RUNNING BIOINFORMATICS ANALYSIS USING HPC

Yucheng Zhang, Senior Life Science Scientist
Installing Software on an HPC Cluster, Oversimplified

- Manual installation from source code
- Environment Modules
- Userspace Package Managers (e.g., conda, pip, cpanm...)
- Singularity Containers (if using an existing container)

source: https://github.com/harvardinformatics/bioinformatics-coffee-hour/blob/master/singularity/images/installing_software.gif
What to expect from this bioinformatics workshop?

Objectives

- Introduce current bioinformatics resources on clusters.
- Learn how to install packages using different approaches.
- Become familiar with different ways of running bioinformatics analysis on clusters.
Running Bioinformatics Analysis using HPC

Bioinformatics resources
- Maintained by Purdue Bioinformatics Core.
- > 700 tools (As of March, 2023).
- Compiled and installed from source codes on old operation systems.
- Available on Gilbreth, Brown, Bell, Scholar, and Workbench.
- Unavailable on future clusters since Negish, due to compatibility issues.
- Send emails to bioinformatics@purdue.edu for issues.
Biocontainers

- Maintained by Purdue RCAC.
- ~600 tools (As of March, 2023).
- Deployed based on singularity containers.
- Available on all RCAC clusters including ACCESS Anvil.
- Send emails to rcac-help@purdue.edu for issues.
Containers

A **container** is an abstraction for a set of technologies that aim to solve the problem of how to get software to run reliably when moved from one computing environment to another.

A container **image** is simply a file (or collection of files) saved on disk that stores everything you need to run a target application or applications.

Registry: a place to store (and share) container images.

`dockerhub`

GitHub Container Registry

BioContainers
Containerized vs. non-containerized applications

Containerized

Ubuntu 22
- MAKER
- blast
- genemark
- augustus

CentOS 8
- prokka
 - blast
 - hmmmer
 - prodigal

Rocky 9
- rnaQUAST
 - blast
 - gmp
 - star

Host: CentOS 7

Non-containerized

- blast
- augustus
- mcl
- metaphorlan
- busco
- orthomcl
- humann

Host: CentOS 7
Want to know more about RCAC biocontainers?

Workshops
- Containers 101
- Biocontainers 101
- Containerization Bioinformatics Applications for HPC: March 23

Publications
- BioContainers on Purdue Clusters
- Containerized Bioinformatics Ecosystem for HPC
Load and use biocontainers

Load biocontainers

module --force purge # optional but highly recommended
module load biocontainers

Check available applications

module avail

Load and run specific tools

module load samtools/1.16 # specify version can guarantee reproducibility

samtools idxstats input.bam
$ module load biocontainers

User guides for each biocontainer module can be found in https://biocontainer-doc.readthedocs.io/en/latest

Example job using GPU

Warning

Using `#!/bin/sh` instead of `#!/bin/bash` in the SLURM job script will cause the failure of some biocontainer modules. Please use `#!/bin/bash` instead.

Note

Notice that since version 2.2.0, the parameter `--use_gpu_relax=True` is required.

To run alphafold using GPU:

```bash
#!/bin/bash
#SBATCH -A myallocation
#SBATCH -t 20:00:00
#SBATCH -N 2
#SBATCH --gres=gpu:1
#SBATCH --job-name=alphafold
#SBATCH --mail-type=FAIL,BEGIN,END
#SBATCH --error=m-%J-%u.err
#SBATCH --output=m-%J-%u.out

module --force purge
module load bioccontainers alphafold

run_alphafold.sh --flagfile=full_db_20220114_ff
  --fasta_paths=sample.fasta
  --max_template_date=2022-02-01
  --output_dir=tf2_full_out --model preset=monomer
  --use_gpu_relax=True
```

3/13/23
Running Bioinformatics Analysis using HPC

Installing packages from source
GNU Make is a program often used for compiling software. It uses a plain text file named **makefile** or **Makefile**.

Steps

1. Unpack the source code archive.
2. **Configure** the package. ## Some packages do not have the **configure** file
3. Run **make** to build the programs.
4. Run **make install** to install the package. # Optional
 ❌ Do not run **sudo make install**

- In default, **make install** will install applications into `/usr/local`, but regular users do not have permission to write into `/usr/local`.
- The best way is to install applications into your home directory or `/depot` by passing the option **--prefix=TargetDirName** to **./configure**.
mkdir -p ~/bioinformatics
cd ~/bioinformatics
Load gcc compiler
module load gcc ## Recommend to load the newest version of gcc

Download source code archive from https://github.com/lh3/bwa/releases/tag/v0.7.17
wget -O bwa_0.7.17.tar.gz https://github.com/lh3/bwa/archive/refs/tags/v0.7.17.tar.gz
Unpack source code archive
tar -xvf bwa_0.7.17.tar.gz
cd bwa-0.7.17

compile the code
make
Add the bwa directory to $PATH
export PATH=$PATH:$HOME/bioinformatics/bwa-0.7.17 ## This can be added to .bashrc

Run bwa
bwa
Make example2: hmmer

Load gcc compiler
module load gcc
Recommend to load the newest version of gcc

Download source code
wget http://eddylab.org/software/hmmer/hmmer.tar.gz

Unpack source code archive
tar -xvf hmmer.tar.gz
cd hmmer-3.3.2/

compile the code
./configure --prefix=$HOME/myapps
make
make install

Add the myapps directory to $PATH
export PATH=$PATH:$HOME/myapps/bin

Run hmmer
hmmsearch -h
mkdir -p ~/bioinformatics

cd ~/bioinformatics

Load gcc compiler and cmake
module load gcc cmake

Recommend to load the newest version of gcc and cmake

Download source code archive from https://github.com/griffithlab/regtools/releases/tag/1.0.0
wget -O regtools_1.0.0.tar.gz https://github.com/griffithlab/regtools/archive/refs/tags/1.0.0.tar.gz

Unpack source code archive
tar -xvf regtools_1.0.0.tar.gz

cd regtools-1.0.0/

compile the source code
mkdir build
mkdir build/
cd build/

cmake ..
make

Add the bwa directory to $PATH
export PATH=$PATH:$HOME/bioinformatics/regtools-1.0.0/build

Run RegTools
regtools
Running Bioinformatics Analysis using HPC

Installing packages using conda
Conda is an open-source package manager and virtual environment manager for installing packages.

module spider anaconda
module load anaconda/XXXX #The latest version is recommended
conda create --name MyEnv python=3.9 1stPackage 2ndPackage
conda env list #Confirm the conda environment is created
conda activate MyEnv
conda install 3rdPackage
conda deactivate
conda channels

- Conda channels are the locations where packages are stored.
- Conda search or download packages from channels.
- The default set of channels is called **defaults**.
- To install a package that is not in **defaults**, you need to tell conda which channel contains the package.

```
conda install -c pytorch pytorch
conda install -c conda-forg r-base
```
Bioconda is the channel for bioinformatics applications. As of today, bioconda includes over 10 thousands bioinformatics applications.

```
conda install -c bioconda blast
conda install -c bioconda samtools
```

To use conda to install packages, [Google conda install packageName](https://anaconda.org/bioconda/blast)
Running Bioinformatics Analysis using HPC

Containerized applications
Docker containerization

https://github.com/pinellolab/CRISPRecco2

Docker

CRISPRecco2 can be used via the Docker containerization system. This system allows CRISPRecco2 to run on your system without configuring and installing additional packages. To run CRISPRecco2, first download and install docker: https://docs.docker.com/engine/installation/

Next, Docker must be configured to access your hard drive and to run with sufficient memory. These parameters can be found in the Docker settings menu. To allow Docker to access your hard drive, select 'Shared Drives' and make sure your drive name is selected. To adjust the memory allocation, select the 'Advanced' tab and allocate at least 4G of memory.

To run CRISPRecco2, make sure Docker is running, then open a command prompt (Mac) or Powershell (Windows). Change directories to the location where your data is, and run the following command:

docker run -v ${PWD}:/DATA -w /DATA -i pinellolab/crispresso2 CRISPRecco -h

https://hub.docker.com/r/pinellolab/crispresso2
1 (Optional). **Build** singularity containers on a computer system where you have root or sudo privilege, e.g., your personal computer with singularity installed.

2. **Pull** the public containers or **transfer** your own containers to HPC.

3. **Run** singularity containers on the HPC system.
BioContainers is integrated with Bioconda, which is the conda channel for bioinformatics applications.

BioContainers registry is the largest registry for bioinformatics applications.

As of today, BioContainers provides containers for over 10 thousand bioinformatics applications.

You can find almost all bioinformatics applications from here: https://bioconda.github.io/conda-package_index.html
Singularity demo1: samtools

https://bioconda.github.io/recipes/samtools/README.html#package-samtools

Installation

With an activated Bioconda channel (see set-up-channels). Install with:

```bash
conda install samtools
```

and update with:

```bash
conda update samtools
```

or use the docker container:

```bash
docker pull quay.io/biocontainers/samtools:<tag>
```

(see `samtools/tags` for valid values for `<tag>`)

Click to get tags/versions
Singularity demo2: Alphafold

https://hub.docker.com/r/tacc/alphafold/tags

docker pull docker://tacc/alphafold:2.3.1

docker run alphafold_2.3.1.sif --helpfull
Running Bioinformatics Analysis using HPC
.Rprofile

- Each cluster has multiple versions of R and packages installed with one version of R may not work with another version of R.
- Libraries for each R version must be installed in a separate directory.
- Define the directory where your R packages will be installed using the environment variable R_LIBS_USER.

How to set Up R Preferences with .Rprofile

curl -#LO https://www.rcac.purdue.edu/files/knowledge/run/examples/apps/r/Rprofile_example
mv -ib Rprofile_example ~/.Rprofile
R package installation: load required modules

```r
if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("Cardinal")
```

```bash
fftwtools.c:28:18: fatal error: fftw3.h: No such file or directory
#include<fftw3.h>
^
compilation terminated.
make: *** [fftwtools.o] Error 1
ERROR: compilation failed for package ‘fftwtools’
```

```bash
module load r/4.2.2
module load fftw/3.3.7

* DONE (Cardinal)
The downloaded source packages are in
  ‘/tmp/RtmpRSSU7U/downloaded_packages’
```
r-rnanseq and r-scrnaseq

R-RNAseq
Customized R container for RNAseq analysis.

- ComplexHeatmap
- DESeq2
- DEXSeq
- edgeR
- ggrepel
- Limma
- pheatmap
- tidyverse

R-scRNAseq
Customized R container for scRNAseq analysis.

- CellChat
- CoGAPS
- DESeq2
- doSNOW
- DropletUtils
- edgeR
- Limma
- miQC
- monocle
- monocle3
- Nebulosa
- ProjecTILs
- rliger
- scCATCH
- scDblFinder
- SCHNAPPs
- scMappR
- seurat
- seurat-wrappers
- SingleR
- SnapATAC
- SoupX
- tidyverse
- tricycle
- velocyto.R

And more

Running Bioinformatics Analysis using HPC

Python
To facilitate the process of creating and using Conda environments, we support a script (conda-env-mod) that generates a module file for an environment, as well as an optional Jupyter kernel to use this environment in a JupyterHub notebook.

You must load one of the anaconda modules in order to use this script.

Create a conda environment

$ module load anaconda/2020.11-py38
$ coda-env-mod create -n mypackages --local-python

Load the conda environment

$ module load use.own
$ module load conda-env/mypackages-py3.8.5 ## py3.8.5 is the python version in the anaconda module

Install packages

$ conda install PackageName

Create conda environment for Jupyter

$ conda-env-mod create -n mypackages --jupyter #--jupyter always implies '--local-python'

conda-env-mod is very powerful. Detailed usage can be found here
https://www.rcac.purdue.edu/knowledge/negishi/run/examples/apps/python/packages

conda-env-mod

Rosen Center for Advanced Computing

3/13/23 | 32
`conda-env-mod demo: cellrank`

```
$ module load anaconda/2020.11-py38
$ conda-env-mod create -n cellrank --jupyter
$ module load use.own
$ module load conda-env/cellrank-py3.8.5
$ conda install -c conda-forge -c bioconda cellrank

$ python
Python 3.8.5 (default, Sep 4 2020, 07:30:14)
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cellrank
```

[Link to GitHub repository](https://github.com/theislab/cellrank)
Open OnDemand Jupyter

Notebook:
- Bash
- Julia 1.7.1
- Python (My cellrank Kernel)
- Python 2.7 (Anaconda 2019.10)
- Python 2.7 - Learning [learning/conda-5.1.0-py27-cpu]
- Python 2.7 [anaconda/5.1.0-py27]
- Python 3.6 - Learning [learning/conda-5.1.0-py36-cpu]
- Python 3.6 [anaconda/5.1.0-py36]
- Python 3.7 (Anaconda 2020.02)
- Python 3.8 (Anaconda 2020.11)
- Python 3.9 (Default)
Running Bioinformatics Analysis using HPC

Interactive Jobs
Interactive jobs are run on compute nodes, while giving you a shell to interact with. They give you the ability to type commands or use a graphical interface in the same way as if you were on a front-end login host.

1 node, 24 cores, and 10 hours walltime

`sinteractive -N1 -n24 -t10:00:00 -A accountName`

1 node, 12 cores, 1 GPU and 4 hours walltime

`sinteractive -N1 -n12 --gres=gpu:1 -t4:00:00 -A accountName`

https://www.cendio.com/thinlinc/download
Batch Jobs: CPU

Using `#!/bin/sh -l` as shebang in the slurm job script will cause the failure of some biocontainer modules. Please use `#!/bin/bash` instead.

```bash
#!/bin/bash

#SBATCH -A accountName  # the queue you want to use
#SBATCH -t 20:00:00
#SBATCH -N 1
#SBATCH -n 24
#SBATCH --job-name=star
#SBATCH --mail-type=FAIL,BEGIN,END
#SBATCH --error=%x-%j-%u.err
#SBATCH --output=%x-%J-%u.out

module --force purge
module load biocontainers star/2.7.10a

STAR --runThreadN 24 --runMode genomeGenerate \ 
     --genomeDir ref_genome \ 
     --genomeFastaFiles ref_genome.fasta
```

%x: job name
%j: jobid
%u: userid
Batch Jobs: GPU

Using `#!/bin/sh -l` as shebang in the slurm job script will cause the failure of some bioccontainer modules. Please use `#!/bin/bash` instead.

```
#!/bin/bash

#SBATCH -A accountName  # the queue you want to use
#SBATCH -t 20:00:00
#SBATCH -N 1
#SBATCH -n 24
#SBATCH --gres=gpu:1
#SBATCH --job-name=parabicks
#SBATCH --mail-type=FAIL,BEGIN,END
#SBATCH --error=%x-%j-%u.err
#SBATCH --output=%x-%J-%u.out

module --force purge
module load biocontainers parabicks

pbrun haplotypecaller \ 
    --ref FVZG01.1.fsa_nt \ 
    --in-bam output.bam \ 
    --out-variants variants.vcf
```
Upcoming

Interactive Apps

Bioinformatics Apps
- Integrative Genomics Viewer
- MEGAN
- MaxQuant
- QualiMap
- Tassel5
- scRNAseq RStudio

MaxQuant
This app will launch MaxQuant on the Anvil cluster.

Allocation
asc170016 (76508.8 SUs remaining)

Queue (partition)
shared
- GPU-only allocations MUST use the 'gpu' queue
- CPU-only allocations MAY NOT use the 'gpu' queue

Wall Time in Hours
1

Number of hours you are requesting for your job.

Cores
1

Number of cores (up to 128) for a shared job. Non-shared jobs will have exclusive nodes and be charged at 128 cores per node requested.

Software Version
2.1.4.0

3/13/23 | 39
Running Bioinformatics Analysis using HPC

What Comes Next?
What Comes Next?

Upcoming Seminars:

- Research Storage 101: March 10
- Containerization Bioinformatics Applications for HPC: March 23
- Open OnDemand 101: March 24
- Workflow Automation Tools for Many-Tasks Computing: March 30
- NLP101: March 31
- Time Series Forecasting 101: April 7

https://www.rcac.purdue.edu/news/events
THANK YOU

Feel free to reach out to zhan4429@purdue.edu with questions.

General help: rcac-help@purdue.edu

Coffee Hour: https://www.rcac.purdue.edu/coffee
 Thursday -- Software compilation, Slurm workflows, Bioinformatics, Containers