
CONTAINERIZING HPC APPLICATIONS
WITH SINGULARITY/APPTAINER

Objectives

▪ What are containers and why should we use them?

▪ Singularity/Apptainer basics

▪ How to use apptainer to containerize your own applications

▪ Deployed containers on RCAC clusters

Containerizing HPC applications with
Singularity/Apptainer

▪ My application requires glibc 2.26, but the cluster only has 2.17, could you

update glibc?

▪ My application run without issues on another cluster, but it does not work in

this cluster.

▪ My code worked 3 months ago, but it does not work now. I need to repeat

the analysis for my paper.

▪ Could you give me sudo privilege? I need it to install my application.

▪ I can install the package easily on my laptop, why the installation on the

cluster failed?

▪ My whole group needs to run this application, could you help us install it?

❖ The arrival of modern shipping containers
changed our transportation industry.

❖ Container is a standardized way to
package items together into one shipment.

1. Standard packaging

2. Isolation and efficiency

3. Separation of concerns

4. Portable

A container is an abstraction for a set of technologies that aim to solve the

problem of how to get software to run reliably when moved from one

computing environment to another.

A container image is simply a file (or collection of files) saved on disk that

stores everything you need to run a target application or applications.

Registry: a place to store (and share) container images.

BioContainers

❖Getting organized: containers keep things

organized by isolating programs and their

dependencies inside containers.

❖Build once, run almost anywhere: containers

allow us to package up our complete software

environment and ship it to numerous operating

systems.

❖Reproducibility: containers can ensure identical

versions of apps, libraries, compliers, etc.

Installing applications into containers is much easier than installing

them directly into our clusters.

The concept of containers emerged in 1970s, but

they were not well known until the emergence of

Docker containers in 2013.

Docker is an open source platform for building,

deploying, and managing containerized applications.

Some concerns about the security of

Docker containers in HPC: Docker gives

superuser privileges, but we do not want

users to have full, unrestricted admin/ root

access.

❖ Singularity was developed in 2015 as an open-source

project by researchers at Lawrence Berkeley National

Laboratory led by Gregory Kurtzer.

❖ Singularity is emerging as the containerization framework of

choice in HPC environments.

1. Enable researchers to package entire scientific

workflows, libraries, and even data.

2. Can use docker images.

3. Does not require root privileges to run.

❖ Singularity was renamed to Apptainer and hosted by the Linux Foundation.

❖ Apptainer uses the command apptainer to replace the previous command

singularity.

❖ The singularity command on RCAC clusters also works, because it is alias

for the command apptainer.

❖ The variable prefixes are APPTAINER_ and APPTAINERENV_ instead of

the previous SINGULARITY_ and SINGULARITYENV_.

$ singularity --version

 3.8.5-2.el8

$ singularity --version

 apptainer version 1.1.6-1

• Anvil

• Bell

• Brown

• Workbench

• Negishi

• Gilbreth

• Scholar

Containerizing HPC applications with
Singularity/Apptainer

Download or build a container from a given URI.

singularity/apptainer pull [output file] URI

Example: singularity pull blast_2.13.0.sif docker://staphb/blast:2.13.0

 custom name URI

Supported URIs include:

❖ library: Pull an image from the currently configured library

library://user/collection/image[:tag]

❖ docker: Pull a Docker/OCI image from Docker Hub, or another OCI registry.

 docker://user/image[:tag]

❖ http, https: Pull an image using the http(s?) protocol

 https://depot.galaxyproject.org/singularity/hisat2%3A2.2.1--he1b5a44_2

Users can go inside the container to run interactive commands

A container may contain many executables/scripts.

singularity/apptainer exec can be used to select which executable/script to run.

singularity/apptainer exec image.sif command

For example:

singularity exec blast.2.13.0.sif blastn \

 -query nucleotide.fasta \

 -db nt -out blastn.out

apptainer exec blast.2.13.0.sif blastp \

 -query protein.fasta \

 -db nr -out blastp.out

Build using a singularity definition file

 sudo singularity build image.sif definition.def

sudo singularity build --sandbox container-sand definition.def

sudo singularity shell --writable container-sand

singularity> apt-get update

singularity> apt-get install –y packageName

sudo singularity build container.sif container-sand

If you really need write access to a container you can use a

writable sandbox.

Regular users don't have need sudo privilege to build containers.

$ sudo singularity build $ singularity build

$ apptainer build

$ singularity --version

3.8.5-2.el8

$ singularity --version

apptainer version 1.1.6-1

• Anvil

• Bell

• Brown

• Workbench

• Negishi

• Gilbreth

• Scholar

A definition file, or def file, is a recipe to build a container image with singularity. It is
divided into two parts:

1. Header: the Header describes the core operating system to build within the container.

➢ Bootstrap

➢ From

2. Section: each section is defined by a % character followed by the name of the particular
section. Different sections add different content or execute commands at different times
during the build process.

➢ help

➢ setup

➢ files

➢ labels

➢ environment

➢ post

➢ runscript

➢ …

References the kind of base you want to use, and which registry stores the

base image.

Images hosted on Docker Hub

Images saved on your machine

Bootstrap: docker

From: ubuntu:22.04

Bootstrap: localimage

From: /apps/biocontainers/images/mamba.sif

Bootstrap: docker

From: nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04

The labels section allows you to define metadata for your container.

The help section show the user-defined help for an image.

%labels

 Author "Yucheng Zhang <zhan4429@purdue.edu>“

 Version 4.3.1

%help

 This is an Ubuntu 20.04 container with R/4.3.1 and Rstudio/2023.06-2

$ singularity inspect --labels <image path>

$ singularity run-help <image path>

If you need to copy files from host into container, you do so in %files. Each

line in %files is a pair of source and destination paths, where source is on

your host, and destination is a path inside container.

%files

 install.sh /opt/install.sh

 example_data/ /opt/example_data

%environment

 export PATH=/opt/myapp/bin:$PATH

 export LD_LIBRARY_PATH=/opt/myapp/lib:$LD_LIBRARY_PATH

 export LC_ALL=C

%environment allows you to define environment variables for your container.

These variables are available when you run the container, not during its build.

%post is where you can download files from the internet with tools like git and

wget, install new software and libraries, write configuration files, create new

directories, etc.

Bootstrap: docker

From: ubuntu:18.04

%post

Update and install system libraries

apt-get -y update

apt-get -y install --no-install-recommends --no-install-suggests build-essential libssl-dev wget

KALIGN 2.0.4

cd /opt && mkdir kalign2

cd kalign2 && wget http://msa.sbc.su.se/downloads/kalign/current.tar.gz

tar -xvf current.tar.gz && ./configure && make

%environment

export PATH=/opt/kalign2:$PATH

The %runscript section will be executed when the container is run. The runscript can be

triggered with the run command, or simply by calling the container as though it were an

executable.

%runscript

 exec python3 "$@"

•Use -r to show runscript

%runscript

 rstudio "$@"

singularity inspect --runscript image.sif

singularity inspect -r image.sif

Using singularity run

singularity run image.sif

Use image as exectuable

./image.sif

Bootstrap: localimage

From: /apps/base_images/r_rstudio/r_4.3.1_rstduio_2023.06.sif

%post

Install dependencies for monocle3

Rscript -e "BiocManager::install(c('BiocGenerics', 'DelayedArray’,\

 'DelayedMatrixStats', 'limma', 'lme4', 'S4Vectors’,\

 'SingleCellExperiment', 'SummarizedExperiment’, \

 'batchelor', 'HDF5Array', 'terra', 'ggrastr’))”

Install monocle3

Rscript -e "devtools::install_github('cole-trapnell-lab/monocle3')"

Install Seurat5

Rscript -e "devtools::install_github('satijalab/seurat', 'seurat5', quiet = TRUE)"

Bootstrap: localimage

From: /apps/base_images/mamba/mamba_1.4.2.sif

%labels

 Author "Yucheng Zhang <zhan4429@purdue.edu>"

%post

 mamba install -c bioconda fastqc trim-galore samtools \

 bowtie2 star subread hisat2 salmon \

 picard bedtools stringtie

Mamba can speed up your conda installs by 50-80%.

❖ Programs running inside a container will not have access to directories and

files outside of your home and the current directory.

❖ Singularity allows you to map directories on your host system to directories

within your container using bind mounts.

singularity/apptainer shell/run/exec --bind hostdir:containerdir image.sif

Singularity binds several directories into the container image automatically.

$HOME, /tmp and $PWD is the default list.

We also configured singularity to bind /apps, /depot, and /scratch on Purdue

community clusters, to bind /anvil, and /apps on ACCESS Anvil.

To mitigate this, users can either run the singularity pull command with argument

--disable-cache or manually clean $HOME/.singularity/cache or $HOME/.apptainer/cache

$ ncdu $HOME

singularity pull --disable-cache URI

Or specifying a custom cache directory

export SINGULARITY_CACHEDIR=/tmp/$USER export APPTAINER_CACHEDIR=/tmp/$USER

For many applications, CPU compute resources provide sufficient performance.

However, for a certain class of applications, the massively parallel compute

power offered by GPUs can speed up operations by orders of magnitude.

Run a container with GPU acceleration

For AMD GPUs (Bell and Negishi):

singularity/apptainer shell/run/exec --rocm myimage.sif [command] [argument]

For NVIDIA GPUs (Anvil, Gilbreth, and Scholar):

singularity/apptainer shell/run/exec --nv myimage.sif [command] [argument]

❖

This model is called hybrid because it requires both an MPI implementation on the host and

another implementation in the container image.

The host MPI provides the mpirun or mpiexec command and start ranks or containers on

computing nodes.

MPI in the container image is used to run the application.

Host and container MPI need to be “compatible” since they need to tightly interact with

each other.

module load openmpi/XXX ## load the MPI module compatible with your container

mpirun -n $SLURM_NTASKS singularity exec mpi_container.sif mpi_program

Similar to the Hybrid mode, the Bind mode is to start the MPI application by calling the MPI

launcher (e.g., mpirun) from the host.

The main difference between the hybrid and bind mode is the fact that with the bind mode,

the container usually does not include any MPI implementation.

This means that singularity/apptainer needs to mount/bind the MPI and high-speed

interconnect libraries available on the host into the container.

Technically this requires two steps:

1. Know where the MPI

implementation on the host is

installed.

2. Mount/bind it into the container in

a location where the system will be

able to find libraries and binaries.

Pawsey Supercomputing Research Centre

The basic idea behind this approach is to put the entire MPI framework into a container

along with the MPI application and then to use a tool (e.g. slurm) that implements one

of the PMI standards to launch the MPI jobs.

MPI inside container need to be built with the same PMI standard support.

On RCAC clusters, PMI-2 is recommended.

https://www.mcs.anl.gov/papers/P1760.pdf

module purge # mainly purpose is to unload host mpi modules

srun --mpi=pmi2 singularity/apptainer exec mpi_image.sif mpi_application

Bootstrap: localimage

From: /apps/base_images/MPI/openmpi/openmpi_4.1.4_pmi2.sif

%labels

 Author "Yucheng Zhang <zhan4429@purdue.edu>"

 Version v1.2.0

%post

 ## Install dependencies

 apt-get -y update

 apt-get -y install flex bison libgmp3-dev

 ## Download and install raxml-ng

 cd /opt

 git clone --recursive https://github.com/amkozlov/raxml-ng

 cd raxml-ng

 mkdir build && cd build

 cmake -DUSE_MPI=ON ..

 make

 make install

#!/bin/bash

#SBATCH -A standby

#SBATCH -t 4:00:00

#SBATCH -N 2

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=128

#SBATCH --job-name=raxml-ng

#SBATCH --mail-type=FAIL,BEGIN,END

#SBATCH --error=%x-%J-%u.err

#SBATCH --output=%x-%J-%u.out

module purge

srun --mpi=pmi2 apptainer exec \

 raxml-ng-mpi_1.2.0.sif \

 raxml-ng-mpi --msa input.fas \

 --model GTR+G --prefix output \

 --threads 128

apptainer build raxml-ng-mpi_1.2.0.sif raxml-ng-mpi_1.2.0.def

raxml-ng-mpi_1.2.0.def

https://github.com/amkozlov/raxml-ng

Containerizing HPC applications with
Singularity/Apptainer

https://github.com/NVIDIA/ngc-container-environment-modules

NGC container environment modules are lightweight

wrappers that make it possible to transparently

use NGC containers as environment modules.

1. Allow HPC users to utilize familiar environment

module commands.

2. Leverage all the benefits of containers, including

portability and reproducibility.

module load modtree/gpu ## This is only required on anvil

Load ngc

 module load ngc

Check available applications

 module avail

https://catalog.ngc.nvidia.com/

Load ngc

 module load rocmcontainers

Check available applications

 module avail

ROCm

Load biocontainers

module load biocontainers

Check available applications

module avail

Load and run specific tools

module load samtools/1.16

samtools idxstats input.bam

>800 modules for ~600 applications (As of August, 2023)

$ module load biocontainers

User guides for each biocontainer module can be found in https://www.rcac.purdue.edu/knowledge/biocontainers

https://www.rcac.purdue.edu/knowledge/biocontainers

ACCESS Help Desk:

https://support.access-ci.org

	Slide 1: Containerizing HPC applications with Singularity/Apptainer
	Slide 2: What to expect from this workshop?
	Slide 3: Containerizing HPC applications with Singularity/Apptainer
	Slide 4: The struggles from our users
	Slide 5: Solution - Containers
	Slide 6: Containers
	Slide 7: Why use containers
	Slide 8: Docker
	Slide 9: Singularity
	Slide 10: apptainer
	Slide 11: Containerizing HPC applications with Singularity/Apptainer
	Slide 12: Singularity/apptainer pull
	Slide 13: Singularity/apptainer shell
	Slide 14: Singularity/apptainer exec
	Slide 15: Singularity build
	Slide 16: apptainer build
	Slide 17: Definition files
	Slide 18: Header: Bootstrap and From
	Slide 19: %label and %help
	Slide 20: %files and %environment
	Slide 21: %post
	Slide 22: %runscript
	Slide 23: localimage: R/Rstudio container
	Slide 24: localimage: mamba/conda
	Slide 25: Bind host directories
	Slide 26: binding
	Slide 27: cache
	Slide 28: GPU support
	Slide 29: Multi-node MPI
	Slide 30: Hybrid mode
	Slide 31: Bind mode
	Slide 32: srun and PMI
	Slide 33: srun and PMI: usage
	Slide 34: Build your own MPI containers
	Slide 35: Containerizing HPC applications with Singularity/Apptainer
	Slide 36: NGC container environment modules
	Slide 37
	Slide 38
	Slide 39: Biocontainers
	Slide 40: Biocontainers documentation
	Slide 41: One more thing: bash wrappers
	Slide 42: Thank You

