

Code of Conduct
This external code of conduct for XSEDE-sponsored events represents XSEDE's commitment to providing an

inclusive and harassment-free environment in all interactions regardless of race, age, ethnicity, national origin,

language, gender, gender identity, sexual orientation, disability, physical appearance, political views, military

service, health status, or religion. The code of conduct below extends to all XSEDE-sponsored events, services,

and interactions.

Webpage: www.xsede.org/codeofconduct

XSEDE ombudspersons:

Linda Akli, Southeastern Universities Research Association (akli@sura.org)

Lizanne Destefano, Georgia Tech (lizanne.destefano@ceismc.gatech.edu)

Ken Hackworth, Pittsburgh Supercomputing Center (hackworth@psc.edu)

Bryan Snead, Texas Advanced Computing Center (jbsnead@tacc.utexas.edu)

mailto:akli@sura.org
mailto:lizanne.destefano@ceismc.gatech.edu
mailto:hackworth@psc.edu
mailto:jbsnead@tacc.utexas.edu

Terminology Statement
Words matter! XSEDE's commitment to fostering and promoting an inclusive environment for all users, staff,

and the wider community extends to all language and terminology in all of our materials. As a result of this

commitment, XSEDE's Terminology Task Force (TTF) was formed to review, address, and define processes to

eliminate offensive terms in our materials.

Webpage: www.xsede.org/terminology

XSEDE TTF email address: terminology@xsede.org

mailto:terminology@xsede.org

Acknowledgement

“This material is based upon work supported by the National Science Foundation under Grant No. 2005632.”

Disclaimer: “Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.”

Full Agenda
§ Anvil system architecture including node types, storage, interconnects,

and networking.

§ Getting started with accounts and allocations

§ Compilation and programing environment on Anvil

§ Running Jobs on Anvil

§ Data management and transfer on Anvil

§ Q&A

Agenda
1. Anvil overview

§ Introduction to Anvil

§ Hardware

§ Anvil group and consulting

About Anvil

§ Category I: A national composable advanced

computational resource for the future of science and
engineering

§ By the Purdue research computing team. Full access starts

February, 2022.

§ NSF award #2005632; 5 years of operations; allocated via

NSF XSEDE

§ Multi-tier storage
(including object storage)

§ 10 PB of parallel filesystem,
and 3 PB of all-flash storage

§ Globus data transfer

§ 8 large memory &
storage nodes

§ Kubernetes – Rancher for
DevOps

§ 16 nodes with 4 NVIDIA
A100 GPUs each

§ 32 large memory nodes
with 1 TB of RAM

§ 1000 compute nodes
§ 128 core AMD 3rd Gen

EPYC 7763 processors
§ 5.3 PF peak performance High-performance GPU/Large-

memory

StorageComposable
subsystem

System Resources

Service & Support

Quick
turnaround
via XSEDE

support
tickets

Support
team

Advanced
user support

[portal.xsede.org/h
elp-desk]

[comprising
domain experts

from multiple
disciplines]

[data science
consulting, HPC

performance
optimization,

science gateway
development]

Multimodal
Training
Delivery

[live lessons,
online tutorials,
video lessons]

%5bportal.xsede.org/help-desk%5d

Agenda
2. Getting started

§ Get anvil account and allocation

§ Logging in

§ Check account usage

Agenda
2. Getting started

§ Get anvil account and allocation

§ Logging in

§ Check account usage

Obtaining an Account
As an XSEDE computing resource, Anvil is accessible to XSEDE users who are given an allocation on

the system. To obtain an account, users may submit a proposal through the XSEDE Allocation

Request System: https://portal.xsede.org/allocations/announcements

Anvil is available for allocation now

Submission Period Meeting Date Users Notified Allocation Begins
Dec 15 thru Jan 15 Early March March 15 April 1
Mar 15 thru Apr 15 Early June June 15 Jul 1
Jun 15 thru Jul 15 Late Aug/Early Sep Sept 15 Oct 1
Sep 15 thru Oct 15 Early Dec Dec 15 Jan 1

https://portal.xsede.org/allocations-overview

Agenda
2. Getting started

§ Get anvil account and allocation

§ Logging in

§ Check account usage

[localhost]$ ssh -l XUPusername login.xsede.org
login as: XUPusername
Using keyboard-interactive authentication.
Please login to this system using your XSEDE username and password:
Duo two-factor login for XUPusername

Enter a passcode or select one of the following options:

1. Duo Push to XXX-XXX-XXXX
2. Phone call to XXX-XXX-XXXX

Passcode or option (1-2): 1
Success. Logging you in...
Welcome to the XSEDE Single Sign-On (SSO) Hub!
...

Anvil can be accessed via the XSEDE Single Sign-On (SSO) hub: https://portal.xsede.org/single-sign-on-hub

Use your SSH client to start an SSH session

on login.xsede.org with your XSEDE User

Portal username and password.

XSEDE requires the XSEDE Duo service for

additional authentication.

Example: Logging in via SSO Hub

https://portal.xsede.org/single-sign-on-hub

[XUPusername@ssohub ~]$ gsissh anvil
==
== Welcome to the Anvil Cluster ==
...
[x-anvilusername@login01:~]$ whoami # print effective user id
x-anvilusername

When reporting a problem to help desk,

please execute gsissh -vvv and include the

verbose output in your problem description.

Once logged into the hub, then use the gsissh utility to login to Anvil.

SSH keys is also a good way to connect to Anvil.

Please see Appendix or Anvil user guide (www.rcac.purdue.edu/knowledge/anvil/access/login/sshkeys) for more detail.

public key authorized keylocal machine Anvil

Example: Logging in via SSO Hub

https://www.rcac.purdue.edu/knowledge/anvil/access/login/sshkeys

Open OnDemand
Open OnDemand allows one to interact with HPC resources through a web browser and easily manage files, submit jobs, and

interact with graphical applications directly in a browser, all with no software to install.

Navigate to https://ondemand.anvil.rcac.purdue.edu

Log in using your XSEDE portal username and password

More training section about Open OnDemand will be given by Anvil team in the future.

Agenda
2. Getting started

§ Get anvil account and allocation

§ Logging in

§ Check account usage

Check Allocation Usage
To keep track of the usage of the allocation by your project team, you can use mybalance:

[x-anvilusername@login01:~]$ mybalance
Allocation Type SU Limit SU Usage SU Usage SU Balance
Account (account) (user)
=============== ======= ======== ========= ========= ==========
xxxxxx-cpu CPU 1000.0 95.7 3.0 904.3
xxxxxx-gpu GPU 1000.0 43.5 1.5 956.5

You can also check the allocation usage through XSEDE User Portal: https://portal.xsede.org/allocations/managing

You should see at least one allocation.

CPU and GPU nodes use are count separately, so there are using different allocation accounts.

https://portal.xsede.org/allocations/managing

Check Allocation Usage

Agenda

3. Compilation and programing environment

§ Module system

§ Provide software and software installation policy

§ Compiling source code (examples and explanation)

Agenda

3. Compilation and programing environment

§ Module system

§ Provide software and software installation policy

§ Compiling source code (examples and explanation)

§ Module system provides for the dynamic modification of a user’s environment.

§ Module commands allow you to add applications and libraries to your environment.

§ This allows us to simultaneously and safely provide several versions of the same software.

§ Anvil team makes recommendations for both CPU and GPU stack regarding the CUDA version, compiler, math

library, and MPI library. If you have no specific requirements, you can simply load the recommended set by:

Modules

$ module load modtree/cpu # for CPU
$ module load modtree/gpu # for GPU

Modules
§ Lmod is a hierarchical module system, a module can only be loaded after loading the necessary compilers and MPI

libraries that it depends on. A list of all available modules can be found by:

§ The module spider command can also be used to search for specific module names.

$ module spider

$ module spider intel # all modules with names containing 'intel'

§ To unload a module

$ module unload mymodulename

Modules

§ To see all available modules that are compatible with current loaded modules

§ To display information about a specified module, including environment changes, dependencies, software

version and path.

§ To unload all loaded modules and reset everything to original state.

§ Show all modules currently loaded in my environment:

$ module show mymodulename

$ module avail

$ module purge

$ module list

Example: Modules
$ module list # Show all modules currently loaded in my environment

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8) openmpi/4.0.6 9)

modtree/cpu

$ module purge # To unload all loaded modules and reset everything to original state

$ module list

No modules loaded

This default environment can be loaded by $ module load modtree/cpu

Example: Modules
$ module load modtree/cpu # To load the default CPU environment recommended by the Anvil team

$ module list

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8) openmpi/4.0.6 9)
modtree/cpu

$ module unload openmpi/4.0.6 # To unload the openmpi/4.0.6 module

$ module list

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) modtree/cpu

When unload openmpi module, two more dependent modules are removed.

$ module spider openmpi # Report all the versions for the modules that match “openmpi ”
--
openmpi:
--
Versions:

openmpi/3.1.6
openmpi/4.0.6 …

$ module spider openmpi/4.0.6 # Report detailed information on a particular module version openmpi/4.0.6
--
openmpi: openmpi/4.0.6

You will need to load all module(s) on any one of the lines below before the "openmpi/4.0.6" module is available to load.
aocc/3.1.0 gcc/10.2.0 gcc/11.2.0 gcc/8.4.1 intel/19.0.5.281

Help:
An open source Message Passing Interface implementation. The Open MPI Project is an open source Message Passing

Interface implementation that
is developed and maintained by a consortium of academic, research, and industry partners. Open MPI is therefore able to

combine the expertise …

Example: Modules

Agenda

3. Compilation and programing environment

§ Module system

§ Provide software and software installation policy

§ Compiling source code (examples and explanation)

• General purpose mathematics and statistics modeling
tools, visualization tools

• Broad application base with installs and modules from
various science and engineering domains

Scientific Applications

• Various popular programming languages, GNU, Intel
and AOCC compilers, message passing libraries

• Workflow, data management and analysis tools
• Debugging and profiling tools

Programming Libraries &
Compilers

• Support for Singularity containerization and execution
(e.g. NGC, BioContainers)

• Efficient access to various databases (e.g., NCBI)
Containers and Datasets

Provide Software

Need additional software? Please see the Software Installation Request Policy.

https://www.rcac.purdue.edu/knowledge/anvil/policies/software_installation_request_policy

Agenda

3. Compilation and programing environment

§ Module system

§ Provide software and software installation policy

§ Compiling source code (examples and explanation)

CPU nodes

Compilers: GNU, Intel, AOCC (AMD)

MPI implementations: OpenMPI, Intel MPI (IMPI)
and MVAPICH2

All compilers installed on Anvil include OpenMP
functionality for C, C++, and Fortran

Supported Compilers

GPU nodes

§ The GPU nodes on Anvil support CUDA and
OpenCL

§ OpenACC functionality are support by:

ØPGI compilers through the nvhpc modules

ØGNU compiler through gcc/11.2.0-openacc
module

§ Some GPU codes may require compiled on the
GPU nodes through an interactive session.

Example: Compiling Serial C++ Code

Source code: serial_hello.cpp Machine code: serial
$ module list
Currently Loaded Modules:
1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8) openmpi/4.0.6 9)

modtree/cpu

$ g++ serial_hello.cpp -o serial # Complie the c++ code with GNU compiler

$ ls
serial_hello.cpp serial # Executable files generated

$./serial

Runhost:a600.anvil.rcac.purdue.edu hello, world

Compiling NVIDIA GPU Programs
Both login and GPU-enabled compute nodes have the CUDA tools and libraries for compiling CUDA programs.

But if code require CUDA drive, you need to submit an interactive job to get to the GPU nodes. The gpu-debug queue

is ideal for this case.

$ module load modtree/gpu

$ nvcc gpu_hello.cu -o gpu_hello

./gpu_hello

No GPU specified, using first GPUhello, world

Compiling Serial Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following table illustrates how to compile your serial program:

Language Intel Compiler GNU Compiler AOCC Compiler

Fortran 77 $ ifort myprogram.f -o myprogram $ gfortran myprogram.f -o myprogram $ flang program.f -o program

Fortran 90 $ ifort myprogram.f90 -o myprogram $ gfortran myprogram.f90 -o myprogram $ flang program.f90 -o program

Fortran 95 $ ifort myprogram.f90 -o myprogram $ gfortran myprogram.f95 -o myprogram $ flang program.f90 -o program

C $ icc myprogram.c -o myprogram $ gcc myprogram.c -o myprogram $ clang program.c -o program

C++ $ icc myprogram.cpp -o myprogram $ g++ myprogram.cpp -o myprogram $ clang++ program.C -o
program

Compiling MPI Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following table illustrates how to compile your MPI program. Any compiler flags accepted by Intel ifort/icc
compilers are compatible with their respective MPI compiler.

Language Intel Compiler with Intel MPI (IMPI) Intel/GNU/AOCC Compiler with OpenMPI/MVAPICH2

Fortran 77 $ mpiifort myprogram.f -o myprogram $ mpif77 myprogram.f -o myprogram

Fortran 90 $ mpiifort myprogram.f90 -o myprogram $ mpif90 myprogram.f90 -o myprogram

Fortran 95 $ mpiifort myprogram.f90 -o myprogram $ mpif90 myprogram.f90 -o myprogram

C $ mpiicc myprogram.c -o myprogram $ mpicc myprogram.c -o myprogram

C++ $ mpiicc myprogram.C -o myprogram $ mpicxx myprogram.C -o myprogram

Compiling OpenMP Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following table illustrates how to compile your shared-memory program. Any compiler flags accepted by Intel
ifort/icc compilers are compatible with OpenMP.

Language Intel Compiler GNU Compiler AOCC Compiler

Fortran 77 $ ifort -openmp myprogram.f -o
myprogram

$ gfortran -fopenmp myprogram.f -o
myprogram

$ flang -fopenmp myprogram.f -o
myprogram

Fortran 90 $ ifort -openmp myprogram.f90 -o
myprogram

$ gfortran -fopenmp myprogram.f90 -o
myprogram

$ flang -fopenmp myprogram.f90 -o
myprogram

Fortran 95 $ ifort -openmp myprogram.f90 -o
myprogram

$ gfortran -fopenmp myprogram.f90 -o
myprogram

$ flang -fopenmp myprogram.f90 -o
myprogram

C $ icc -openmp myprogramram.c -o
myprogram

$ gcc -fopenmp myprogram.c -o
myprogram

$ clang -fopenmp myprogram.c -o
myprogram

C++ $ icc -openmp myprogram.cpp -o
myprogram

$ g++ -fopenmp myprogram.cpp -o
myprogram

$ clang++ -fopenmp myprogram.cpp -o
myprogram

Compiling Hybrid Programs

*Intel compiler does not recognize the suffix ".f95". You may use ".f90" to stand for any Fortran
code regardless of version as it is a free-formatted form

The following tables illustrate how to compile your hybrid (MPI/OpenMP) program. Any compiler flags accepted
by Intel ifort/icc compilers are compatible with their respective MPI compiler.

Language Intel Compiler with Intel MPI(IMPI) Intel/GNU/AOCC Compiler with OpenMPI/MVAPICH2

Fortran 77 $ mpiifort -qopenmp myprogram.f -o myprogram $ mpif77 -fopenmp myprogram.f -o myprogram

Fortran 90 $ mpiifort -qopenmp myprogram.f90 -o myprogram $ mpif90 -fopenmp myprogram.f90 -o myprogram

Fortran 95 $ mpiifort -qopenmp myprogram.f90 -o myprogram $ mpif90 -fopenmp myprogram.f90 -o myprogram

C $ mpiicc -qopenmp myprogram.c -o myprogram $ mpicc -fopenmp myprogram.c -o myprogram

C++ $ mpiicpc -qopenmp myprogram.C -o myprogram $ mpicxx -fopenmp myprogram.C -o myprogram

Agenda

4. Running jobs

§ Accessing to compute node

§ Interactive jobs

§ Job accounting

§ Available queues

§ Batch jobs & Examples

Agenda

4. Running jobs

§ Accessing to compute node

§ Interactive jobs

§ Job accounting

§ Available queues

§ Batch jobs & Examples

job

Compute Nodes
e.g. a751.anvil

queue
login

Login Nodes
e.g. login05.anvil

File system ($HOME, $SCRATCH, $PROJECT)

Internet

LOGIN NODE VS COMPUTE NODE

Running Jobs: The goal is getting to the compute nodes

Do not do science

on the login node!

Agenda

4. Running jobs

§ Access to compute node

§ Interactive jobs

§ Job Accounting

§ Available queues

§ Batch jobs & Examples

Interactive Computing

Interactive Computing

Job manager and
composer

Interactive
programming

Interactive scientific
applications

Remote Desktop
Gateway

Quicker
develop / test /
debug cycle

Run GPI apps as
job: Matlab, Fluent,
Windows VM

Low Barrier &
Familiar Access
to Compute

1. cd $SCRATCH # go to your scratch directory

2. cp -r /anvil/datasets/training/anvil-101/interactive-test . # copy the test folder to your scratch directory

3. cd interactive-test # go to the interactive-test folder

4. ls

mpi_hello interactive-test-README

Exercise: Run MPI Code with Interactive Job

Exercise: Run MPI Code with Interactive Job

5. sinteractive -N 2 -n 2 -A tra220012 -t 00:30:00

salloc: Granted job allocation 198543

salloc: Waiting for resource configuration

salloc: Nodes a[478-479] are ready for job

§ You can use the sinteractive command to run your job in an interactive session.

§ sinteractive accepts most of the same resource requests as sbatch

§ To quit your interactive job: exit or Ctrl-D

This example asked for 2 nodes; 1 core
on each node. The time limit is 30 mins.

6. module purge # To unload all loaded modules and reset everything to original state

7. module load modtree/cpu # To load the default CPU environment recommended by the Anvil team

8. module list

Currently Loaded Modules:

1) gmp/6.2.1 2) mpfr/4.0.2 3) mpc/1.1.0 4) zlib/1.2.11 5) gcc/11.2.0 6) libfabric/1.12.0 7) numactl/2.0.14 8)
openmpi/4.0.6 9) modtree/cpu

9. mpirun -np 2 mpi_hello # Use 2 cores with mpirun to run the MPI code

Runhost:a479.anvil.rcac.purdue.edu Rank: 1 of 2 ranks hello, world

Runhost:a478.anvil.rcac.purdue.edu Rank: 0 of 2 ranks hello, world

Exercise: Run MPI Code with Interactive Job

Agenda

4. Running jobs

§ Access to compute node

§ Interactive jobs

§ Job Accounting

§ Available queues

§ Batch jobs & Examples

Job Accounting
§ For CPU jobs, the charge unit is Service Unit (SU), i.e. 1 CPU or £ ~2G memory for 1 hour, based on the actual

resources used by your job.

Ø If your job used 4 cores and 2 hours:

§ for shared queues job, charge = 4 cores x 2 hours = 8 SU

§ for node-exclusive job, all 128 cores will be charged, even if only 4 cores are used, charge = 128 cores x 2

hours = 256 SU

Ø Jobs submitted to the large memory nodes will be charged 4 SU per core (4x standard node charge).

§ For GPU jobs, 1 SU is 1 GPU or £ ~64G memory for 1 hour. 4 GPU on a node. All GPU nodes are shared.

§ Filesystem storage is not charged.

Agenda

4. Running jobs

§ Access to compute node

§ Interactive jobs

§ Job Accounting

§ Available queues

§ Batch jobs & Examples

Slurm Partitions (Queues)
Anvil Production Queues

Queue
Name Node Type Max Nodes

per Job
Max Cores

per Job
Max

Duration
Max running

Jobs in Queue
Max running +

submitted Jobs
in Queue

Charging
factor

debug regular 2 nodes 256 cores 2 hrs 1 2 1

gpu-debug gpu 1 node 2 gpus 0.5 hrs 1 2 1

standard regular 16 nodes 2,048 cores 96 hrs 64 128 1

wide regular 56 nodes 7,168 cores 12 hrs 5 10 1

shared regular 1 node 128 cores 96 hrs 6400 cores 1

highmem large-memory 1 node 128 cores 48 hrs 2 4 4

gpu gpu 48 hrs 8 gpus 1

* For gpu queue: max of 12 GPU per job and max of 32 GPU in use by a single group.

Agenda

4. Running jobs

§ Access to compute node

§ Interactive jobs

§ Job Accounting

§ Available queues

§ Batch jobs & Examples

Batch Script example: Serial Job in Standard Queue
#!/bin/bash
FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name
#SBATCH --nodes=1 # Total # of nodes (must be 1 for serial job)
#SBATCH --ntasks=1 # Total # of tasks (should be 1 for serial job)
#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)
#SBATCH -J myjobname # Job name
#SBATCH -o myjob.o%j # Name of stdout output file
#SBATCH -e myjob.e%j # Name of stderr error file
#SBATCH -p standard # Queue (partition) name
#SBATCH --mail-user=useremailaddress
#SBATCH --mail-type=all # Send email to above address at begin and end of job
#SBATCH --output=/path/myjob.out # Redirect job output to somewhere other than the default location
#SBATCH --error=/path/myjob.out # Redirect job error to somewhere other than the default location

Manage processing environment, load compilers and applications.
module purge
module load compilername
module load applicationname
module list

Launch serial code
./myexecutablefiles

Common Slurm Commands

§ Check job status
$ squeue -u myusername

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

188 standard job1 myusername R 0:14 2 a[010-011]

189 standard job2 myusername PD 0:15 1 a012

R -- running

PD -- pending

§ Submit jobs
$ sbatch mysubmissionfile

Submitted batch job 188

§ Check queued or running job information
$ scontrol show job 189
JobId=189 JobName=myjobname

UserId=myusername GroupId=mygroup MCS_label=N/A
Priority=103076 Nice=0 Account=myacct QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
Requeue=1 Restarts=0 BatchFlag=0 Reboot=0 ExitCode=0:0
RunTime=00:01:28 TimeLimit=00:30:00 TimeMin=N/A
SubmitTime=2021-10-04T14:59:52 EligibleTime=2021-10-04T14:59:52
AccrueTime=Unknown

StartTime=2021-10-04T14:59:52 EndTime=2021-10-04T15:29:52 Deadline=N/A
…

JobState: if the job is Pending, Running, Completed, or Held.

RunTime & TimeLimit: how long the job has run and maximum run time.

SubmitTime: when the job was submitted to the cluster.

WorkDir: the job's working directory.

StdOut & Stderr: locations of stdout and stderr of the job.

Reason: why a PENDING job isn't running.

Common Slurm Commands

§ Kill a job
$ scancel myjobid

§ Check historic (completed) job information
$ jobinfo 189

Name : interactive
User : hong400
Account : rcac
Partition : standard
Nodes : a010
Cores : 1
GPUs : 0
State : TIMEOUT
ExitCode : 0:0
Submit : 2021-10-04T14:59:52
Start : 2021-10-04T14:59:52
End : 2021-10-04T15:30:20
Waited : 00:00:00
…

1. cd $SCRATCH # go to your scratch directory

2. cp -r /anvil/datasets/training/anvil-101/sbatch-test . # copy the test folder to your scratch directory

3. cd sbatch-test # go to the sbatch-test folder

4. ls

hello.py myjobsubmitscript sbatch-test-README

5. sbatch myjobsubmitscript # submit a sbatch job

Submitted batch job XXXXXX

Exercise: Submit a batch job

6. squeue -u myusername # check job status under myusername

7. scontrol show job XXXXXX # check queued or running job information with my jobID

8. ls

9. vi myjob.oXXXXXX # check job output with my jobID

10. scancel XXXXXX # kill the job with my jobID

11. jobinfo XXXXXX # check historic (completed) job information with my jobID

Exercise: Submit a batch job

MPI Job in Standard Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name

#SBATCH --nodes=2 # Total # of nodes

#SBATCH --ntasks=256 # Total # of tasks

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p standard # Queue (partition) name

#SBATCH --mail-user=useremailaddress

#SBATCH--mail-type=all # Send email to above address at begin and end of job

Manage processing environment, load compilers and applications.
module purge
module load compilername
module load mpilibrary
module load applicationname
module list

Launch MPI code

mpirun -np $SLURM_NTASKS myexecutablefiles

#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name

#SBATCH --nodes=1 # Total # of nodes (must be 1 for OpenMP job)

#SBATCH --ntasks=1 # Total # of tasks

#SBATCH --cpus-per-task=128 # cpu-cores per task (default value is 1, >1 for multi-threaded tasks)

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p standard # Queue (partition) name

Manage processing environment, load compilers and applications.
module purge
module load compilername
module load applicationname
module list

Set thread count (default value is 1).

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Launch OpenMP code

./myexecutablefiles

OpenMP Job in Standard Queue

When running OpenMP programs, all threads must

be on the same compute node to take advantage of

shared memory. The threads cannot communicate

between nodes.

Hybrid Job in Standard Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name
#SBATCH --nodes=2 # Total # of nodes
#SBATCH --ntasks-per-node=2 # Total # of MPI tasks per node
#SBATCH --cpus-per-task=64 # cpu-cores per task (default value is 1, >1 for multi-threaded tasks)
#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)
#SBATCH -p standard # Queue (partition) name

Manage processing environment, load compilers and applications.
module purge
module load compilername
module load mpilibrary
module load applicationname
module list

Set thread count (default value is 1).

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Launch MPI code

mpirun -np $SLURM_NTASKS myexecutablefiles

This example asks for 4 MPI tasks

(with 2 MPI tasks per node), each with

64 OpenMP threads for a total of 256

CPU-cores.

GPU job in GPU queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name for GPU

#SBATCH --nodes=1 # Total # of nodes (must be 1 for serial job)

#SBATCH --ntasks=1 # Total # of tasks

#SBATCH --gres=gpu:1 # Number of GPUs per node

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p gpu # Queue (partition) name

#SBATCH --mail-user=useremailaddress

#SBATCH --mail-type=all # Send email to above address at begin and end of job

Manage processing environment, load compilers and applications.

module purge

module load modtree/gpu

module load applicationname

module list

Launch GPU code

./myexecutablefiles

You can use sfeatures command to see the
detailed hardware overview.

Make sure to use --gres=gpu command,
instead of --gpu or –G. Otherwise, your job
may not run properly.

When running on multiple GPUs with MPI,

you need to ensure one MPI rank per GPU.

NGC GPU Container Job in GPU Queue

$ module load modtree/gpu

$ module load ngc

$ module avail
--- /opt/spack/ngc --

autodock/2020.06 namd/2.13-multinode pytorch/20.11-py3 rapidsai/0.17 tensorflow/20.06-tf2-py3
gamess/17.09-r2-libcchem namd/2.13-singlenode (D) pytorch/20.12-py3 rapidsai/21.06 tensorflow/20.11-tf1-py3
gromacs/2018.2 namd/3.0-alpha3-singlenode pytorch/21.06-py3 rapidsai/21.10 (D) tensorflow/20.11-tf2-py3
gromacs/2020.2 nvhpc/20.7 pytorch/21.09-py3 (D) relion/2.1.b1 tensorflow/20.12-tf1-py3
gromacs/2021 nvhpc/20.9 qmcpack/v3.5.0 relion/3.1.0 tensorflow/20.12-tf2-py3
gromacs/2021.3 (D) nvhpc/20.11 quantum_espresso/v6.6a1 relion/3.1.2 tensorflow/21.06-tf1-py3
julia/v1.5.0 nvhpc/21.5 quantum_espresso/v6.7 (D) relion/3.1.3 (D) tensorflow/21.06-tf2-py3
julia/v2.4.2 nvhpc/21.9 (D) rapidsai/0.12 tensorflow/20.02-tf1-py3 tensorflow/21.09-tf1-py3
lammps/10Feb2021 paraview/5.9.0 rapidsai/0.13 tensorflow/20.02-tf2-py3 tensorflow/21.09-tf2-py3 (D)
lammps/15Jun2020 pytorch/20.02-py3 rapidsai/0.14 tensorflow/20.03-tf1-py3 torchani/2021.04
lammps/24Oct2018 pytorch/20.03-py3 rapidsai/0.15 tensorflow/20.03-tf2-py3
lammps/29Oct2020 pytorch/20.06-py3 rapidsai/0.16 tensorflow/20.06-tf1-py3

On Anvil, type the command below to see the lists of NGC containers we deployed:

What is NGC?

§ Nvidia GPU Cloud (NGC) is a GPU-accelerated cloud platform optimized for deep learning and scientific computing.

§ Anvil team provides pre-downloaded NGC containers as convenient modules, so that you can use NGC containers as non-
containerized versions of each application. More information can be found at Anvil NGC containers:
https://www.rcac.purdue.edu/knowledge/anvil/run/examples/slurm/ngc

https://www.rcac.purdue.edu/knowledge/anvil/run/examples/slurm/ngc

NGC GPU Container Job in GPU Queue
#!/bin/bash

FILENAME: myjobsubmissionfile

#SBATCH -A myallocation # Allocation name for GPU

#SBATCH --nodes=1 # Total # of nodes (must be 1 for serial job)

#SBATCH --ntasks=1 # Total # of tasks

#SBATCH --gres=gpu:1 # Number of GPUs per node

#SBATCH --time=1:30:00 # Total run time limit (hh:mm:ss)

#SBATCH -p gpu # Queue (partition) name

Manage processing environment, load compilers and applications.

module purge

module load modtree/gpu

module load ngc

module load applicationname

module list

Launch GPU code

./myexecutablefiles

When running on multiple GPUs with MPI,

you need to ensure one MPI rank per GPU.

Agenda

5. Data management and transfer

§ File system

§ Scp, Rsync, SFTP, Globus

§ Lost file recovery

Agenda

5. Data management and transfer

§ File system

§ Scp, Rsync, SFTP, Globus

§ Lost file recovery

File Systems

* Full schedule keeps nightly snapshots for 7 days, weekly snapshots for 3 weeks, and monthly snapshots for 2 months.

Anvil File Systems

File System Mount Point Quota Snapshots Purpose Purge policy

Anvil ZFS /home 25 GB Full
schedule*

Home directories: area for storing personal
software, scripts, compiling, editing, etc. Not purged

Anvil ZFS /apps N/A Weekly* Applications

Anvil GPFS /anvil N/A No

Anvil GPFS /anvil/scratch 100 TB No User scratch: area for job I/O activity, temporary
storage

Files older than 30-day (access time) will be
purged

Anvil GPFS /anvil/projects 5 TB Full
schedule*

Per allocation: area for shared data in a project,
common datasets and software installation

Not purged while allocation is active.
Removed 90 days after allocation expiration

Anvil GPFS /anvil/datasets N/A Weekly* Common data sets (not allocated to users)

Versity N/A (Globus) 20 TB No Tape storage per allocation

$HOME

$SCRATCH

$PROJECT or $WORK

Agenda

5. Data management and transfer

§ File system

§ Scp, Rsync, SFTP, Globus

§ Lost file recovery

Transferring Files
Users can transfer files between Anvil and Linux-based systems or Mac or windows terminal using either scp or rsync or
SFTP.

localhost> scp x-anvilusername@anvil.rcac.purdue.edu:/home/x-anvilusername/test.txt .

Warning: Permanently added the xxxxxxx host key for IP address 'xxx.xxx.xxx.xxx' to the list of known hosts.

test.txt 100% 0 0.0KB/s 00:00

§ SCP (Secure CoPy) is a simple way of transferring files between two machines that use the SSH protocol.

NOTE: SSH Keys is required for SCP.

Following is an example of transferring a test.txt file from Anvil home directory to local machine, make sure to use your
anvil user name x-anvilusername:

§ Rsync, or Remote Sync lets you transfer files and directories to local and remote destinations. It allows to copy only
the changes from the source and offers customization, use for mirroring, performing backups, or migrating data
between different filesystems.

NOTE: SSH Keys is required for Rsync. Also make sure to use your anvil user name x-anvilusername:

Transferring Files
§ SFTP (Secure File Transfer Protocol) is available as graphical file transfer programs and as a command-line program.

SFTP has more features than SCP and allows for other operations on remote files, remote directory listing, and

resuming interrupted transfers.

§ More details can be found at Anvil File Transfer-SFTP: www.rcac.purdue.edu/knowledge/anvil/storage/transfer/sftp

Cyberduck for Mac OS X MobaXterm for Microsoft Windows

https://www.rcac.purdue.edu/knowledge/anvil/storage/transfer/sftp
https://cyberduck.io/
https://mobaxterm.mobatek.net/download.html

Transferring Files
§ Globus is also a powerful and easy to use file transfer. It works between any XSEDE and non-XSEDE sites running

Globus, and it connects any of these research systems to personal systems.

You may use Globus to connect to your home, scratch, and project storage directories on Anvil. Since Globus is
web-based, it works on any operating system connected to the internet.

More details can be found at XSEDE Data Transfer & Management: https://portal.xsede.org/data-management

https://portal.xsede.org/data-management

Agenda

5. Data management and transfer

§ File system

§ Scp, Rsync, SFTP, Globus

§ Lost file recovery

Lost File Recovery

§ Your $HOME and $PROJECT directories on Anvil are protected. A series of snapshots are taken every night after
midnight. Each snapshot provides the state of your files at the time.

§ These snapshots are kept for a limited time at various intervals. Please refer to Anvil File Systems:
www.rcac.purdue.edu/knowledge/anvil/storage/filesystems for more detail.

§ Only files saved during an overnight snapshot are recoverable. If you lose a file the same day you created it, the file
is not recoverable.

§ Snapshots are not a substitute for regular backups. For additional security, you might consider off-site back up
important data (e.g. use Globus to transfer to your institution, etc)

https://www.rcac.purdue.edu/knowledge/anvil/storage/filesystems

Lost File Recovery
§ If you know when you lost the file, you can use the flost command.

§ The default location flost looks at is $HOME directory. For other location (e.g. in $PROJECT), you need to specify

where the lost file was with -w argument.

§ If you do not know the date, you may try entering different dates to flost.

§ Or you may manually browse the snapshots in /home/.zfs/snapshot folder for $HOME directory or

/anvil/projects/.snapshots folder for $PROJECT directory.

Agenda

6. Helpful tips

Helpful Tools

The following table provides a list of auxiliary tools:
Tools Use
myquota Check the quota of different file systems

flost A utility to recover files from snapshots

showpartitions Display all Slurm partitions and their current usage

myscratch Show the path to your scratch directory

jobinfo
Collates job information from the sstat, sacct and squeue
SLURM commands to give a uniform interface for both
current and historical jobs

sfeatures Show the list of available constraint feature names for
different node types.

myproject print the location of my project directory

mybalance Check the allocation usage of your project team

The Anvil cluster provides a list of useful auxiliary tools:

Contact Us
For user support please submit a ticket at Help Desk, by selecting the appropriate Anvil resource to have it
routed to us.

https://portal.xsede.org/help-desk

Appendix

Logging in SSH Keys

1. Generate a key pair consisting of a private and a
public key on your local machine.

2. Copy the public key to the cluster and append it to
$HOME/.ssh/authorized_keys file in your account.

3. Test if you can ssh from your local computer to the
cluster without using XSEDE's Single Sign On (SSO)
login hub.

SSH key is an access credential in the SSH protocol. It functions similarly to username and password, but the key is primarily
used to automated processes and enable single sign-on.

To connect to Anvil using SSH keys, you must follow three high-level steps:

public key authorized keylocal machine Anvil

local machine Anvil

public keylocal machine

[localhost]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (localhost/.ssh/id_rsa):

Logging in SSH Keys

1. Run ssh-keygen in a terminal on your local machine.

You may supply a filename & a passphrase to protect your
private key. Or to accept the default settings, press Enter.

Note: If you do not protect private key with a passphrase,
anyone with access to your computer could SSH to your
account on Anvil.

By default, the key files will be stored in ~/.ssh/id_rsa and
~/.ssh/id_rsa.pub on your local machine.

For Mac and Linux:

Created directory 'localhost/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in localhost/.ssh/id_rsa.
Your public key has been saved in localhost/.ssh/id_rsa.pub.
The key fingerprint is:
...
The key's randomart image is:
...

public key id_rsa.pub
Local machine

Logging in SSH Keys
3. Go to the ~/.ssh folder in your local machine and cat the key
information in id_rsa.pub file.

5. Create a file ~/.ssh/authorized_keys on Anvil and copy the
contents of the public key id_rsa.pub on your local machine into
~/.ssh/authorized_keys on Anvil.

Local machine public key Anvil authorized keyLocal machine Anvil

4. Login to Anvil with your XSEDE username and password
through XSEDE Single Sign-On (SSO) hub. Then go to the
home directory on Anvil, make a directory mkdir -p ~/.ssh if it
does not exist.

6. Test the new key by SSH-ing to the server. The login should
now complete without asking for a password.

[localhost/.ssh]$ cat id_rsa.pub
ssh-rsa ... localhost-username@localhost

[x-anvilusername@login01:~]$ cd ~/.ssh
[x-anvilusername@login01:~/.ssh]$ vi authorized_keys
copy-paste the contents of the public key id_rsa.pub in
your local machine to here and save the change of
authorized_keys file. Then it is all set!

[localhost]$ ssh x-anvilusername@anvil.rcac.purdue.edu
===
== Welcome to the Anvil Cluster
...
===[
[x-anvilusername@login06:~]

https://www.rcac.purdue.edu/knowledge/anvil/access/login

Logging in SSH Keys
For Windows:

Windows SSH Instructions

Programs Instructions

MobaXterm Open a local terminal and follow Linux steps

Git Bash Follow Linux steps

Windows 10 PowerShell Follow Linux steps

Windows 10 Subsystem for Linux Follow Linux steps

PuTTY Follow steps below

Logging in SSH Keys
For Windows PuTTY:

1. Launch PuTTYgen (another software, not PuTTY), keep the

default key type (RSA) and length (2048-bits) and

click Generate button.

Logging in SSH Keys
For Windows PuTTY:

2. Once the key pair is generated:

• Use the Save public key button to save the public key,
e.g. Documents\SSH_Keys\mylaptop_public_key.pub

• Use the Save private key button to save the private key,
e.g. Documents\SSH_Keys\mylaptop_private_key.ppk

When saving the private key, you can also choose a
reminder key comment, as well as an optional key
passphrase to protect your key.

Note: If you do not protect your private key with a
passphrase, anyone with access to your computer could
SSH to your account on Anvil.

Logging in SSH Keys
For Windows PuTTY:

3. Configure PuTTY to use key-based authentication:

• Launch PuTTY and navigate to "Connection -> SSH -

>Auth" on the left panel, click Browse button under

the "Authentication parameters" section and choose your

private key, e.g. mylaptop_private_key.ppk

• Navigate back to "Session" on the left panel.

Highlight "Default Settings" and click the "Save" button to

ensure the change in place.

Logging in SSH Keys
For Windows PuTTY: 4. Login to Anvil with XSEDE username and password via XSEDE

Single Sign-On (SSO) hub. Then go to the home directory, make

a directory mkdir -p ~/.ssh if it does not exist.

5. Create a file ~/.ssh/authorized_keys on Anvil and copy the

contents of the public from PuTTYgen and paste it into

~/.ssh/authorized_keys on Anvil. Please double-check that your

text editor did not wrap or fold the pasted value (it should be one

very long line).

6. Test by connecting to the cluster and the login should now

complete without asking for a password. If you chose to protect

your private key with a passphrase in step 2, you will be prompted

to enter the passphrase when connecting

https://www.rcac.purdue.edu/knowledge/anvil/access/login

ThinLinc

Server: desktop.anvil.rcac.purdue.edu

Use your Anvil username: x-anvilusername

In the options dialog, switch to the "Security"

tab and select the "Public key" radio button:

In the Key field, type your locally ssh keys path
or click ... button to locate and select the key.

Note: If PuTTY is used to generate the SSH Key
pairs, please choose the private key in the
openssh format.

Browser-based Thinlinc access is not supported on Anvil at this moment. Please use native Thinlinc

client with SSH keys.

