

Preston Smith Director of Research Computing Services

Michael Shuey Infrastructure Architect

2/27/2015 HPC FACULTY MEETING

COMPUTITION

Since Steele in 2008, Research Computing has deployed many world-class offerings in computation

SIX COMMUNITY CLUSTERS

STEELE

7,216 cores Installed May 2008 Retired Nov. 2013

COATES

8,032 cores Installed July 2009 24 departments 61 faculty Retired Sep. 2014

ROSSMANN

11,088 cores Installed Sept. 2010 17 departments 37 faculty

HANSEN

9,120 cores Installed Sept. 2011 13 departments

26 faculty

CARTER

10,368 cores Installed April 2012 26 departments 60 faculty #175 on June 2013 Top 500

CONTE

9,280 Xeon cores (69,600 Xeon Phi cores) Installed August 2013 20 departments 51 faculty (as of Aug. 2014) #39 on June 2014 Top 500

TOP TEN CAMPUS SUPERCOMPUTERS IN THE NATION

U.S. CAMPU Ranking	SUNIVERSITY	June 2013 Top 500 NAME	ORLD RANKING
1	PURDUE	CONTE	28
2 3		BIG RED II	46
3	USC	HPCC	53
4	RENSSELAER POLYTECHNIC INSTITUTE	BLUE GENE/Q	76
5		PALMETTO 2	115
6	ROCHESTER	BLUESTREAK	170
7	PURDUE	CARTER	175
8	UNIVERSITY OF COLORADO	JANUS	239
9	USC	HPC	242
10	UNIVERSITY OF CHICAGO	MIDWAY	301

RID PROCESS

Open bid process:

- Quantity approx. 700 nodes
- Included various interconnects (10 Gbps Ethernet, FDR/EDR Infiniband)
- 20- and 24-core compute nodes
- Memory sizes from 64 GB to 512 GB
- Conventional disk vs. SSD

Prices ranged from \$4400/node to \$5400/node for base node (64GB) Vendors included Dell, HP, IBM, etc.

RID RESULTS

HARDWARE SPECS

Base node: HP DL60

- 20-core node, 2.6 GHz Intel "Haswell" processors (E5-2660v3)
 - Larger L3 caches, more cores
 - Double the FLOPS over Carter/Conte processors (FMAC helps matrix math)
 - Good balance between cost-effectiveness and overall node price
- 64 GB DDR4 memory (minimum)
 - Several memory sizes possible
 - Fastest memory available
- 500 GB local disk
- 10 Gbps Ethernet on all nodes for IP and NFS
- FDR Infiniband interconnect
 - 56 Gbps, 2:1 fat tree most cost-effective than faster options for most users

Scratch system:

- Approximately 1.4 PB
- 20 GB/sec, IB connectivity to high-performance cluster nodes

General implementation schedule:

- Facilities preparation underway
- Board of Trustees meeting April 9th pending board approval
- Install day May may need assistance unboxing & racking
- General availability soon after

25% more cores at 10% more dollars than Conte,

- Better floating point
- Faster memory

64G Node	256G Node	512G Node	64G Node + GPU
\$4,400.00	\$6,500.00	\$10,000.00	\$11,000.00

IN THE PIST

NEIGHBORHOODS

ONE SYSTEM

C Processing

- Parameter sweeps vs CFD
- Monte Carlo simulation vs climate modeling
- R vs molecular dynamics

Community Clusters to Cluster Communities What neighborhoods are in our community?

By domain? Chemistry, mechanical engineering, statistics, structural biology

By Hardware Configuration?

Accelerator cluster, big memory cluster, data-intensive cluster

By Profile of Work: single core, multicore, multi-node, inter-node communication needs, I/O characteristics, memory requirements

Community Clusters to Cluster Communities What neighborhoods are in our community?

HPC (Rice): Multiple cores or nodes, probably MPI. Benefit from high-performance network and parallel filesystem. The vast majority of campus - 80% of all work!

HTC (Hammer): Primarily single core. CPU-bound. No need for highperformance network.

Life Science (Big memory): Use entire node to get large amounts of memory. Less need for high-performance network. Needs large, fast storage.

GHALLENGES

- HPC and HTC communities prefer different points to optimize the scheduler.
- Small but key communities (like large memory) lose benefits of standby queues when fewer nodes are spread between several clusters.
- HTC or large memory communities often have little need for HPC-specific optimizations
 - Accelerators
 - High-speed, low-latency networks

Emerging communities often don't fit in existing model at all!

Big Data Analytics Graphics Rendering Nontraditional platforms (Windows, cloud)

NO CHANGE FROM TODAY!

Rice: A traditional HPC system just like Carter or Conte

The same, familiar model:

- New cluster acquisition every 12-18 months
- Each a distinct, non-heterogeneous system.

Nothing different for you!

Hammer – HTC Big Memory

HTC or big memory clusters expanded annually with each purchase.

Better Community Cluster Experience

NEW WAYS TO BUY

Pay for resources on-demand!

- Burst capacity for a deadline coming up?
- Access to a different type of node for a short period?

Pay for on-demand node instances in one-month increments.

RESEARCH DATA DEPOT

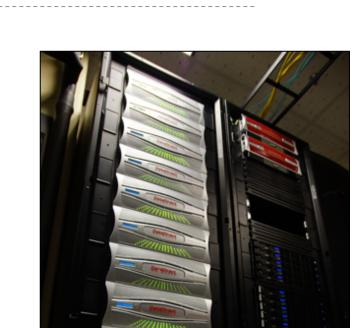
At \$150/TB per year:

- Storage oriented around your research lab, with
 - Snapshots
 - Multi-site copies of your data
 - Disaster protection
 - A scalable, expandable storage resource optimized for HPC
- Access to Globus data transfer service, and endpoint sharing

New scratch filesystem on order for Carter!

1.5 PB filesystem Expect Conte-like 100TB, multi-million file user quotas

Existing Carter scratch will remain only on Hansen


RESEARCH DATA DEPOT

Well received!

- Since a fall go-live, over 105 research groups are participating.
 - Many are not HPC users!
- Over .7 PB provisioned to date
- A research group purchasing space has purchased, on average, 8.6TB.

GET ! CCESS

To buy 1 or more TB of space, Or to set up a trial for your lab

Order online:

https://www.rcac.purdue.edu/purchase/depot/

GLORIS

Data moved in 2014:

13 TB in, 19TB out200k files both directions55 unique users

globus

Coming soon:

Globus interface to Fortress

https://transfer.rcac.purdue.edu

BGDATI

- "hathi" Hadoop cluster for prototyping big data applications
- Spark, Hbase, Hive, Pig

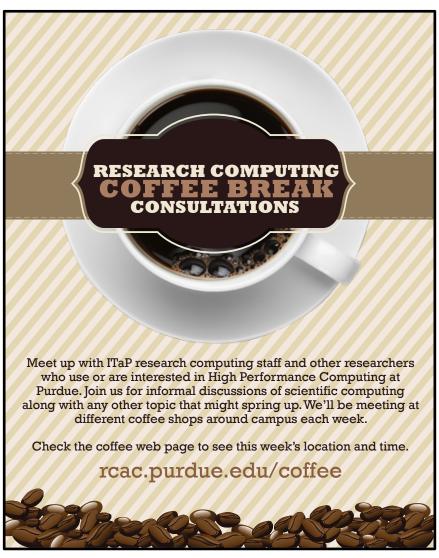
HADDOP

36 research groups,411 users on the system already

https://www.rcac.purdue.edu/compute/hathi/

more awesome pictures at THEMETAPICTURE.COM

VERSION CONTROL


Repositories for your lab, managed by your queue management tool.

- Hard to solve problems with HPC?
- Need help building your software or optimizing your workflow?
- Need to learn what resources are available?

SCHOLAR

- Need to teach students to use HPC in a course?
- Scholar cluster is available to any instructor at no cost.

Spring 2015:	EAPS
CS	AGRY
STAT	ANSC
CHEM	ChemE

Just send

a CRN

Questions?

SPIRE SIDES

