CONTAINERIZED BIOINFORMATICS APPLICATIONS FOR HPC

Yucheng Zhang, Senior Life Science Scientist

Rosen Center for Advanced Computing

What to expect from this bioinformatics workshop?

Objectives

- What are containers and why should we use them
- How to use singularity to pull, run and build containers
- Containerized bioinformatics applications deployed on Anvil

Containerized Bioinformatics applications for HPC

Containers

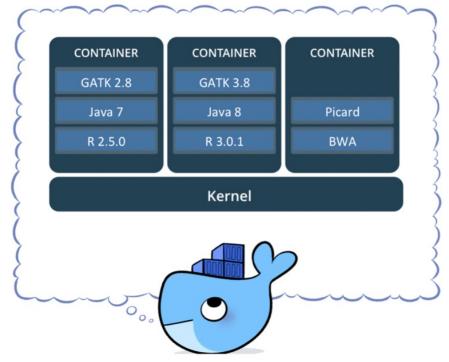
- The arrival of modern shipping containers changed our transportation industry.
- Container is a standardized way to package items together into one shipment.
 - 1. Standard packaging
 - 2. Isolation and efficiency
 - 3. Separation of concerns
 - 4. Portable

Containers

A **container** is an abstraction for a set of technologies that aim to solve the problem of how to get software to run reliably when moved from one computing environment to another.

A container **image** is simply a file (or collection of files) saved on disk that stores everything you need to run a target application or applications.

Registry: a place to store (and share) container images.



GitHub Container Registry

Why use containers

- Getting organized: containers keep things organized by isolating programs and their dependencies inside containers.
- Solution State State
- Reproducibility: containers can ensure identical versions of apps, libraries, compliers, etc.

Docker

The concept of containers emerged in 1970s, but they were not well known until the emergence of Docker containers in 2013.

Docker is an open source platform for building, deploying, and managing containerized applications.

Some concerns about the security of Docker containers in HPC: Docker gives superuser privileges, but we do not want users to have full, unrestricted admin/ root access.

Singularity

- Singularity was developed in 2015 as an open-source project by researchers at Lawrence Berkeley National Laboratory led by Gregory Kurtzer.
- Singularity is emerging as the containerization framework of choice in HPC environments.
 - 1. Enable researchers to package entire scientific workflows, libraries, and even data.
 - 2. Can use docker images.
 - 3. Does not require root privileges to run.

apptainer

- Singularity was recently renamed to Apptainer and hosted by the Linux Foundation.
- Apptainer uses the command apptainer to replace the previous command singularity.
- The singularity command also works, because it is alias for the command apptainer.
- The variable prefixes are APPTAINER_ and APPTAINERENV_ instead of the previous SINGULARITY_ and SINGULARITYENV_.

Containerized Bioinformatics applications for HPC

Singularity basics

singularity pull

Download or build a container from a given URI.

singularity pull [output file] URI

Example: singularity pull blast_2.13.0.sif docker://staphb/blast:2.13.0

custom name URL

Supported URIs include:

- Iibrary: Pull an image from the currently configured library library://user/collection/image[:tag]
- docker: Pull a Docker/OCI image from Docker Hub, or another OCI registry. docker://user/image[:tag]
- http, https: Pull an image using the http(s?) protocol

https://depot.galaxyproject.org/singularity/hisat2%3A2.2.1--he1b5a44_2

Recommended container registries for bioinformatics

> DockerHub (<u>https://hub.docker.org</u>)

The largest repository of Docker container images.

Biocontainers (<u>https://biocontainers.pro/registry</u>)

- A community-driven project for bioinformatics containers.
- 10.6K tools,45.5K versions,228.5K containers and packages (As of March, 2023).

singularity shell

Users can go inside the container to run interactive commands

```
[zhan4429@login06.anvil:[images] $ singularity shell r 4.1.1 scrnaseq.sif
Singularity> R
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86 64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
 Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
```

```
> library(Seurat)
Attaching SeuratObject
```

singularity exec

A container may contain many executables/scripts.

singularity exec can be used to select which executable/script to run.

singularity exec image.sif command

For example:

singularity exec blast.2.13.0.sif **blastn** \ -query nucleotide.fasta \ -db nt -out blastn.out

singularity exec blast.2.13.0.sif blastp \ -query protein.fasta \ -db nr -out blastp.out

Build using a singularity definition file

sudo singularity build image.sif definition.def

If you really need write access to a container you can use a writable sandbox.

sudo singularity build --sandbox container-sand definition.def sudo singularity shell --writable container-sand Singularity> apt-get update Singularity> apt-get install -y packageName sudo singularity build container.sif container-sand

apptainer build

Regular users don't have need sudo privilege to build containers.

\$ sudo singularity build

\$ singularity --version 3.8.5-2.el8

Anvil, Brown, Bell, Gilbreth, Scholar, Workbench

\$ singularity build\$ apptainer build\$ singularity --versionapptainer version 1.1.6-1

Negishi

Definition files

A **definition** file, or **def** file, is a recipe to build a container image with singularity. It is divided into two parts:

- 1. Header: the Header describes the core operating system to build within the container.
 - Bootstrap
 - > From
- 2. Section: each section is defined by a % character followed by the name of the particular section. Different sections add different content or execute commands at different times during the build process.
 - > help
 - > setup
 - ➢ files
 - ➢ labels
 - environment
 - > post
 - > runscript

▶ ...

References the kind of base you want to use (e.g., docker, debootstrap, shub).

Imagae bastad on Dookar Hub	Jockerhub Q ubuntu			
Images hosted on Docker Hub	Explore Official Images ubuntu			
Bootstrap: docker From: ubuntu:22.04	Overview Tags			
Images saved on your machine	Sort by Newest 22.04 X			
Bootstrap: localimage From: /apps/biocontainers/images/mamba.sif	TAG 22.04 Last pushed 4 days ago by <u>doijanky</u>			

Anatomy of a definition file: Reciprocal Smallest Distance

Bootstrap: docker **From:** ubuntu:18.04

%post

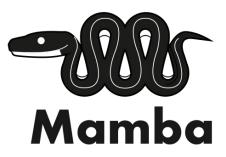
Update and install system libraries apt-get -y update apt-get -y install --no-install-recommends --no-install-suggests build-essential libssl-dev wget

KALIGN 2.0.4
cd /opt && mkdir kalign2
cd kalign2 && wget http://msa.sbc.su.se/downloads/kalign/current.tar.gz
tar -xvf current.tar.gz && ./configure && make

RSD
cd /opt && git clone https://github.com/todddeluca/reciprocal_smallest_distance
cd reciprocal_smallest_distance
python setup.py install

%environment export PATH=/opt/kalign2:/opt/reciprocal_smallest_distance/bin:\$PATH

Anatomy of another definition file: phylofisher


Bootstrap: localimage **From:** /apps/biocontainers/images/mamba.sif

%labels Author "Yucheng Zhang <zhan4429@purdue.edu>"

%help This container contains phylofisher version 1.2.5.

%post

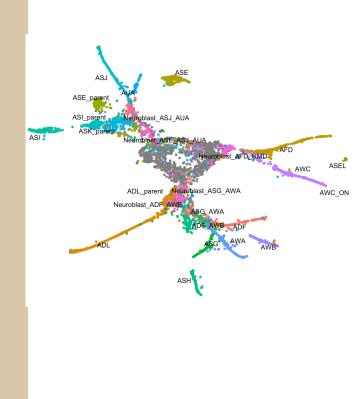
mamba install -c bioconda -c conda-forge \ python=3.7.10 phylofisher=1.2.5

PHYLOFISHER

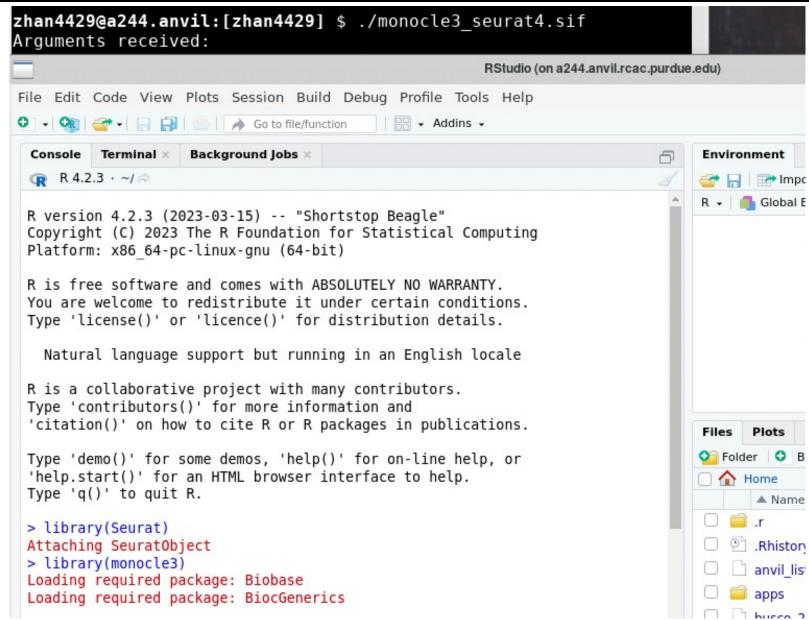
sudo singularity build phylofisher_1.2.5.sif phylofisher_1.2.5.def #singularity singularity build phylofisher_1.2.5.sif phylofisher_1.2.5.def #apptainer

Anatomy of the 3rd definition file: R/Rstudio

Bootstrap: localimage **From:** /apps/biocontainers/images/r4.2.3_rstudio2023.sif


%post apt-get update apt-get -y install libgdal-dev

monocle3


Rscript -e "BiocManager::install(c('BiocGenerics', 'DelayedArray', \ 'DelayedMatrixStats', 'limma', 'lme4', 'S4Vectors', \ 'SingleCellExperiment', 'SummarizedExperiment', \ 'batchelor', 'HDF5Array', 'terra', 'ggrastr'))" Rscript -e "devtools::install_github('cole-trapnell-lab/monocle3')" ## Seurat Rscript -e "install.packages('Seurat')"

%runscript

rstudio "\$@"

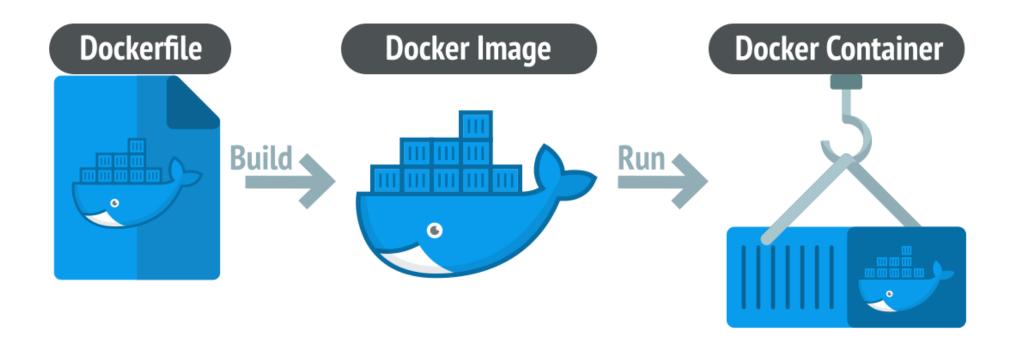
customized Rstudio app for scRNAseq

3/23/23 22

Bind host directories

- Programs running inside a container will not have access to directories and files outside of your home and the current directory.
- Singularity allows you to map directories on your host system to directories within your container using bind mounts.

singularity shell/run/exec --bind hostdir:containerdir image.sif


Singularity binds several directories into the container image automatically. **\$HOME**, **/tmp** and **\$PWD** is the default list. We also configured singularity to bind **/apps**, **/depot**, and **/scratch** on Purdue

community clusters, to bind /anvil, and /apps on ACCESS Anvil.

Docker build

Using docker to build containers is another option:

- 1. Docker has a large, active, and stable ecosystems of container images.
- 2. Singularity can use docker images.

cache

ncdu 1.1	L6 ~	Use the a	arrow keys	to nav	/igate,	press ?	for	help
/hom	ne/zł	1an4429						
2.8	GiB	[########	*##########	####]	/.sing	ularity		
1.0	GiB	[######]	/apps			
971.5	MiB	[######]	/spack			
902.6	MiB	[#######]	/.conda	а		
670.7	MiB	[#####]	/scrip	ts		
653.9	MiB	[#####]	/R			
498.5	MiB	[###]	/svn			
177.2	MiB	[#]	/.m2			
168.3	MiB	[#]	/.cach	е		
115.0	MiB	[]	/rcac			
98.8	MiB	[]	/.vsco	de-serve	er	
84.1	MiB	[]	/.nv			
73.6	MiB	[]	/course	es		
6.6	MiB	[]	/.beas	t		
5.4	MiB	[]	/.npm			
5.2	MiB	[]	/.spac	k		
3.6	MiB	[]	/.loca	1		
1.3	MiB	C]	/myapp	S		
1.0	MiB	[]	/.conf:	ig		

25

To mitigate this, users can either run the singularity pull command with argument --disable-cache or manually clean \$HOME/.singularity/cache singularity pull --disable-cache URI

GPU support

For many applications, CPU compute resources provide sufficient performance. However, for a certain class of applications, the massively parallel compute power offered by GPUs can speed up operations by orders of magnitude.

Run a container with GPU acceleration

For AMD GPUs:

singularity shell/run/exec --rocm myimage.sif [command] [argument]

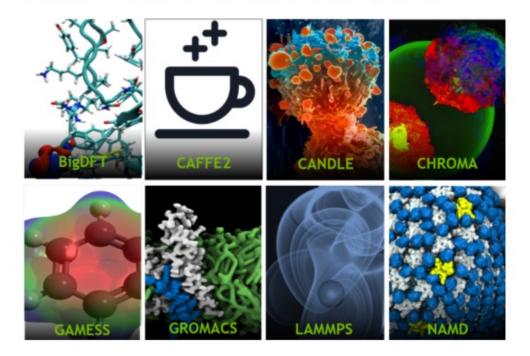
For NVIDIA GPUs:

singularity shell/run/exec --nv myimage.sif [command] [argument]

Containerized Bioinformatics applications for HPC

Biocontainers on RCAC clusters

NGC container environment modules


NGC container environment modules are lightweight wrappers that make it possible to transparently use NGC containers as environment modules.

- 1. Allow HPC users to utilize familiar environment module commands.
- 2. Leverage all the benefits of containers, including portability and reproducibility.

Simplifying HPC Workflows with NVIDIA NGC Container Environment Modules

By Akhil Docca and Scott McMillan

Discuss (2) O Like Tags: Al, Deep Learning, HPC / Supercomputing, machine learning, NGC, singularity

3/23/23 28

https://github.com/NVIDIA/ngc-container-environment-modules

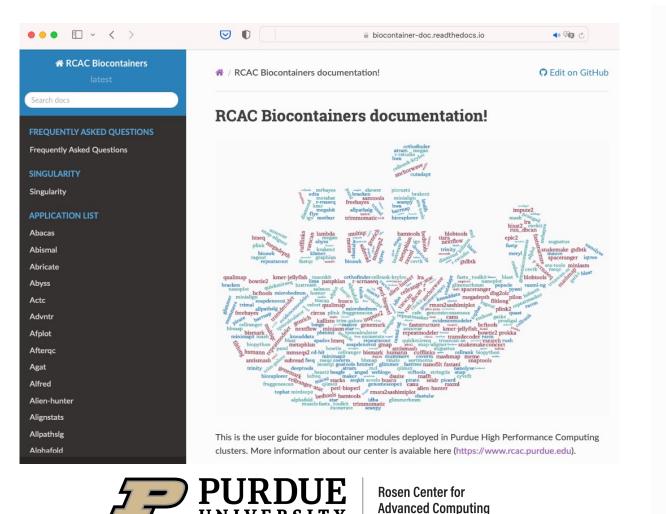
How to use biocontainers?

~800 modules for ~600 applications (As of March. 2023)

Load biocontainers

module load biocontainers

Check available applications module avail


Load and run specific tools module load samtools/1.16 samtools idxstats input.bam

Biocontainers documentation

\$ module load biocontainers

User guides for each biocontainer module can be found in https://biocontainer-doc.readthedocs.io/en/latest

Example job using GPU

Warning

Using #!/bin/sh -l as shebang in the slurm job script will cause the failure of some biocontainer modules. Please use #!/bin/bash instead.

Note

Notice that since version 2.2.0, the parameter --use_gpu_relax=True is required.

To run alphafold using GPU:

#!/bin/bash
#SBATCH -A myallocation # Allocation name
#SBATCH -t 20:00:00
#SBATCH -N 1
#SBATCH -n 24
#SBATCH --gres=gpu:1
#SBATCH --job-name=alphafold
#SBATCH --mail-type=FAIL,BEGIN,END
#SBATCH --error=%x-%J-%u.err
#SBATCH --output=%x-%J-%u.out
module --force purge

module — force purge ml biocontainers alphafold

run_alphafold.sh --flagfile=full_db_20221014.ff \
 --fasta_paths=sample.fasta --max_template_date=2022-02-01 \
 --output_dir=af2_full_out --model_preset=monomer \
 --use_gpu_relax=True

r-rnaseq and r-scrnaseq

R-RNAseq

Customized R container for RNAseq analysis.

R

Studio

- ComplexHeatmap
- DESeq2
- DEXSeq
- edgeR
- ggrepel
- Limma
- pheatmap
- tidyverse

https://biocontainer-doc.readthedocs.io/en/latest/source/rrnaseq/r-rnaseq.html

•

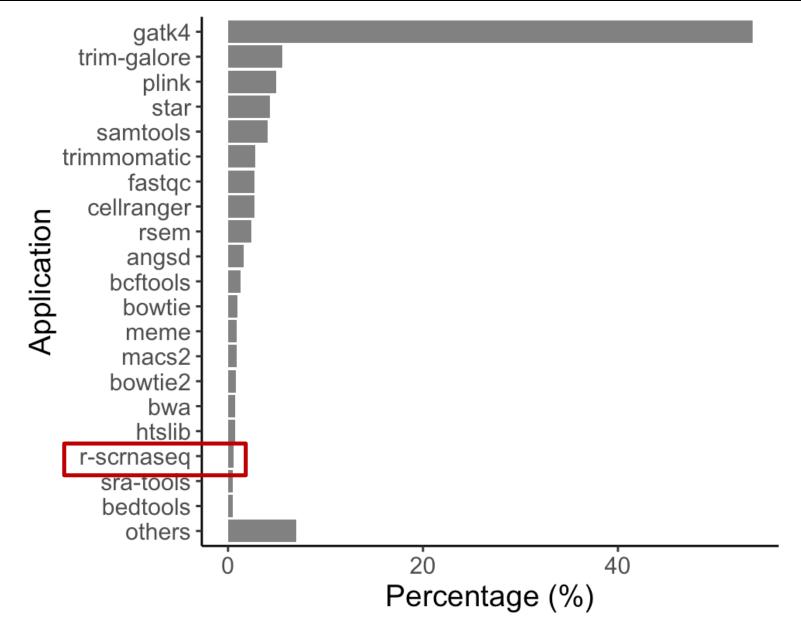
٠

•

R-scRNAseq

Customized R container for scRNAseq analysis.

- CellChat
 - CoGAPS
 - DESeq2
- doSNOW
- DropletUtils
- edgeR
- Limma
- miQC
- monocle
- monocle3
- Nebulosa
- ProjecTILs And more
- rliger
- scCATCH


- scDblFinder
- SCHNAPPs
- scMappR
- seurat
- seurat-wrappers
- SingleR
- SnapATAC
- SoupX
- tidyverse
- tricycle
- velocyto.R

https://biocontainer-doc.readthedocs.io/en/latest/source/r-scrnaseq/r-scrnaseq.html

Rosen Center for Advanced Computing

r-scrnaseq is one of the most popular biocontainer apps

Open OnDemand Interactive Apps

					Interactive Apps
			ondemand.anvil.rcac.purdue.edu	م) 🖓	Bioinformatics Apps
			ව Dashboard - Anvil		Integrative Genomics Viewer
Clusters -	Interactive Apps -	The Data Mine	• a		MEGAN
144	Bioinformatics Apps				🌇 MaxQuant
-	📰 Integrative Gen	omics Viewer			🚧 QualiMap
<u>AN</u>	🗃 MEGAN				Tassel5
2	🔠 MaxQuant				8 scRNAseq RStudent
OnD	岫 QualiMap		single access point for all of your HPC re	source	Cryo-EM Apps
Ма	🚡 Tassel5				& CryoSPARC
Me	IscRNAseq RStu	Idio			Desktops
	SCRIMASEY NOW				Desktop
	Cryo-EM Apps				GUIs
	& CryoSPARC				📣 MATLAB
					Servers

Home / My Interactive Sessions / MaxQuant

5	MaxQuant This app will launch MaxQuant on the Anvil cluster.	
	Allocation	
er	asc170016 (76508.8 SUs remaining)	\$
	Queue (partition)	
	shared	¢
	 GPU-only allocations MUST use the 'gpu' queue CPU-only allocations MAY NOT use the 'gpu' queue 	ie
	Wall Time in Hours	
Studio	1	\$
	Number of hours you are requesting for your job.	
	1	٢
	Number of cores (up to 128) for a shared job. Non-share jobs will have exclusive nodes and be charged at 128 co per node requested	

Software Version

2.1.4.0

3/23/23 33

÷

Containerized Bioinformatics applications for HPC

Interactive and batch Jobs

Interactive Jobs on Anvil

Interactive jobs are run on compute nodes, while giving you a shell to interact with. They give you the ability to type commands or use a graphical interface in the same way as if you were on a front-end login host.

1 node, 24 cores, and 10 hours walltime

sinteractive -N1 -n24 -p shared -t10:00:00 -A myallocation

1 node, 12 cores, 1 GPU and 4 hours walltime

sinteractive -N1 -n12 -p gpu --gpus-per-node=1 -t4:00:00 -A myGPUallocation

ThinLinc [®]		P	Version 4.14. Build 2324		
Server:	desktop.bell.rca	ac.purdue.edu			
Username:	zhan4429				
Key:	Key: //Users/yuchengzhang/.ssh/id_rsa .				
] End existing session	on		Options		
Exit	ſ	Advanced<<	Connect /-		

https://www.cendio.com/thinlinc/download

Batch Jobs in Anvil: CPU

#!/bin/bash

#SBATCH -A myallocation # Allocation name #SBATCH -t 20:00:00 #SBATCH -N 1 #SBATCH -n 24 #SBATCH -p shared #SBATCH --job-name=star #SBATCH --job-name=star #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%j-%u.err #SBATCH --output=%x-%J-%u.out #SBATCH --mail-user=useremailaddress

module --force purge module load biocontainers star/2.7.10a

STAR --runThreadN 24 --runMode genomeGenerate \
--genomeDir ref_genome \
--genomeFastaFiles ref_genome.fasta

%x: job name %j: jobid %u: userid

Batch Jobs in Anvil: GPU

#!/bin/bash

#SBATCH -A myGPUallocation # GPU Allocation name #SBATCH -t 20:00:00 #SBATCH -N 1 #SBATCH -n 24 #SBATCH -p gpu #SBATCH --gpus-per-node=1 #SBATCH --job-name=parabricks #SBATCH --job-name=parabricks #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%j-%u.err #SBATCH --output=%x-%J-%u.out #SBATCH --mail-user=useremailaddress

module --force purge module load biocontainers parabricks

pbrun haplotypecaller \
 --ref FVZG01.1.fsa_nt \
 --in-bam output.bam \
 --out-variants variants.vcf

THANK YOU

ACCESS Help Desk: https://support.access-ci.org

Rosen Center for Advanced Computing