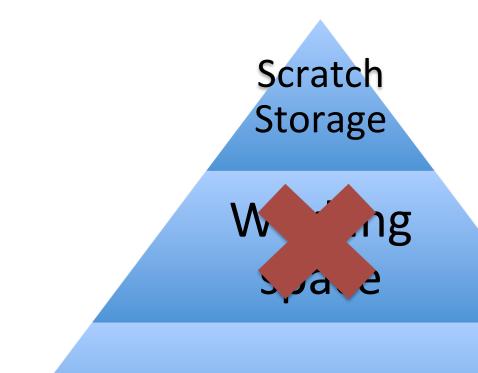









### Fortress usage is skyrocketing




**Fortress Archive Growth** 









Fast, large, purged, coupled with clusters, per-user – **for running jobs** 

Medium speed, large, persistent, data protected, purchased, per research lab – **for shared data and apps** 

# **Archival Space**

High-speed, infinite capacity, highly-protected, available to all researchers – for permanent storage





|                                           | \$HOME             | /group/            | \$RCAC_SCRATCH                     | /tmp                          | Fortress (HPSS)                                          |  |
|-------------------------------------------|--------------------|--------------------|------------------------------------|-------------------------------|----------------------------------------------------------|--|
| Capacity                                  | 10-100 GB          | 500 GB and<br>up   | Varies by cluster<br>500 GB and up | 150-400<br>GB                 | unlimited                                                |  |
| Resilience to<br>hardware failures        | yes                | yes                | yes                                | no                            | yes                                                      |  |
| Resilience to<br>human errors             | yes<br>(snapshots) | yes<br>(snapshots) | no no                              |                               | no                                                       |  |
| Subject to purging                        | no                 | no                 | yes                                | yes                           | no                                                       |  |
| Performance                               | medium             | medium             | high                               | medium<br>to slow<br>(Hansen) | slow<br>to very slow                                     |  |
| Designed for HPC<br>(running jobs off it) | no                 | no                 | -Yes (for                          |                               | -No (as main I/O)<br>-Yes (for staging<br>and archiving) |  |
| Common access<br>within cluster           | yes                | yes                | yes                                | no                            | yes<br>(hsi/htar)                                        |  |
| Common access<br>across clusters          | yes                | yes                | no no (except front-ends)          |                               | yes<br>(hsi/htar)                                        |  |
| Advanced ACLs<br>(beyond ugo/rwx)         |                    |                    | no                                 |                               |                                                          |  |



HPC STORACE



# Working with other researchers across campus, we encounter many different data solutions..

From something at the department/workgroup level:







# To This

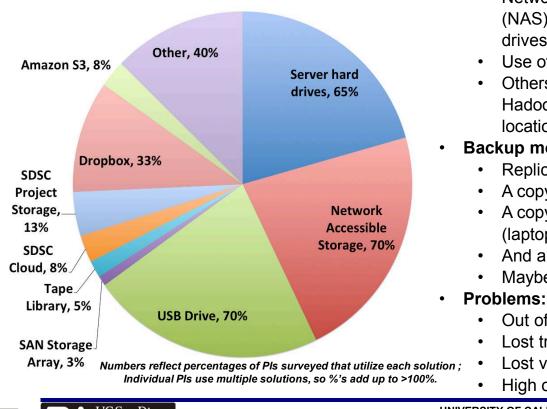






## And This




**CURRENT STATE** 







## **PI Interview Responses:** How do You Handle Data Storage/Backup?



Common Data Storage Devices and Services Utilized .

**Storage Devices** 

- Network accessible storage ٠ (NAS), USB and server local drives dominate
- Use of Dropbox for sharing

Others use Google Drive, Hadoop, XSEDE, SDSC colocation

#### **Backup modes**

- Replicated copies in two NAS
- A copy in the NAS,
- A copy in local hard drive (laptop/workstation),
- And a copy in a USB drive
- Maybe a copy in email/Dropbox
- **Problems:** 
  - Out of sync
  - Lost track of its location
  - Lost version control
    - High cost of recovery





UNIVERSITY OF CALIFORNIA, SAN DIEGO







# Many central storage options have not met all the needs that researchers care about

- Departmental or lab resources are islands and not accessible from HPC clusters.
- Most are individually-oriented, rather than built around the notion of a research lab.
  - Boiler Backpack, Fortress, research homes, and scratch
- Scratch filesystems are *also* limited in scope to a single HPC system



# RESEARCH Storige Gaps



#### Before 2013, we've heard lots of common requests:

- I need more space than I can get in scratch
- Where can I install applications for my entire research lab?
- I'm *actively working* on that data/software in scratch:
  - I have to go to great lengths to keep it from being purged.
  - I shouldn't have to pull I from Fortress over and over
- Can I get a UNIX group created for my students and I?
- Is there storage that I can get to on *all* the clusters I use?
- I have funding to spend on storage what do you have to sell?
- I need storage for my instrument to write data into
- My student has the only copy of my research data in his home directory, and he graduated/went off the grid!







#### We've addressed some of these with improving scratch:

- Everybody automatically gets access to Fortress for permanent data storage
- Very large per-user quotas, beginning on Conte
- More friendly purge policy based on the use of data, rather than creation time.





S

E

# 



#### Since early 2013, HPC researchers could at last purchase storage!

Quickly, a group storage service for research began to materialize to address many common requests:

- 500G available at no additional charge to community cluster groups
- Mounted on all clusters and exported via CIFS to labs
- *Not scratch*: Backed up via snapshots
- Data in /group is owned by faculty member!
- Sharing ability Globus, CIFS, and WWW
- Version Control repositories
- Maintain group-wide copies of application software or shared data







/group/mylab/

+--/apps/ | +--/data/ | +--/etc/ | +--bashrc +--cshrc +--/repo/ | +--/www/ | +--/www/

...with POSIX ACLs to overcome group permission and umask challenges!







| Managers 🥝            |                |             |             |       |  |
|-----------------------|----------------|-------------|-------------|-------|--|
|                       |                | Unix Groups |             |       |  |
|                       |                |             | baalle-data | apps  |  |
|                       |                | ×.          | ¥           | ×     |  |
|                       |                | <b>V</b>    | *           |       |  |
| Group Usage Reporting | Viewers 🥝      |             |             |       |  |
|                       |                |             | Unix Grou   | ps    |  |
|                       |                |             | data        | -apps |  |
|                       | -              |             | V           |       |  |
|                       | -              | 4           | ¥           |       |  |
|                       | and the second | *           | ×           |       |  |
|                       | -              | 4           | V           |       |  |
|                       |                |             |             |       |  |
| Members 🥝             |                |             |             |       |  |
|                       |                | Unix Groups |             |       |  |
|                       |                | -           | -data       | -apps |  |
|                       | 100            | 4           |             |       |  |
|                       |                | d.          |             |       |  |
|                       |                | 1           | ۲           |       |  |
|                       |                |             |             |       |  |



# Fairly well received!

- In just over one year, over 65 research groups are participating.
  - Several are not HPC users!
- Over .5 PB provisioned to date
- A research group purchasing space has purchased, on average, 8.6TB.



**NASANIMA** 



# ISSUES

## It's not perfect

- Scalability and I/O latency are issues on clusters
- Research computing staff have to monitor "appropriate" work
  - An I/O intensive job in the wrong directory hurts the entire campus!
- Creation and management is not automated
- Protected from "oops" but **not** disaster-protected













As a transport hub: a place where large amounts of cargo are stored, loaded, unloaded, and moved from place to place.









#### A heavily protected and impenetrable building (Oxford)





# DESIGNADIS



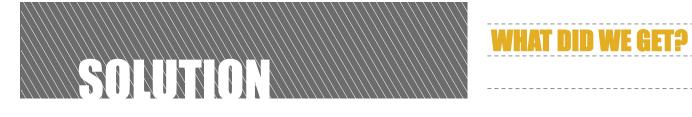
#### HPC Faculty were surveyed, we learned that they require from their storage:

- Protection from accidents (snapshots)
- Protection from disaster (replicas)
- Affordable prices

#### We also know that we need to provide:

- A high-performance resource for research instruments
- A business model to sell storage, if faculty wish to purchase it
- Easy ways to share data with collaborators
- Easier ways to access Fortress
- A resource that works for both HPC **and** non-HPC users








### **Proposals Requested from Vendors that can deliver:**

| Depot Requirements                             | What we have today |
|------------------------------------------------|--------------------|
| At least 1 PB usable capacity                  | >1 PB              |
| 40 GB/sec throughput                           | 5 GB/sec           |
| < 3ms average latency, < 20 ms maximum latency | Variable           |
| 100k IOPS sustained                            | 55k                |
| 300 MB/sec min client speed                    | 200 MB/sec max     |
| Support 3000 simultaneous clients              | Yes                |
| Filesystem snapshots                           | Yes                |
| Multi-site replication                         | Νο                 |
| Expandable to 10 PB                            | Yes                |
| Fully POSIX compliant, including parallel I/O  | Νο                 |





Approximately 2.25 PB of IBM GPFS

Hardware provided by a pair of Data Direct Networks SFA12k arrays, one in each of MATH and FREH datacenters

160 Gb/sec to each datacenter

5x Dell R620 servers in each datacenter









# At \$150/TB per year:

- Same base capabilities as "group storage", PLUS
  - Snapshots
  - Multi-site copies of your data
  - A scalable, expandable storage resource optimized for HPC
- Access to Globus data transfer service, and endpoint sharing











## 2014 network improvements

- 100 Gb/sec WAN connections
- Research Core
  - 160 Gb/sec core to each resource (up from 40)
  - 20 Gb/sec research core to most of campus
- Campus Core Upgrade









# Globus

- Move data between Purdue, other institutions, and national HPC resources
- Easily share data with collaborators around the world
  - With dropbox-like simplicity!



https://transfer.rcac.purdue.edu







- Use the new "hathi" Hadoop cluster for prototyping big data applications
- Spark, Hbase, Hive, Pig
- On-demand *MyHadoop* clusters on your group's Conte or Carter nodes



https://www.rcac.purdue.edu/compute/hathi/







### **Firebox virtual servers**

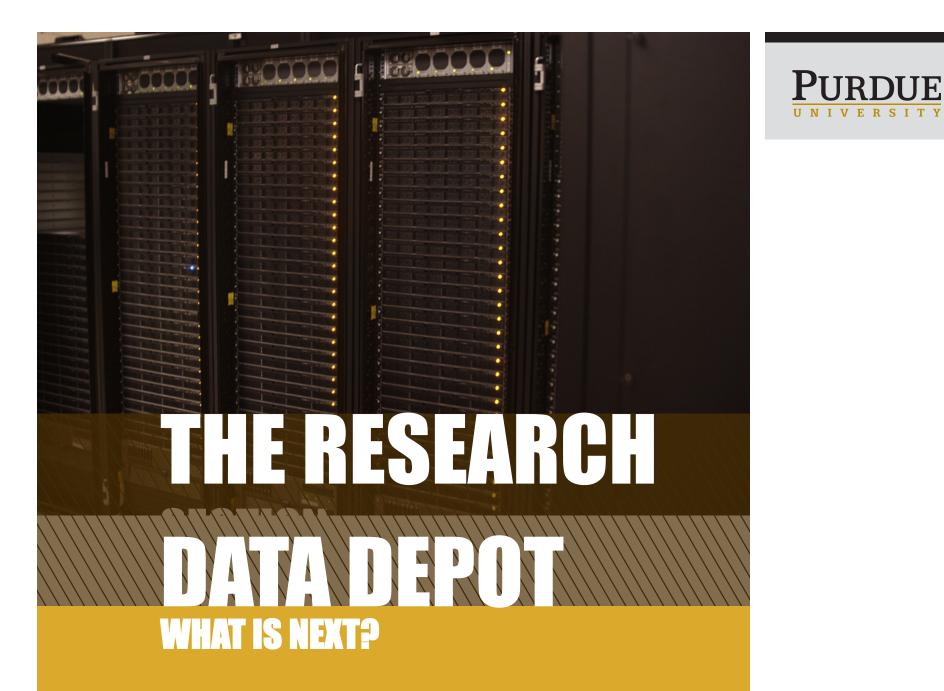
- Host LAMP servers, cluster login nodes, submission portals, nontraditional HPC, or interactive desktops, all within the research infrastructure
- Move your computing environment close to your research data!



https://www.rcac.purdue.edu/services/firebox/








### **Group storage in Fortress**

- Your same self-managed group for the Depot can manage access to a group fortress space
- Contact RCAC for assistance with setting this up







IV Ε R S

# 



#### The Research Data Depot is NOT:

- A 1:1 replacement for Dropbox
- Blessed for HIPAA, FISMA, ITAR, or other regulated data
- Global, paid-for, or non-purged scratch
  - Each resource will continue to have its own local, dedicated, high-performance scratch
  - Its \*is\* designed to not *actively hurt* an HPC user or others should it be used for running jobs
- A data publishing service







### **Potential future questions**

- How can we more tightly integrate the Depot and Fortress?
- How can we bridge the space between the Depot at PURR?
- Can your Depot-using labs and instruments benefit from the campus' improved networking infrastructure?







## Recent or in-development information sessions on working with data

- Sept 2: "Big Data" training session
- Globus
- Effective use of HPC storage
- HPC I/O formats: HDF5
- In collaboration with Purdue Libraries the data life cycle and managing your research data on RCAC resources





- Collaborations on multi-disciplinary grant proposals, both internal and external
- Developing customized Data Management Plans
- Organizing your data
- Describing your data
- Sharing your data
- Publishing your datasets
- Preserving your data
- Education on data management best practices





**PURR** is a *free* online research data collaboration platform and service solution for Purdue faculty, graduates students, and staff.

Research data - spreadsheets, images, output from sensors and instruments, transcripts, surveys, software source code and tools, video, and observation logs

#### PURR provides:

- ✓ Data management plan (DMP) resources and consultation
- ✓ Collaborative research data project space
- ✓ Dataset publication with Digital Object Identifier (DOI) \*
- ✓ Long-term preservation and management









The service is in early access mode.

Contact us at <u>rcac-help@purdue.edu</u> if you're willing to be an early access tester!

**Full production on October 31** 







Persistent group storage owners will be transitioned into the Depot at an agreed-upon date, on a group-by-group basis.

We'll be in touch to arrange a time!

If you're paid up with the persistent group storage, this move will come at no additional charge until your renewal is due.







## We can set your lab up with a small evaluation space upon request

### Need 1TB or more?

purchase access online

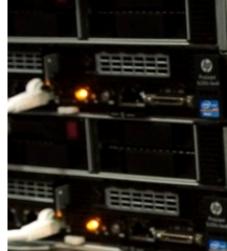
• http://www.rcac.purdue.edu/order

| Info                                                  | Computation                                                                                             | Storage                                          | Visualization                                     | Purchase     | Services                         | About                            |                         |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------|----------------------------------|----------------------------------|-------------------------|
| Welc                                                  | ome to ITaP Re                                                                                          | esearch Co                                       | mputing Ord                                       | lering       |                                  |                                  |                         |
|                                                       | ce an order for acc                                                                                     |                                                  |                                                   |              | age, or other i                  | needs, please e                  | nter the                |
| quanti                                                | ty of each product                                                                                      | you wish to p                                    | urchase in the fo                                 | rm below.    |                                  |                                  |                         |
| Once                                                  | ou have filled out                                                                                      | vour order, cli                                  | ick "Continue" in t                               | the bottom i | right to go to t                 | he next page, v                  | where you will          |
|                                                       | e to add account n                                                                                      |                                                  |                                                   |              |                                  |                                  |                         |
|                                                       |                                                                                                         |                                                  | il us at reas-bols                                |              | lu -                             |                                  |                         |
| config                                                | urations or produc                                                                                      | ts, please ema                                   | in us at <u>reac-neip</u>                         | apuraue.eu   | <u>.</u>                         |                                  |                         |
| config                                                | urations or produc                                                                                      | ts, please ema                                   | in us at <u>reac-neip</u>                         | impuraue.ed  |                                  |                                  |                         |
| -                                                     | urations or produc<br>arch Storage                                                                      | ts, please ema                                   | in us at <u>reac-neip</u>                         | i@puraue.ed  | <u>.</u> .                       |                                  |                         |
| Rese                                                  |                                                                                                         |                                                  |                                                   |              |                                  | n all research cl                | lusters or              |
| Rese                                                  | arch Storage                                                                                            | g now offers s                                   | hared research gr                                 |              |                                  | n all research cl                | lusters or              |
| Rese                                                  | <mark>arch Storage</mark><br>esearch Computing                                                          | g now offers s                                   | hared research gr                                 |              |                                  |                                  | lusters or<br>Sub-total |
| Rese<br>ITaP R<br>directl<br>Item                     | <mark>arch Storage</mark><br>esearch Computing                                                          | g now offers si<br>at a competit                 | hared research gr<br>ive price.                   |              | available fron                   |                                  |                         |
| Rese<br>ITaP R<br>directl<br>Item<br>Persis<br>1 Tera | arch Storage<br>esearch Computin <u>c</u><br>y usable from labs                                         | g now offers s<br>at a competit<br>ge – 1TB (102 | hared research gr<br>ive price.<br>24 GB) storage | roup storage | available from<br>Quantity       | Price                            | Sub-total               |
| Rese<br>ITaP R<br>directl<br>Item<br>Persis<br>1 Tera | arch Storage<br>esearch Computing<br>y usable from labs<br>stent Group Storage<br>ubyte (TB) of Persist | g now offers s<br>at a competit<br>ge – 1TB (102 | hared research gr<br>ive price.<br>24 GB) storage | roup storage | available from<br>Quantity<br>10 | Price<br>\$153.60                | Sub-total               |
| Rese<br>ITaP R<br>directl<br>Item<br>Persis<br>1 Tera | arch Storage<br>esearch Computing<br>y usable from labs<br>stent Group Storage<br>ubyte (TB) of Persist | g now offers s<br>at a competit<br>ge – 1TB (102 | hared research gr<br>ive price.<br>24 GB) storage | roup storage | available from<br>Quantity<br>10 | Price<br>\$153.60<br>per TB/year | Sub-total<br>\$ 1536.00 |





NIVERS




### **CARTER & CONTE**

### **Carter & Conte still very current**

- Ivy Bridge chips not much improvement over Carter
- Conte's Xeon Phi co-processors extremely capable for certain applications (dense FP simulation)
- Both Carter and Conte have proven very popular!







# TONORROW

## INTEL'S HASWELL PROCESSOR

### **Released last week:**

- More cores/chip
- Slight clock speed reduction
- Additional floating-point instructions
  - Can greatly assist matrix multiplication operations
- DDR4 memory
  - Higher memory bandwidth helps just about everyone

### Longer-term implications:

- Forget 2/4/8 GB/core think about base memory/node
- Best programming model may be MPI+OpenMPI
  - Fewer MPI ranks/node, pick up extra cores/threads with OpenMP
  - Looks vaguely like Xeon Phi...



## NEXTERISTER



### Planning for next community cluster starting now

- Bringing Haswell-based loaner to Purdue
- Preparing for open bid later this fall
- Cluster assembly, go-live in mid-Spring, 2015

### **Open questions:**

- Higher clock speed or more cores/node?
- Memory sizes?
  - Probably 64 GB base with an option for large (256G or more) nodes





### QUESTIONS?

### Questions?

