{ "cells": [ { "cell_type": "markdown", "source": [ "**Install All the Required Libraries**" ], "metadata": { "id": "J-_xGH7WddfC" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9P4RR3jOYP9X", "outputId": "d3409611-0f95-496e-ee05-f6ea398a7709" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/542.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.4/542.0 kB\u001b[0m \u001b[31m9.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m542.0/542.0 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m171.5/171.5 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m85.5/85.5 MB\u001b[0m \u001b[31m19.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m15.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m25.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m16.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m401.2/401.2 kB\u001b[0m \u001b[31m34.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h" ] } ], "source": [ "# Install the 'datasets' library to load data from Hugging Face into the Google Colab Notebook.\n", "# Install the 'transformers' library to utilize the AutoTokenizer for converting raw text into tokens.\n", "# Install the 'sentence_transformers' library to acquire the embedding model.\n", "# Install 'faiss-gpu' for efficient similarity searches with dense vectors.\n", "!pip install -q datasets transformers sentence_transformers faiss-gpu\n" ] }, { "cell_type": "markdown", "source": [ "**Set the Environment to Use Hugging Face Token:** Ensure that the environment is configured to authenticate using your Hugging Face API token." ], "metadata": { "id": "B15TmeUZdooj" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9fz0LPTnZEHu", "outputId": "b81fca08-dfe1-4d6f-859b-babc77be3123" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Token successfully set.\n" ] } ], "source": [ "import os\n", "from IPython.display import clear_output\n", "from getpass import getpass\n", "\n", "# Prompt for the Hugging Face token securely\n", "hf_token = getpass(\"Please enter your Hugging Face token: \")\n", "os.environ[\"HF_TOKEN\"] = hf_token\n", "clear_output(wait=True)\n", "print(\"Token successfully set.\")\n" ] }, { "cell_type": "markdown", "source": [ "**Load the Dataset**" ], "metadata": { "id": "JQgXmGCldv7q" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 341, "referenced_widgets": [ "2847e9b5bf324ca0820f00da03eaeb11", "9f34117172f641bdae2c9eb822d1219a", "1b2d3141feb84005bcdf8bcb8329655d", "c8611415d5124c10b9537abfed7363db", "bd11c2d8bea8452d8e9e7dbaa385461d", "df5eb7f3eda9416086f2366748597cee", "73f4c2c2cea849f7a36df0d86b80debf", "2451c446566d46ce9b39afd89b62c44a", "921eb9a8c82d4a868488478e651faafb", "6347af2fb7bc40ce865f5b0e1b577ccb", "cae40c1dfb3441c5930214eb1548a746", "7cd7bfcb470440bc9458e0fb1807d1cd", "359e70118ebc4440ae4bca80aed91a4a", "f986aa1f103441a1af452b0226a7f52a", "9b4fc15b935f46dcb635feb978e74d4f", "f123b70067d8430585986b3681c48390", "be78b05a31f640c6b056448e5d9766de", "70626c5befbb463a9bbda3da59978df9", "a115a266b66043839a9ecf9420d4c5b2", "596f52bad5804282a3bd4fe3a168a797", "60d36f5c5f4541e0a110a9a9465ef597", "e6ee92b1b42b4ab48364c2412122ba1a", "589e85335fa44345a7b3dd751344465e", "fd2d0b59b37d42f1b35c42d8926fc5df", "01f9d4a160874f5ba9d69ce784e39fa9", "e550745f71c044d89f0c05f75a11a5e2", "4b557092255241b999c9983f64dd42ba", "731c30a7520045a2ab0c5889d651ef89", "ab0084b13d3d40a68f4b3510c3038a7f", "4a99065cea7b462180963a38695fc00f", "eb943879e1e841b1bfb16b1cb499e9df", "ed5e59b629aa4082ba6875c3882e6ba1", "29298a48c590451d8e10fb45deb6b853" ] }, "id": "u_ma7FfGZMBC", "outputId": "889f08e3-74ba-491c-ded9-fbf14859a3af" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n", "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", "You will be able to reuse this secret in all of your notebooks.\n", "Please note that authentication is recommended but still optional to access public models or datasets.\n", " warnings.warn(\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "Downloading readme: 0%| | 0.00/5.34k [00:00\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
inputoutputinstructiondata_source
0To find the probability of the spinner landing...A board game spinner is divided into three par...MATH/PRM-800K
1I need to choose 6 people out of 14, and the o...My school's math club has 6 boys and 8 girls. ...MATH/PRM-800K
2First we count the number of all 4-letter word...How many 4-letter words with at least one cons...MATH/PRM-800K
3She can do this if and only if at least one of...Melinda will roll two standard six-sided dice ...MATH/PRM-800K
4Think of the problem as a sequence of H's and ...Let $p$ be the probability that, in the proces...MATH/PRM-800K
...............
24921There are several formulas that generate all p...Can we find a formula to generate all prime nu...guanaco
24922Sure, here are some of the best universities:\\...What are some of the best university's for stu...guanaco
24923[Enter stage left]\\n\\nFirst Citizen: Good morr...Write me a SPL (Shakespeare Programming Langua...guanaco
24924That's a very thoughtful idea! Here are some s...Hi. I want to make an embossed picture for my ...guanaco
24925Certainly! Here's an implementation of the Tim...Please implement the Timsort algorithm on Lean...guanaco
\n", "

24926 rows × 4 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"dataset[\\\"train\\\"]\",\n \"rows\": 24926,\n \"fields\": [\n {\n \"column\": \"input\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"\",\n \"Choose A, B, C or D as your solution.\",\n \"When you review a fellow student's writing, try to make your feedback clear and specific. You can use questions such as the following to guide your feedback:\\nIdeas and development: Does the writer express a clear main idea and develop it with evidence, examples, and analysis?\\nOrganization: Does the writer order ideas in a clear, logical way so that the ideas build on one another and are easy to follow?\\nSentence fluency: Do the writer's sentences vary in structure and length, or does the writing sound choppy, rambling, or repetitive?\\nWord choice: Does the writer use words accurately and precisely, avoiding excessive repetition or inappropriate language to create clear, effective, and engaging writing?\\nGrammar and mechanics: Does the writer use accurate spelling, punctuation, and grammar to create writing that is correct and easy to read?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"output\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 19530,\n \"samples\": [\n \"The first answer choice contains a vague pronoun reference. The pronoun he could refer to Steven or Jim.\\nThe second answer choice shows a possible correction for the vague pronoun reference. He has been replaced with Steven.\\nSteven's brother Jim wondered whether Steven ran fast enough to qualify for the Boston Marathon.\",\n \"Once upon a midnight dreary, while I pondered weak and weary,\\nOver many a faint and forgotten tale of technology's lore\\u2014\\n While I nodded, nearly napping, suddenly there came a tapping,\\nAs of someone gently rapping, rapping at my chamber door.\\n\\\"'Tis some visitor,\\\" I muttered, \\\"tapping at my chamber door\\u2014\\n Only this and nothing more.\\\"\\n\\nAh, distinctly I remember it was in the bleak December;\\nAnd each separate dying ember writhed upon the floor.\\nEagerly I wished the morrow;\\u2014vainly I had sought to borrow\\nFrom my books surcease of sorrow\\u2014sorrow for the lost Lenore\\u2014\\nFor the rare and radiant maiden whom the angels name Lenore\\u2014\\n Nameless here for evermore.\\n\\nDeep into that darkness peering, long I stood there wondering, fearing,\\nDoubting, dreaming dreams no mortals ever dared to dream before;\\nBut the silence was unbroken, and the stillness gave no token,\\nAnd the only words there spoken were the whispered words, \\\"Lenore!\\\"\\nThis I whispered, and an echo murmured back the word, \\\"Lenore!\\\"\\u2014\\n Merely this and nothing more.\\n\\nBack into the chamber turning, all my soul within me burning,\\nSoon again I heard a tapping somewhat louder than before.\\n\\\"Surely,\\\" said I, \\\"surely that is something at my window lattice;\\n Let me see, then, what thereat is, and this mystery explore\\u2014\\nLet my heart be still a moment and this mystery explore;\\u2014\\n 'Tis the wind and nothing more!\\\"\\n\\nOpen here I flung the shutter, when, with many a flirt and flutter,\\nIn there stepped a stately Raven of the saintly days of yore;\\nNot the least obeisance made he; not a moment stopped or stayed he;\\nBut, with mien of lord or lady, perched above my chamber door\\u2014\\n Perched upon a bust of Pallas just above my chamber door\\u2014\\n Perched, and sat, and nothing more.\\n\\nThen this ebony bird beguiling my sad fancy into smiling,\\nBy the grave and stern decorum of the countenance it wore,\\n\\\"Though thy crest be shorn and shaven, thou,\\\" I said, \\\"art sure no craven,\\nGhastly grim and ancient Raven wandering from the Nightly shore\\u2014\\nTell me what thy lordly name is on the Night's Plutonian shore!\\\"\\n Quoth the Raven \\\"Nevermore.\\\"\\n\\nMuch I marvelled this ungainly fowl to hear discourse so plainly,\\nThough its answer little meaning\\u2014little relevancy bore;\\nFor we cannot help agreeing that no living human being\\nEver yet was blessed with seeing bird above his chamber door\\u2014\\nBird or beast upon the sculptured bust above his chamber door,\\n With such name as \\\"Nevermore.\\\"\\n\\nThus I sat engaged in guessing, but no syllable expressing\\nTo the fowl whose fiery eyes now burned into my bosom's core;\\nThis and more I sat divining, with my head at ease reclining\\nOn the cushion's velvet lining that the lamplight gloated o'er,\\nBut whose velvet-violet lining with the lamplight gloating o'er,\\n She shall press, ah, nevermore!\\n\\nAnd the Raven, never flitting, still is sitting, still is sitting\\nOn the pallid bust of Pallas just above my chamber door;\\nAnd his eyes have all the seeming of a demon's that is dreaming,\\nAnd the lamplight o'er him streaming throws his shadow on the floor;\\nAnd my soul from out that shadow that lies floating on the floor\\n Shall be lifted\\u2014nevermore!\",\n \"The graphs labelled (3), (4), and (5) are all invertible since no horizontal line intersects the graph in more than one place. In other words, for each real number $y$ there is at most one real number $x$ with $f(x)=y$. The first graph does not satisfy this condition. Thus the product of the labels corresponding to invertible functions is $3\\\\times 4\\\\times 5=60$.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 24926,\n \"samples\": [\n \"Under which of the following circumstances would the named defendant be least likely to be convicted of the charged offense?\\nA. Walter, a chemical engineer, painstakingly constructs an explosive device from readily available materials and secretes it beneath the house where his ex-wife and her boyfriend are living. He waits until he is sure both have had time to get home from their jobs, and then detonates the device by remote control, totally demolishing the house. Unknown to Walter, his ex-wife and her boyfriend had impulsively decided to spend the evening at a motel downtown. Walter is charged with attempted murder.\\nB. Yvette attempts to charge an expensive leather coat using a credit card that her boyfriend obtained when he stole a woman's purse. The store's electronic credit reporting system indicates the account is defunct, and the store clerk refuses to complete the transaction. Yvette is charged with attempting to obtain property by false pretenses.\\nC. Hazel, seeing a well-heeled couple cross the park, decides to rob them and use the money for groceries. Hazel approaches the couple, pulls out a gun, and tells them to hand over all of their money and valuables. The couple was having an unusually bad day: they had just been mugged five minutes before and were on their way to notify the police when Hazel approached them. Consequently, they had no money or valuables. Hazel is charged with attempted robbery.\\nD. Farley, a married man who believes adultery to be a felony, begins a torrid affair with Edna, his best friend's wife. Unknown to either of them, the jurisdiction they reside in has a statute that expressly makes noncriminal any sexual act between consenting adults in private. Farley is charged with attempted adultery.\",\n \"What is the smallest positive integer $n$ such that all the roots of $z^4 - z^2 + 1 = 0$ are $n^{\\\\text{th}}$ roots of unity?\",\n \"Summarize the process by which plants communicate with each other through chemical signals.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"data_source\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"airoboros\",\n \"ARB\",\n \"reclor\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 6 } ], "source": [ "# Read the Dataset as the Pandas Dataset\n", "dataset[\"train\"].to_pandas()" ] }, { "cell_type": "markdown", "source": [ "**Analyzing the Dataset**" ], "metadata": { "id": "KdVXok7yd2Oa" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 200, "referenced_widgets": [ "64324065ca4943e1a47e14f0367787b5", "9c81d0f2399147c5be1733787d86a429", "0d1c9dd77a3243a2b953e48b42a69eb6", "be21d3236eba42af8758c4711ff80de1", "f06de3872d5943f28806a925b259eed3", "881b790368584d39bd1e452d1157fea9", "a6183ba03725462a8666a815453aec44", "31e70f11c5dc49568f03f134be8a09ea", "30a7181030924f3ea2405d20e4108a32", "cc9e5459a0ab4cd0be35f563d4b2d73c", "bbf3a5d6ecf848c4bfba20a792a5bff0", "9661ba504f0b4f3193e3570bf847b65f", "7c7a245ad1c34c7cb9949757ef9571a8", "a6f19084b8f74ea9872157d62ef9fb06", "f846dcb4b238430a8ffef2e940acff10", "7110ffd735c34ef9a3a341d60d972450", "0469f63f9a054f17bb105a737c4e7767", "022274fc8e664e9fa0491e888b7278e5", "9949e936a96d42d2b4ff2de66d774ce5", "20c99dacefe24036af7f61cc552a3d5b", "4c11461736004e2381b942d3611dadf1", "3e201948df0d460884b5ad76f8c58379", "a4d3da88c004435cb2eecf1d15274a0a", "bcaa7632ab8d448d95893d66d9a71b9f", "f583cf8c83034f77b6fce8743a0c1400", "ac414bed5dac459a8e74aedf41aa0d7f", "2b1e39d7a8b248dbb60517899487dfc2", "a24ff747d3484373a0fb1aafaf7469b2", "9f366b062dfc4931aee1e7879fcf1551", "f758895bd32b45f1be815e526af1f64e", "44c1a3e9df164e9a995cb8fcb98943a9", "49a02599ec044066b406ada0e8fa0904", "efe1b898ac5d453787d3240e615929ed", "3343aa10f6a74111a5fdf1bc366a9c75", "0ff79bde94ad49d6ac05515f9206f91b", "0c0e048fb4b34536b2ea37dd76e38e68", "e814282aaeac462a81d0142e3f70cfaf", "58ac9e20c38d44e4b34d4a05e1303f80", "0fd84d2ec33d4062a628f47b3c053e96", "e9226a33af514e64b1fa51531304d21d", "39bdddc11e734081ba11b01423dfe94d", "1af1af33d63c491c888886d244f5fc67", "4135fa01fe3e4a7d82e6471f26656fec", "1519a399bb8247eda70b85c7ea6239ee" ] }, "id": "0S-z5uKKZQmK", "outputId": "2bf6d298-52e9-49ff-b822-c4e5c4a3e941" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.10/dist-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n", " warnings.warn(\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "tokenizer_config.json: 0%| | 0.00/746 [00:00" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAJOCAYAAACz9fURAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4oUlEQVR4nOzdd3xW5f0//lfYMhQHKmLdBlCGMr9+XFVaxb03UKut2mqdraO19lPraBW1amu1ilitigvUuj/uvXEStA6qItON7HD//vCX1Bi4CSEhAZ7Px4MH5DrXuc77Pjn3lfDKyXVKCoVCIQAAAAAAwHw1aegCAAAAAACgMROkAwAAAABAEYJ0AAAAAAAoQpAOAAAAAABFCNIBAAAAAKAIQToAAAAAABQhSAcAAAAAgCIE6QAAAAAAUIQgHQAAAAAAihCkA0AD2H777dO5c+fKP126dMnmm2+ebbbZJoMHD86f/vSnvPbaa0XHGDx4cDp37pznnntuCVVdXMVr+uijj6q0N7Y6k+TUU09N586dM3LkyIYupV48/PDDOfjgg9OrV6/Ka6wuzv9zzz2Xzp07Z/DgwXVQZeNVcc5Yfs2ePTsXXnhhdthhh3Tr1i2dO3fO9ttv36A1jRw5slHUsaxZ2t7vTz31VE477bTsuOOO6dWrV7p165atttoqP/7xj3PNNdfk008/rZPjNMav3QDQ0ATpANCAevXqlb322it77rlntt1226y//vp56623cvXVV2e//fbL4MGD8+GHH9ZrDQsKwJdWFWHTqaee2tClNIiysrIce+yxeeWVV7LZZptlzz33zF577ZXVVlttofsuTdfC8hLqs+g++uijxQ6c//znP+eKK67I119/nQEDBmSvvfbKjjvuWIdVLn3q4rwuactSGPzpp5/mxz/+cQ477LCMHDkyc+bMSf/+/bPjjjtmgw02yOjRo3PuuedmwIABefXVVxu6XABYJjVr6AIAYHm23377Ze+9967SVigU8vjjj+ecc87J888/nwMPPDAjRozI9773vSr9/vSnP2XGjBlZa621lmTJC3TNNddkzpw5WWONNRq6lIU68cQT89Of/jSrr756Q5dS5x588MHMmTMnRx11VE444YSGLgeWSvfdd1+S5Prrr896663XsMVQr+65556GLmGhvvrqqxx88MF5//33s8EGG+QPf/hD+vTpU6XP7NmzM2rUqFx66aWZMmVKA1UKAMs2QToANDIlJSXZdttts/nmm2e//fbLuHHjcvrpp+cf//hHlX6NJUCvsM466zR0CTW2+uqrL5MhepJ8/PHHSZJ11123gSuBpVfF+0iIvuzbcMMNG7qEhfrDH/6Q999/P506dcqNN96Y9u3bV+vTokWLHHDAARkwYEC+/PLLJV8kACwHLO0CAI3UiiuumF//+tdJkmeffTZvvPFGle0L+pX12bNn56qrrsree++dzTffPN26dcuWW26ZffbZJ+edd14+//zzJP9dAmX8+PFJkgEDBlRZt71i3G8voTFjxoxcfPHF2WmnndKzZ88qv+Jfk2VBnn/++Rx22GHp169fevbsmX333Te33377fPsu7FfyL7300nTu3DmXXnpplRpOO+20JMmoUaOqvJ5vLwGysDXS77777vzoRz9Kv3790q1bt2y33XY57bTT8v7778+3/7df+7PPPpvDDjssffv2TY8ePbLXXnst8DUuzNy5c3PjjTfmwAMPTO/evdO9e/fssMMOOeusszJp0qT5no+K13TaaafN97XPT02vhW+bM2dO/v73v2eXXXZJjx490r9//xxzzDF59913F3icL774Ipdcckn22GOPbL755unZs2d22223XHbZZZkxY0aNz8vgwYMzZMiQJN9cU9+u9bvLTizKOVyY8vLy/O53v0vnzp2z2267ZcKECVWOc8stt2Tw4MGV183222+f3/3ud1X6Vfj2+2pRz+Ubb7yR448/Pttss026deuWXr16ZcCAAfnFL36RBx98cJFeU5K8//77+d///d/suOOO6dmzZ3r16pWdd945//u//5u33367Wv933303p512Wrbbbrt069Yt/fr1y49+9KMF3tm7sPfbgpZj+nb79OnTc8EFF+SHP/xh5Zx2yimnVPscnnrqqRkwYECSZPz48VWujZqsg13xXi4UCklSZd/v1r8488SDDz6YIUOGpF+/fnWy9Mi3X9/999+fgw46KL169cpmm22WAw88MI899th895s8eXLOOuus7LjjjunevXt69uyZbbfdNj/60Y8ybNiwyn41Pa/fnpc//vjj/PrXv862226bTTfdtPLzu7Dltxa2hMwXX3yRv/zlL9l7773Tu3fv9OjRIwMGDMhxxx1X+Tor3l/PP/98kmTIkCEL/FwWuzY+//zzXHjhhdlll13Ss2fPbL755tl7771z5ZVXZubMmdX6L877ekE+/PDD3HXXXUm+mdfnF6J/22qrrZYNNtigWvuiXq8LUpuvzd9tnzRpUn7zm99kq622So8ePbLrrrvmlltuqez77rvv5qSTTsqWW26Z7t27Z/fdd1/g/FJfX38BYH7ckQ4Ajdg222yT9u3b5/PPP8/TTz+dbt26Fe0/b968HHHEEXnmmWfStm3b9OnTJyuuuGI+/fTT/Oc//8mwYcOy2267pX379llnnXWy11575f7778/06dOz4447pnXr1pVjfXdN7VmzZmXw4MF5991306dPn3Tp0qUylK+J//u//8v111+fDTbYIFtttVUmT56cl156KaecckrGjh1bJ2ua77jjjnnllVfy8ssvZ5111knv3r0rt80vWPiuQqGQU089NbfffnuaNWuWPn36ZNVVV82bb76ZkSNH5t57780ll1ySbbbZZr7733bbbfnb3/6WTTbZJFtvvXXGjx+fV155Jaeccko+//zzHHrooTV+LbNnz86RRx6Zp59+Oi1btkz//v3Ttm3bjB49Otddd13uuuuuDBs2LJtuummSpGvXrtlrr73y0ksv5YMPPkivXr0q70pf2Gtf1Gthzpw5OeKIIzJ69Oj06dMnG264YV577bX83//9X5577rmMGjUqa6+9dpV93nnnnfzkJz/JhAkT0qFDh/Tu3TvNmjXL66+/nosvvjgPPPBArrvuurRr126h52brrbdOixYt8uSTT2a11VbL1ltvXblt5ZVXrvU5LObrr7/O8ccfn8cffzxbbrllLrnkkrRt2zZJMm3atPzsZz/L888/n9atW6dbt25ZeeWV8/bbb2fEiBG57777Mnz48GyyySbVxl3Uc/nMM8/kpz/9aebMmZMuXbpks802y7x58zJp0qQ8+uijKS8vzw9+8IOFvp4K//rXv/LrX/86s2fPzlprrZVtt9028+bNy4cffpgRI0Zk1VVXTWlpaWX/Rx99NMcee2xmzZqV9ddfPzvssEM++eSTvPDCC3n22Wfz5JNP5pxzzqnx8Wviq6++yoEHHpgJEyakd+/e2XjjjfPKK6/k9ttvzwsvvJA77rij8rrp3bt3pk+fnvvvvz+tW7de5HXNd9xxx3z22WcZNWpUkmSvvfaq3FbxWzeLO08MHz48//znP9OtW7dsvfXWmTx5cpo2bVqbU1PNJZdckssuuyybb755tt1227z33nsZPXp0jjzyyFx66aX54Q9/WNl3ypQp2WeffTJ58uSstdZa2XrrrdOyZctMnjw5Y8eOzZtvvpnDDz88yaKf13HjxmWvvfZK8+bN06tXrxQKhSrvzdoaO3ZsjjjiiEyaNCnt2rVL796906ZNm0yYMCGPPvpoPv3002y77bZZbbXVstdee+WJJ57I1KlTs9VWW6VDhw6V49TkN6g+/PDD/OhHP8r48eOzyiqrZNttt82cOXPy3HPPZejQobn33nszfPjwrLTSStX2rc0cuSCPPPJIysvLs+KKK9ZqffrFvV7r2scff5x99tknzZs3T58+ffLpp5/mxRdfzOmnn56vvvoqvXr1ymGHHZbVV189/fv3z8cff5zRo0dXLlW28847z3fcuvz6CwALVAAAlrjtttuuUFpaWrjtttsW2vfQQw8tlJaWFn75y19WaR80aFChtLS08Oyzz1a2Pf/884XS0tLCnnvuWfjqq6+qjfXaa68VPv300/nW8uGHH873+M8++2yhtLS0UFpaWthtt90KkydPLvqavjtORZ2lpaWFyy+/vMq25557rtCjR49CaWlp4fHHH1/o6/u2Sy65pFBaWlq45JJLqrTfdttthdLS0sIpp5wy3/0KhULhlFNOme/5v+GGGwqlpaWF/v37F8aMGVPZPm/evMrj9enTp/DJJ5/M97VvuummhYcffni+9fTu3bswY8aMBdb0Xeeff36htLS08IMf/KDKOZ09e3bh17/+daG0tLSw/fbbF2bNmlWj11YTi3It7LnnnlWuhZkzZxYOO+ywQmlpaeG3v/1tlf1mzJhR+MEPflAoLS0tXHTRRVVqnj59euHEE08slJaWFk499dQa11pRy6BBgxbYp7bnsOI1Vpg4cWJhjz32qKxx9uzZVfpX1H/kkUcWpk6dWmXb8OHDC6WlpYUddtihMHfu3Gr1L+q5HDx4cKG0tLRwxx13VHu9X375ZWH06NELPB/f9frrrxc23XTTQufOnQvXXnttoby8vMr2jz76qPD6669XfjxlypRC7969C6WlpYXLLrusMG/evMptr732WqFv376F0tLSwk033VRlnIVdkwt6z1a0l5aWFg477LAqc9rnn39e+Tn57rzy4YcfFkpLSwvbbbddjc/Fd333Gvi2xZ0nunbtWnjwwQcXuaaK8zG/11VRb58+fQqvvPJKlW0VNe2www5V2i+99NLKa+zbn8tC4Zv3yNNPP12lrSbnteJYFV+zvvve+vbrWNAcvaDjfP3114Vtt922UFpaWjj55JML06ZNq7L9yy+/LDz11FNV2hb2daRQWPDner/99iuUlpYWjjrqqMLXX39d2f7JJ58U9tprr0JpaWnhxBNPrLJPbd/XxfzqV78qlJaWFoYMGVLjfb6tttfrgs5dbb82f/vaOOOMMwpz5syp3PbQQw8VSktLC5tvvnlhu+22qza/XHPNNYXS0tLCD3/4w2rHq4+vvwCwIJZ2AYBGruIuvprc/T116tQk39w9WHG37Ld17959se4KPOOMM6rc1bcoNtlkkxx55JFV2vr165eDDz44yTd3aTa0q6++Okly9NFHp2vXrpXtJSUlOeaYY9K5c+d8+eWXufnmm+e7/6BBg7LddttVadt7772zwQYb5Kuvvqq2PM+CzJo1K9dff32Sb36V/9t3LjZv3jynn356VltttXz00Ue5//77F+k11oWSkpKce+65Va6Fli1b5thjj02SPP3001X6jxo1Kh988EG22267HH/88WnRokXlthVWWCFnnnlmVl111dx555354osv6qTGujqHY8eOzf7775+ysrIce+yxOffcc9O8efPK7e+++27uvvvurL766hk6dGhWXXXVKvsfeuih2XbbbTNu3Lg8/vjj1cZf1HP5ySefJEm23XbbamO1a9cum2222QJfy3f97W9/y5w5czJo0KAMHjw4TZpU/a9Bp06dqvwWzM0335yvvvoqm266aX72s5+lpKSkclv37t1z1FFHJUmVJUHqQuvWrXPuuedWmdNWWmmlHHHEEUmqn6P6trjzxJ577lm5TEpdO/bYY9OzZ88qbUceeWTatWuXcePGVVlmqOJa2nrrrat8LpNv3iNbbLFFreto3759zjjjjCrv9cV1yy23ZMKECenatWvOOeectGnTpsr2du3a5X/+53/q5FgvvvhiXn311aywwgr5wx/+UOU3dFZZZZWceeaZSb55UOnEiROr7b+o7+tiPv300ySpNrfU1OJer3VtrbXWyq9//es0a/bfX46vWJ7l66+/zqqrrpqjjjqqyjV5yCGHpH379vnPf/5T+fyC76qrr78AUIwgHQAauXnz5iVJtaBjfjbddNM0bdo0t912W66//vpMnjy5zupYddVV06dPn1rvv8cee8y3fc8990ySvPTSSykvL6/1+Itr4sSJ+eCDD5JUXc6hQklJSfbee+8kWeDasN/9T3yFiofZ1XRN7tdffz3Tp09P+/bt5/ur/CussELlr7cv7trKtbHWWmulS5cu1doX9Dor1i3eaaed5jtemzZt0q1bt8ydOzevv/56ndRYF+fwiSeeyMEHH5xPPvkk5513Xo4++uhqfR577LEUCoVss8028/3hVfLND4ySZPTo0dW2Leq57NGjR5Lkl7/8ZV588cXMnTt3vsdcmPLy8sowb//996/RPhXrTc/v/ZEk++67b5JvlvVY1PXni+nWrdt8Hw5csWRRXR5rYepinljU5WYWxfzmoBYtWuR73/tekqrnquJaGjp0aB544IF8/fXXdVbHFltsUaNlmhbFE088keSb66yulsJZkIprfeutt662tFXyzTXZpUuXzJs3r7Lvty3q+7q+1MX1Wtf69++fli1bVmuveLDvNttsU+37nWbNmqVTp05JssDva+rq6y8AFGONdABo5D777LMkme86rN+1zjrr5LTTTst5552XM888M2eeeWY6deqUzTbbLN///vczcODAWt8hWPGf2Npa0HqwFe0zZ87M559/Xuu77hZXxX+y27dvv8BAtGJd3QX9h3yttdaab3vFeLNmzapRLRVBQbFzvrBa6lPHjh3n217xOmfPnl2l/cMPP0ySnHzyyTn55JOLjl1x9+XiqotzeNRRR2Xu3Lk5//zzs/vuu8+3T8Vru/XWW3PrrbcWrWl+r21Rz+WJJ56Yt956K48//ngef/zxtGrVKptsskn69euX3XffvTI0WpjPP/8806dPT5Ksv/76Ndqn4jwt6L284oorVj7TYdKkSVljjTVqNO7CLOo5qk91MU/UdG3s2liUOWiPPfbIU089lX/961/5xS9+kaZNm2bDDTdM7969s+OOOy7WHemL+/VifiruRK7J8y4W18Ku9eSbz/PYsWPn+3muy2t2lVVWSfLf3yBYFHVxvda1BZ2birv+F7S94jcQFvR1tK6+/gJAMYJ0AGjECoVCysrKkqTKA/+KGTx4cHbaaac8/PDDeemll/LSSy/l7rvvzt13351LL700119//Xzv7lyYVq1aLfI+i6pQKNS4b8Wd+o1JTX5rYFnw3SVAFqbic7Wguzu/bUFhSEPYc889c+utt+biiy/O5ptvXnlX77dVvLauXbvO9w7Ub/vukhvJop/LDh065Lbbbsvzzz+fp59+Oi+//HJee+21vPzyy7niiity4oknVi55srRY2Ht5Uc9RYze/u3HryqKcqyZNmmTo0KE56qij8uijj+bll1/Oyy+/nBtvvDE33nhjtttuu/z1r3+t1d3fi/P1YlG+DjRWdXnNbrrpprnjjjsyZsyYlJeX1/vd+Itrcd/PtT13y8vXXwAaliAdABqxxx57rHLN6K222qrG+6222mrZf//9K5dsePfdd/Ob3/wmo0ePzgUXXJA//elP9VJvMR999NF828ePH5/km3Cpffv2le0V61AvaLmBBa2TWlsVd89+/vnnmTZt2nzv3qu4+7iu7rRdkIofdFScm/lZUrXUhY4dO+a9997Lvvvum4EDBy6RY9bFOTzrrLPSunXrXHvttTnkkEMyfPjwand8V9w92atXr5xxxhl1UfpClZSUpH///unfv3+Sb+60HDlyZM4888xcdNFFGThwYOVdpgvSvn37rLDCCpkxY0bef//9Gv2gbo011sh7771Xed6+66uvvqp8lsO3z+mSfi/Xp8Y0T9SVjTbaKBtttFGSb0LsZ599NieddFIeeeSR3H777dlnn33q9HgLux4W9J7t2LFj3n333bz33nt1thb6glR87hZ0rX97W31/nrfbbrv88Y9/zJdffpmHH344P/zhD2u8b31cr8vS+xkAFtWydXsHACxDvvrqq5x77rlJki233LLKQ8IW1YYbbpif/OQnSVJ5h3uFiv8U1/f65Hfeeed822+//fYk3zwg9dsPH6v4T/27775bbZ8ZM2YscD3XitezqGtHr7nmmpXh48iRI6ttLxQKGTVqVJJUBpj1pXv37mndunU+//zzPPTQQ9W2z5w5M/fcc0+d11Jf18I222yTJLn33nvrbMyFfZ7r4hyWlJTkN7/5TX72s59l0qRJGTRoULX3T8Vre/jhhxts6YCWLVvmoIMOSufOnTNv3ry89dZbC92nadOmlWFkTR8yWLHWe8V79rtuu+22JN+sdfztUK7Ye7lQKMz3IayLo7ZzQE00pnmiPpSUlGSLLbbIrrvumqTq14u6Oq8V18N777033+0Vz1T4rq233jrJN9dZTeeo2s5pFdf6E088UfkQ728bM2ZMysrK0qRJk/Tt23eRxl5U66yzTnbZZZckyR//+MeFPnj8k08+qTy39XG91vZrMwAsCwTpANDIFAqFPPbYY9l3330zbty4dOjQIX/4wx9qtO8zzzyTxx57LHPmzKk25qOPPpqk+tIZFf8p/ve//734xRfx5ptv5sorr6zS9uKLL+aGG25Ikhx66KFVtlWsz3vDDTdUWbt1+vTp+e1vf5sJEybM9zhrrrlmkvn/J39hDjvssCTJZZddlrFjx1a2FwqFXHbZZSkrK8uKK65Y44cz1lbLli1zyCGHJEn+9Kc/VblDc86cOTn77LMzZcqUrL322nX64ML6uhb233//dOrUKffdd1/OP//8TJs2rVqfKVOm1DjQTf77ef7Pf/5T7XpP6vYcHn/88fnVr36VTz/9NEOGDKny0NBNNtkkO+64YyZMmJBjjjlmvr95MX369Nx5553zDeQW1bBhw+Z7x+e7776b//znP0lqvjzOUUcdlWbNmuX666/P9ddfX21JjfHjx+eNN96o/Hj//fdP27Zt8+abb+byyy+v0n/MmDH529/+liQ5/PDDq4xT8V6+44478s4771S2z5kzJ+eff36dPWC2wiqrrJLmzZtn6tSpCw0da6OxzBOL6/bbb6/y+a0wbdq0ygdofnut87o6rz169Ejbtm3zzjvvVPuhzL333pvrrrtuvvvtt99+WXPNNTNmzJicfvrplWv8f7vuigfoVqjtnNanT5/07NkzM2fOzBlnnJEZM2ZUbvv0008rf/tk5513XuCa3nXpt7/9bdZdd9189NFHOfjgg/Piiy9W6zN79uzceuut2XPPPav8kKKur9fafm0GgGWBpV0AoAHdcsstlYHF7Nmz89lnn2XMmDGVIUW/fv1yzjnn1PjBbW+99VbOPffctG3bNptssklWX331zJo1K2PGjMn48ePTrl27HHfccVX22XHHHfPcc8/lV7/6VbbaaqusuOKKSb4Jw+ryoW6DBw/OhRdemDvuuCOdO3fO5MmT8+KLL2bevHkZMmRItt122yr9d9ppp/zjH//IG2+8kV122SW9e/fOvHnz8sYbb6R58+bZZ599Ku+A/baePXtm9dVXz5gxY7LXXnultLQ0zZo1y/rrr195V/6CHHjggRk9enTuuOOO7LPPPunbt29WXXXVvPnmm3n//ffTqlWrDB06tPLhb/Xp2GOPzRtvvJFnnnkmO++8c/r37582bdrklVdeyccff5z27dvn4osvrvXDY+envq6F1q1b54orrsiRRx6Zq666KjfffHM6d+6cNdZYIzNnzsy4cePy7rvvZtVVV61xmLPWWmulW7dueeONN7LbbrulW7duadmyZVZeeeX88pe/TFK35/AnP/lJ2rRpk9///vc57LDDctlll1UGSuecc06+/PLLPP744xk4cGC6dOmStddeO4VCIePHj8/YsWMzZ86c3HPPPQtdI35h/va3v+W8887LBhtskA033DAtW7bM5MmT8/LLL2fu3LnZc889s+mmm9ZorB49euTss8/O6aefnjPPPDPDhg1Lt27dUigU8uGHH2bs2LE5+uij061btyTfLBk1dOjQHHfccbnoootyxx13ZJNNNsknn3ySF154IXPnzs3ee+9d7XPYu3fvDBgwIA899FD22Wef9O7dOy1btsyYMWMybdq0DBkyJNdee+1inZdva968ebbffvvcf//92XPPPdO7d+/KNbvPPvvsxR6/Mc0Ti+OBBx7IKaecktVXXz1du3bNiiuumC+//DIvv/xyvvrqq5SWlma//far7F9X57VVq1b5xS9+kXPPPTennHJKRowYkdVXXz3vvfde3nnnnfzsZz/LZZddVm2/Nm3a5G9/+1uOOOKIjBw5Mg8++GB69eqV1q1bZ8KECSkrK0uPHj2qLPuy4447ZuTIkTn//PPzzDPPZJVVVklJSUn22Wef9OrVq2idF1xwQX70ox/loYceyoABA9KnT5/MnTs3zz33XKZNm5ZNN910iS3ntNJKK+XGG2/M8ccfn+effz6HHHJI1l577XTu3DkrrLBCpk6dmtdeey3Tp09P27ZtqzwHpa6v19p+bQaAZYEgHQAaUMXD3ZJvwsa2bdumtLQ03bp1y0477ZQePXos0njbb799pk2blhdffDH/+c9/8uqrr6ZVq1ZZc801c8QRR+SQQw6pvJO3wkEHHZSvv/46d955Zx577LHK5Sl23333Og3Sf/jDH2bAgAG54oorKu+a32STTTJo0KDstdde1fo3b948w4cPz8UXX5wHH3wwTz31VFZZZZX88Ic/zHHHHVd5J/t3tWjRIsOGDctFF12UV155JWPHjs28efPSr1+/hQbpJSUlOe+887LNNtvkpptuyptvvpkZM2ZktdVWy957752f/vSndXpOimnRokVl6HzHHXfkxRdfzOzZs9OxY8cMHjw4P/3pT+t8bd76vBY23njj3HnnnRkxYkQefPDBvPXWW3nllVfSvn37rLnmmjnssMMWae3fJLn00ktzwQUX5Lnnnsu9996buXPnplOnTpVBel2fw4MOOiht2rTJaaedliOPPDIXX3xxtttuu7Rt2zZXX3117rnnntx555158803M3bs2LRp0yarr756dttttwwYMGCh65bXxBlnnJFnnnkmb7zxRl544YVMnz49HTp0yP/8z//kgAMOyIABAxZpvD333DPdunXL8OHD8+yzz+aRRx5Jy5Yts8Yaa+SQQw7JTjvtVKX/dtttl1GjRuXKK6/MM888k/vvvz8rrLBCevfunQMPPDA777zzfI/z5z//OZdddlnuuuuuPP/881lxxRWzxRZb5Ljjjpvv3bWL68wzz0z79u3zxBNP5P7776/8rYW6CNIb0zyxOA477LCsvfbaGT16dOUPcNu3b5+NNtoou+66a/bee++0bt26yj51dV4PPfTQtG/fPtdee23GjBmTf//73+nWrVt+/etfZ5111plvkJ588xsgd955Z6699to89NBDef755zNv3rx06NAh22+/ffbee+8q/b///e/nrLPOyo033phnn3228s7y3r17LzRI/973vpeRI0fm6quvzoMPPphHH300TZo0yfrrr5+ddtopQ4YMWSIP4a6w6qqr5rrrrsvjjz+eu+++O6NHj84zzzyTOXPmpH379tl8882z7bbbZo899qjyvJG6vl5r+7UZAJYFJYVl4bHoAAAAAABQT6yRDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIpo1tAFLIvmzZuXuXPnpkmTJikpKWnocgAAAAAA+I5CoZB58+alWbNmadKk+D3ngvR6MHfu3Lz++usNXQYAAAAAAAvRvXv3tGjRomgfQXo9qPjpRffu3dO0adMGrmbJKS8vz+uvv77cvW6gKnMBUMF8ACTmAuC/zAdA0rjmgopaFnY3eiJIrxcVy7k0bdq0wS+GhrC8vm6gKnMBUMF8ACTmAuC/zAdA0rjmgposz+1howAAAAAAUIQgHQAAAAAAihCkAwAAAABAEYJ0AAAAAAAoQpAOAAAAAABFCNIBAAAAAKAIQToAAAAAABQhSAcAAAAAgCIE6QAAAAAAUIQgHQAAAAAAihCkAwAAAABAEYJ0AAAAAAAoQpAOAAAAAABFCNIBAAAAAKAIQToAAAAAABQhSAcAAAAAgCIE6QAAAAAAUIQgHQAAAAAAihCkAwAAAABAEYJ0AAAAAAAoollDF8Cy6YMPPsjUqVPr9RirrbZa1llnnXo9BgAAAACAIJ0698EHH2STTbtl5ozp9XqcViu0zltjy4TpAAAAAEC9EqRT56ZOnZqZM6Zn/R8PTauOG9XLMWZOeCfvD/9lpk6dKkgHAAAAAOqVIJ1606rjRmmzzqYNXQYAAAAAwGLxsFEAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAACiiUQbp48aNywknnJBtttkmPXv2zMCBA/OXv/wlM2bMqNLv5ZdfzkEHHZSePXtmyy23zFlnnZWvv/662nizZ8/O+eefn6222io9evTIfvvtl6eeemq+x67pmAAAAAAALB+aNXQB3zVhwoTst99+adeuXQYNGpSVVlopr7zySi699NK8+eab+dvf/pYkKSsry6GHHpoNN9wwp556aiZOnJirr74648aNy1VXXVVlzFNPPTX3339/hgwZkvXWWy+jRo3KEUcckX/84x/p06dPZb9FGRMAAAAAgOVDowvS77jjjnz55Ze54YYbsvHGGydJDjjggMybNy+33357vvjii6y00kq58MILs+KKK+a6665L27ZtkyRrr712Tj/99Dz55JPZaqutkiSvvfZa7r777px88sk5/PDDkyR77rlndt111wwdOjQjRoyoPHZNxwQAAAAAYPnR6JZ2mTZtWpJk1VVXrdLeoUOHNGnSJM2bN8+0adPy9NNPZ/fdd68MvJNkjz32SOvWrXPvvfdWtt13331p2rRpDjjggMq2li1bZt99983o0aMzYcKEyuPWdEwAAAAAAJYfjS5I79evX5LkN7/5TcrKyjJhwoTcc889ufHGGzN48OC0bt06b731VubOnZtu3bpV2bdFixbp2rVrysrKKtvKysqy3nrrVQnHk6RHjx6V25Ms0pgAAAAAACw/Gt3SLttss02OO+64XHHFFXn44Ycr24866qiccMIJSZIpU6YkSVZfffVq+3fo0CEvvfRS5cdTpkxJhw4d5tsvSSZPnrzIY9ZUeXn5Iu+zNKt4vfPmzVuix1zezjM0dhXvSe9NwHwAJOYC4L/MB0DSuOaCRamh0QXpSdKpU6f06dMnO+64Y9q3b59HH300V1xxRTp06JBBgwZl5syZSb65W/y7WrZsWbk9SWbOnLnAfhXbv/13Tcasqddff32R91kWvPPOO0vsWG+//XaaNGl0v1gBZPmdA4HqzAdAYi4A/st8ACRL31zQ6IL0u+++O2eccUbuv//+rLnmmkmSHXbYIYVCIUOHDs0uu+ySVq1aJUlmz55dbf9Zs2ZVbk+SVq1aLbBfxfZv/12TMWuqe/fuadq06SLvt7QqLy/P66+/no022miJHbO0tDSbbbbZEjsesHAVc8HyNgcC1ZkPgMRcAPyX+QBIGtdcUFFLTTS6IP2GG25I165dK0P0Cttvv31GjhyZsrKyasuyfNuUKVOqLM/SoUOHTJo0ab79kv8u5bIoY9ZU06ZNG/xiaAhL8g7x5fUcw9LA+xOoYD4AEnMB8F/mAyBZ+uaCRrcmxtSpU+e7xvacOXOSJHPnzk1paWmaNWuWN954o0qf2bNnp6ysLF26dKls69KlS8aNG5dp06ZV6fvqq68mSbp27ZokizQmAAAAAADLj0YXpK+//voZM2ZM3n///Srtd999d5o0aZLOnTunXbt22WKLLXLnnXdWCcjvuOOOTJ8+PQMHDqxsGzhwYMrLy3PTTTdVts2ePTsjR45Mz54907FjxyRZpDEBAAAAAFh+NLqlXQ4//PA8/vjjOeSQQ3LIIYdUPmz08ccfz3777Zc11lgjSXLCCSfkwAMPzODBg7P//vtn4sSJGT58eLbaaqtss802leP17NkzAwcOzIUXXphPPvkk6667bkaNGpXx48fn7LPPrnLsmo4JAAAAAMDyo9EF6X379s2IESNy6aWX5sYbb8znn3+eTp065YQTTshPfvKTyn6bbrpphg8fnqFDh+bcc89NmzZtsu++++bEE0+sNuZ5552XP//5z7nzzjvzxRdfpHPnzrn88svTt2/fKv0WZUwAAAAAAJYPjS5IT5IePXrkyiuvXGi/Pn36ZMSIEQvt17Jly5xyyik55ZRT6mxMAAAAAACWD41ujXQAAAAAAGhMBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUUadBeqFQyLhx4zJhwoS6HBYAAAAAABpMrYL0Bx54ICeffHK++OKLyraPPvoou+++e3baaadsv/32OeGEE1JeXl5nhQIAAAAAQEOoVZB+4403pqysLCuttFJl27nnnpt///vf6d+/fzp37pz77rsvt912W50VCgAAAAAADaFWQfo777yTHj16VH48bdq0PPbYY9l5551zzTXX5JZbbsmGG24oSAcAAAAAYKlXqyD9iy++yGqrrVb58UsvvZS5c+dml112SZI0b948//M//5MPPvigbqoEAAAAAIAGUqsgvW3btvn8888rP37uuefSpEmT9OnTp7KtWbNmmTFjxmIXCAAAAAAADalWQfoGG2yQRx55JJ999lm+/PLL3HXXXdl0002rrJn+8ccfZ9VVV62zQgEAAAAAoCHUKkgfPHhwJk+enG233Tbf//73M2XKlBx00EFV+rz66qvp0qVLnRQJAAAAAAANpVltdtpxxx1zxhln5NZbb02S7LLLLtl7770rtz///POZNm1att5667qpEgAAAAAAGkitgvQkOfjgg3PwwQfPd1u/fv3ywgsv1LooAAAAAABoLGq1tAsAAAAAACwvah2kz507N9dcc0323Xff9OrVK5tssknltrKysvzv//5v3n///TopEgAAAAAAGkqtlnaZOXNmDjvssIwePTorr7xy2rZtmxkzZlRuX3vttTNy5MistNJKOeGEE+qsWAAAAAAAWNJqdUf65Zdfnpdffjknnnhinnrqqey3335Vtrdr1y59+/bNk08+WSdFAgAAAABAQ6lVkH7vvfemf//++elPf5qSkpKUlJRU6/O9730vEyZMWOwCAQAAAACgIdUqSP/444/TrVu3on3atGmTr776qlZFAQAAAABAY1GrIL1Nmzb59NNPi/b58MMPs8oqq9SqKAAAAAAAaCxqFaRvttlmefjhh/Pll1/Od/uECRPy2GOPpU+fPotVHAAAAAAANLRaBemHH354vvzyyxx66KF56aWXMnfu3CTJjBkz8swzz+Twww9PeXl5fvzjH9dpsQAAAAAAsKQ1q81Offv2zW9/+9ucc845GTRoUGV7r169kiRNmzbN7373u4Wuow4AAAAAAI1drYL0JDn44IPTv3//3HjjjXnttdfyxRdfpE2bNunZs2cOPvjgbLzxxnVZJwAAAAAANIhaB+lJsuGGG+b000+vq1oAAAAAAKDRqdUa6QAAAAAAsLyo0R3pH3/8ca0PsNZaa9V6XwAAAAAAaGg1CtK33377lJSULPLgJSUlGTNmzCLvBwAAAAAAjUWNgvQ999yzVkE6AAAAAAAs7WoUpP/xj3+s7zoAAAAAAKBR8rBRAAAAAAAookZ3pBczZsyYjBkzJtOmTUvbtm2zySabZJNNNqmL2gAAAAAAoMHVOkh/7bXX8tvf/jZvv/12kqRQKFSuo15aWpqzzjor3bt3r5sqAQAAAACggdQqSH/zzTfzox/9KDNmzMgWW2yR3r17Z7XVVsvUqVPz4osv5tlnn82QIUNyww03pGvXrnVdMwAAAAAALDG1CtIvvPDCzJkzJ8OGDcuWW25ZbfsTTzyRn/3sZxk6dGiGDRu22EUCAAAAAEBDqdXDRl9++eUMHDhwviF6kmy99dbZcccdM3r06MUqDgAAAAAAGlqtgvRmzZqlU6dORfusvfbaadq0aa2KAgAAAACAxqJWQfrmm2+eV199tWifV155Jb17965VUQAAAAAA0FjUKkg/+eST8+abb+aiiy7KjBkzqmybMWNGLrzwwpSVleVXv/pVnRQJAAAAAAANpVYPGx02bFg6d+6cv//97xkxYkS6du2aVVddNZ988knKysry5Zdfpk+fPrnqqquq7FdSUpJzzjmnTgoHAAAAAIAloVZB+qhRoyr//cUXX+TZZ5+t1ueFF17ICy+8UKVNkA4AAAAAwNKmVkH6Qw89VNd1AAAAAABAo1SrIL1Tp051XUc1b775Zi699NK8/PLLmTVrVr73ve9l//33z5AhQyr7vPzyyzn//PMzZsyYtG3bNjvttFNOOOGEtGnTpspYs2fPzsUXX5w77rgjX375ZTp37pzjjz8+W265ZbXj1nRMAAAAAACWD7UK0uvbk08+maOOOiqbbLJJfv7zn6d169b54IMPMnHixMo+ZWVlOfTQQ7Phhhvm1FNPzcSJE3P11Vdn3Lhx1dZmP/XUU3P//fdnyJAhWW+99TJq1KgcccQR+cc//pE+ffrUakwAAAAAAJYPixWkl5WVZezYsZk8eXLmzJlTbXtJSUmOPvroRRpz2rRpOeWUU/L9738/l1xySZo0aTLffhdeeGFWXHHFXHfddWnbtm2SZO21187pp5+eJ598MltttVWS5LXXXsvdd9+dk08+OYcffniSZM8998yuu+6aoUOHZsSIEYs8JgAAAAAAy49aBemffPJJTjrppDz33HNJkkKhMN9+tQnS//Wvf2Xq1Kk54YQT0qRJk0yfPj2tWrWqEqhPmzYtTz/9dH70ox9VBt5Jsscee+Scc87JvffeWxl633fffWnatGkOOOCAyn4tW7bMvvvumwsvvDATJkxIx44dF2lMAAAAAACWH7UK0n//+9/n2Wefzbbbbpudd945q6++epo2bVonBT3zzDNp27ZtJk2alJ///OcZN25cWrdund133z2//vWv07Jly7z11luZO3duunXrVmXfFi1apGvXrikrK6tsKysry3rrrVclHE+SHj16VG7v2LHjIo0JAAAAAMDyo1ZB+pNPPpn+/fvniiuuqOt6Mm7cuJSXl+fnP/959t1335x00kl5/vnnc9111+Wrr77KhRdemClTpiRJVl999Wr7d+jQIS+99FLlx1OmTEmHDh3m2y9JJk+eXNmvpmPWVHl5+SLvszSreL3z5s1bosdc3s4zNHYV70nvTcB8ACTmAuC/zAdA0rjmgkWpoVZBevPmzbPpppvWZteFmj59embMmJEDDzwwp59+epJkhx12yOzZs3PTTTfl2GOPzcyZM5N8c7f4d7Vs2bJye5LMnDlzgf0qtn/775qMWVOvv/76Iu+zLHjnnXeW2LHefvvtBa6jDzSs5XUOBKozHwCJuQD4L/MBkCx9c0GtgvTevXtn7NixdV1LkqRVq1ZJkl133bVK+2677Zabbropr7zySmWf2bNnV9t/1qxZldsrxltQv28fb1HGrKnu3bvX2ZI3S4Py8vK8/vrr2WijjZbYMUtLS7PZZpstseMBC1cxFyxvcyBQnfkASMwFwH+ZD4Ckcc0FFbXURK2C9JNOOikHHXRQ/vnPf2bQoEG1GWKBVl999fz73//OqquuWqV9lVVWSZJ88cUX+d73vpfkv8uyfNuUKVOqLM/SoUOHTJo0ab79Ko5X0a+mY9ZU06ZNG/xiaAhL8g7x5fUcw9LA+xOoYD4AEnMB8F/mAyBZ+uaCWgXpG264Ya6//voccsghue6669K5c+e0adOmWr+SkpKcc845izT2pptumqeeeiqTJk3KBhtsUNleEXCvssoqKS0tTbNmzfLGG29k5513ruwze/bslJWVZaeddqps69KlS5577rlMmzatygNHX3311SRJ165dk2SRxgQAAAAAYPlRq1uHP/zwwxx99NH58ssv85///CcPPPBARo0aNd8/i6oisL711lurtN96661p1qxZ+vXrl3bt2mWLLbbInXfemWnTplX2ueOOOzJ9+vQMHDiwsm3gwIEpLy/PTTfdVNk2e/bsjBw5Mj179kzHjh2TZJHGBAAAAABg+VGrO9LPOuusfPDBBznooIOyyy67ZPXVV6+z2/A32WST7LPPPrnttttSXl6evn375vnnn899992XI488MmussUaS5IQTTsiBBx6YwYMHZ//998/EiRMzfPjwbLXVVtlmm20qx+vZs2cGDhyYCy+8MJ988knWXXfdjBo1KuPHj8/ZZ59d5dg1HRMAAAAAgOVHrYL0F154Idttt11+97vf1XU9SZLf//73WWuttTJy5Mg8+OCDWWuttXLaaafl0EMPreyz6aabZvjw4Rk6dGjOPffctGnTJvvuu29OPPHEauOdd955+fOf/5w777wzX3zxRTp37pzLL788ffv2rdJvUcYEAAAAAGD5UKsgvUWLFllvvfXquJT/at68eY455pgcc8wxRfv16dMnI0aMWOh4LVu2zCmnnJJTTjlloX1rOiYAAAAAAMuHWq2RvuWWW2b06NF1XQsAAAAAADQ6tQrSTz755EyZMiV/+tOfMmvWrLquCQAAAAAAGo1aLe3yq1/9Ku3atcs111yTm2++Oeuuu27atm1brV9JSUn+8Y9/LHaRAAAAAADQUGoVpD///POV//76668zZsyY+fYrKSmpXVUAAAAAANBI1CpIHzt2bF3XAQAAAAAAjVKt1kgHAAAAAIDlhSAdAAAAAACKqNXSLhUmTpyYZ599NpMnT87s2bOrbS8pKcnRRx+9OIcAAAAAAIAGVesg/U9/+lOuu+66lJeXV7YVCoXKB4xW/FuQDgAAAADA0qxWS7vcfPPNGT58ePr3759LLrkkhUIhe+65Zy688MIceOCBadq0aQYOHJh//OMfdV0vAAAAAAAsUbW6I/2mm25Kp06dcuWVV6ZJk2+y+E6dOmXnnXfOzjvvnJ122imHHXZYBg4cWKfFAgAAAADAklarO9Lfe++9bL311pUhepIqS7z069cv2267ba6++urFrxAAAAAAABpQrYL0JFlxxRUr/73CCivk888/r7J9/fXXz7///e9aFwYAAAAAAI1BrYL0NdZYIxMnTqz8eJ111smrr75apc+///3vtG7devGqAwAAAACABlarIL1Xr15VgvMBAwakrKwsZ5xxRh599NFccMEFefzxx9OnT586KxQAAAAAABpCrR42uscee2Ty5MkZP358OnXqlMMPPzyPPvpobr755txyyy0pFArp1KlTTj755LquFwAAAAAAlqhaBen9+/dP//79Kz9u06ZNbrrppjz00EP54IMP0qlTp2y33XaWdgEAAAAAYKlXqyB9fpo3b56BAwfW1XAAAAAAANAo1GqN9NGjR9eo3w033FCb4QEAAAAAoNGoVZA+ePDgXHbZZSkUCvPd/vnnn+dnP/tZ/vCHPyxWcQAAAAAA0NBqFaRvuOGGufTSSzNkyJBMmjSpyrZnn302e+yxRx555JHsuuuudVIkAAAAAAA0lFoF6bfccksOOeSQvPDCC9l9991z//33p7y8POeff34OO+ywfP311znvvPNy/vnn13W9AAAAAACwRNXqYaMtWrTI6aefnq233jqnnXZajj/++Ky55pqZOHFievbsmfPPPz/f+9736rpWAAAAAABY4mp1R3qFbbfdNoceemgKhUImTJiQ9u3b5+KLLxaiAwAAAACwzKh1kD5t2rScdNJJueiii7LGGmtkl112yWeffZZ99tknjz/+eF3WCAAAAAAADaZWQfro0aOzxx575O67784PfvCD3Hnnnbngggty8cUXZ/bs2TnyyCNz9tlnZ/bs2XVdLwAAAAAALFG1CtIHDRqUTz75JL///e9z6aWXZqWVVkqS7LjjjvnXv/6VPn365Lrrrst+++1Xp8UCAAAAAMCSVqsgfeONN87IkSNzwAEHVNu2xhpr5Nprr82xxx6bd999d7ELBAAAAACAhtSsNjvdfPPNadGixQK3l5SU5Oc//3m23HLLWhcGAAAAAACNQa3uSC8Won9bz549azM8AAAAAAA0GjUO0v/yl7/khRdeqNL2ySefZOzYsfPtf8899+SYY45ZvOoAAAAAAKCBLVKQ/txzz1Vpu/HGG7PXXnvNt/97772Xhx56aPGqAwAAAACABlarpV0AAAAAAGB5IUgHAAAAAIAimjV0AbA4ysrK6nX81VZbLeuss069HgMAAAAAaNwE6SyV5nwxJSlpkkGDBtXrcVqt0DpvjS0TpgMAAADAckyQzlJp7owvk8K8rP/joWnVcaN6OcbMCe/k/eG/zNSpUwXpAAAAALAcW6Qg/d///nfuueeeyo/ffvvtJMm9996bQqFQpW/FNqhPrTpulDbrbNrQZQAAAAAAy7BFCtIfeOCBPPDAA5UfV4TnJ554YrW+hUIhJSUli1keAAAAAAA0rBoH6cccc0x91gEAAAAAAI2SIB0AAAAAAIpo0tAFAAAAAABAYyZIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAACiiRkH6Mccck3vuuafy4xdeeCEff/xxvRUFAAAAAACNRY2C9AcffDDvvfde5cdDhgzJyJEj660oAAAAAABoLGoUpK+44or5+uuvKz8uFAr1VhAAAAAAADQmzWrSacMNN8xdd92V7t27p0OHDkmS8ePH54UXXljovn379l28CgEAAAAAoAHVKEg/+uijc/TRR+ekk06qbLv99ttz++23L3TfsrKyWhcHAAAAAAANrUZB+lZbbZV77rknTz/9dCZNmpS//OUv6du3b/r161ff9QEAAAAAQIOqUZCeJJ06dcp+++2XJPnLX/6Sfv365Zhjjqm3wgAAAAAAoDGocZD+bQ899FBWXHHFuq4FAAAAAAAanVoF6Z06dar899y5c/P+++9n2rRpadu2bdZff/00a1arYQEAAAAAoNGpdeL9+eefZ+jQobnrrrsya9asyvZWrVpl1113zYknnpiVV165TooEAAAAAICGUqsg/fPPP88BBxyQ//znP1lppZXSu3fvrL766pkyZUreeOON3HLLLXn++edz0003pX379nVcMgAAAAAALDm1CtIvu+yy/Oc//8nhhx+eo48+Oq1bt67cNmPGjFx22WW58sorc/nll+fUU0+ts2IBAAAAAGBJa1KbnR566KH069cvv/rVr6qE6Emywgor5KSTTkq/fv3yf//3f3VSJAAAAAAANJRaBemTJ0/O5ptvXrTP5ptvnsmTJ9eqKAAAAAAAaCxqFaS3a9cu48ePL9pn/PjxadeuXa2KAgAAAACAxqJWQXrfvn1z33335emnn57v9meeeSb33Xdf+vXrt1jFAQAAAABAQ6vVw0aPOeaYPPbYYzn88MOz7bbbpm/fvll11VXzySef5Pnnn8/jjz+eVq1a5eijj67regEAAAAAYImqVZC+8cYb56qrrsppp52WRx99NI8++mhKSkpSKBSSJOuss07OPffcbLzxxnVaLAAAAAAALGm1CtKTpE+fPnnggQfy0ksvpaysLNOmTUvbtm3TtWvX9O7dOyUlJXVZJwAAAAAANIhaB+lJUlJSkj59+qRPnz51VQ8AAAAAADQqtXrYKAAAAAAALC8E6QAAAAAAUIQgHQAAAAAAihCkAwAAAABAEYJ0AAAAAAAoQpAOAAAAAABF1CpI79q1a0466aS6rgUAAAAAABqdWgXpbdu2TceOHeu6FgAAAAAAaHRqFaT36NEjY8eOretaAAAAAACg0alVkH7MMcfk2Wefze23317H5QAAAAAAQOPSrDY7PfXUU+nfv39OO+20XHfddenevXtWW221av1KSkpy9NFHL3aRAAAAAADQUGoVpP/lL3+p/Pebb76ZN998c779BOkAAAAAACztahWkX3vttXVdBwAAAAAANEq1CtL79etX13UAAAAAAECjVKuHjQIAAAAAwPKi1kH63Llzc80112TfffdNr169sskmm1RuKysry//+7//m/fffr5MiAQAAAACgodRqaZeZM2fmsMMOy+jRo7Pyyiunbdu2mTFjRuX2tddeOyNHjsxKK62UE044oc6KBQAAAACAJa1Wd6Rffvnlefnll3PiiSfmqaeeyn777Vdle7t27dK3b988+eSTdVIkAAAAAAA0lFoF6ffee2/69++fn/70pykpKUlJSUm1Pt/73vcyYcKExS4QAAAAAAAaUq2C9I8//jjdunUr2qdNmzb56quvalUUAAAAAAA0FrUK0tu0aZNPP/20aJ8PP/wwq6yySq2K+ra//e1v6dy5c3bddddq215++eUcdNBB6dmzZ7bccsucddZZ+frrr6v1mz17ds4///xstdVW6dGjR/bbb7889dRT8z1eTccEAAAAAGD5UKsgfbPNNsvDDz+cL7/8cr7bJ0yYkMceeyx9+vRZrOImTpyYK664Iq1bt662raysLIceemhmzpyZU089Nfvuu29uuummHHfccdX6nnrqqbnmmmuy22675Te/+U2aNm2aI444Ii+++GKtxwQAAAAAYPnQrDY7HX744RkyZEgOPfTQ/OY3v8ncuXOTJDNmzMgrr7ySP/zhDykvL8+Pf/zjxSruT3/6U3r27Jl58+bls88+q7LtwgsvzIorrpjrrrsubdu2TZKsvfbaOf300/Pkk09mq622SpK89tprufvuu3PyySfn8MMPT5Lsueee2XXXXTN06NCMGDFikccEAAAAAGD5Uas70vv27Zvf/va3efvttzNo0KBcccUVSZJevXrlsMMOywcffJDf/e53C11HvZgXXngh999/f379619X2zZt2rQ8/fTT2X333SsD7yTZY4890rp169x7772Vbffdd1+aNm2aAw44oLKtZcuW2XfffTN69OjKB6IuypgAAAAAACw/anVHepIcfPDB6d+/f2688ca89tpr+eKLL9KmTZv07NkzBx98cDbeeONaF1VeXp4//OEP2XfffdO5c+dq2996663MnTu3WlDfokWLdO3aNWVlZZVtZWVlWW+99aqE40nSo0ePyu0dO3ZcpDEBAAAAAFh+1DpIT5INN9wwp59+el3VUmnEiBH5+OOPc80118x3+5QpU5Ikq6++erVtHTp0yEsvvVSlb4cOHebbL0kmT568yGPWVHl5+SLvszSreL3z5s1r4ErqVnl5+XL3uYTFUfF+8b4BzAdAYi4A/st8ACSNay5YlBoWK0ivD5999lkuueSS/PznP88qq6wy3z4zZ85M8s3d4t/VsmXLyu0VfRfU79tjLcqYNfX6668v8j7LgnfeeaehS6hTb7/9dpo0qdUqSLBcW17nQKA68wGQmAuA/zIfAMnSNxcsVpD+f//3fxk5cmTKysry1VdfpV27dunatWv22Wef/OAHP6jVmH/+85+z0korZdCgQQvs06pVqyTJ7Nmzq22bNWtW5faKvgvq9+2xFmXMmurevXuaNm26yPstrcrLy/P6669no402auhS6lRpaWk222yzhi4DlhoVc8HyNgcC1ZkPgMRcAPyX+QBIGtdcUFFLTdQqSJ87d25OOumkPPDAAykUCmnWrFnat2+fqVOn5pFHHsmjjz6aHXbYIRdccEGaNav5IcaNG5ebb745v/71ryuXXEm+CbLnzJmTjz76KG3btq22LMu3TZkypcryLB06dMikSZPm2y/571IuizJmTTVt2rTBL4aGsKzdvb28fh5hcXnvABXMB0BiLgD+y3wAJEvfXFCrxPOKK67I/fffnz59+uT666/Pa6+9lieffDKvvfZa/vnPf6Z379554IEH8ve//32Rxp00aVLmzZuXs846KwMGDKj88+qrr2bcuHEZMGBA/vrXv6a0tDTNmjXLG2+8UWX/2bNnp6ysLF26dKls69KlS8aNG5dp06ZV6fvqq68mSbp27ZokizQmAAAAAADLj1oF6SNHjswGG2yQ4cOHp3fv3pV3IDdp0iR9+vTJ8OHDs9566+W2225bpHE33njj/PWvf632Z+ONN85aa62Vv/71r9l3333Trl27bLHFFrnzzjurBOR33HFHpk+fnoEDB1a2DRw4MOXl5bnpppsq22bPnp2RI0emZ8+e6dixY5Is0pgAAAAAACw/arW0y5QpUzJ48OAFLtvSvHnzbLfddvnnP/+5SOOussoq811b/R//+EeSVNl2wgkn5MADD8zgwYOz//77Z+LEiRk+fHi22mqrbLPNNpX9evbsmYEDB+bCCy/MJ598knXXXTejRo3K+PHjc/bZZ1c5Tk3HBAAAAABg+VGrO9I7duyY6dOnF+0zY8aMyru968Omm26a4cOHp2XLljn33HNz8803Z999983FF19cre95552XIUOG5M4778xZZ52VuXPn5vLLL0/fvn1rPSYAAAAAAMuHWt2Rvu+++2bYsGH52c9+Nt+HcE6aNCn33HNPfvrTny52gUly3XXXzbe9T58+GTFixEL3b9myZU455ZSccsopC+1b0zEBAAAAAFg+1ChI//jjj6t8vNNOO+Xll1/OXnvtlR/96Efp1atXVltttUydOjUvvfRSrr322vTu3du64gAAAAAALPVqFKRvv/32KSkpqdZeKBRy0UUXzbf94YcfzqOPPpoxY8YsfpUAAAAAANBAahSk77nnnvMN0gEAAAAAYFlXoyD9j3/8Y33XAQAAAAAAjVKThi4AAAAAAAAaM0E6AAAAAAAUUaOlXebnxRdfzNVXX52xY8dm8uTJKS8vr9anpKTEw0YBAAAAAFiq1SpIv/3223PaaaelUCjke9/7Xnr06JGmTZvWdW0AAAAAANDgahWk/+1vf8uKK66YK6+8Mj169KjrmgAAAAAAoNGo1RrpEyZMyC677CJEBwAAAABgmVerIH2ttdbKnDlz6roWAAAAAABodGoVpO+///555JFH8vnnn9dxOQAAAAAA0LjUao30ww47LB9++GEOOuig/OxnP0uXLl3Stm3b+fZda621FqtAAAAAAABoSLUK0pNkk002yV133ZVTTjllgX1KSkoyZsyY2h4CAAAAAAAaXK2C9Ouuuy7nnHNOmjVrlv79+6dDhw5p1qzWmTwAAAAAADRatUq/r7nmmqyxxhoZMWJE1lxzzbquCQAAAAAAGo1aPWx06tSp2WGHHYToAAAAAAAs82oVpK+zzjr56quv6roWAAAAAABodGoVpB966KF56KGHMn78+LquBwAAAAAAGpVarZG+zjrrpG/fvtlnn33yox/9KF26dEnbtm3n27dv376LVSAAAAAAADSkWgXpgwcPTklJSQqFQi6++OKUlJQssG9ZWVmtiwMAAAAAgIZWqyD96KOPLhqeAwAAAADAsqJWQfovfvGLuq4DAAAAAAAapVo9bBQAAAAAAJYXgnQAAAAAACiiVku7dOnSpUZrpJeUlGTMmDG1OQQAAAAAADQKtQrS+/btO9/2adOmZdy4cZkxY0a6dOmSdu3aLVZxAAAAAADQ0GoVpF933XUL3DZjxoxccMEFeeKJJ3L11VfXujAAAAAAAGgM6nyN9BVWWCGnn3562rZtm/PPP7+uhwcAAAAAgCWq3h422qdPnzz66KP1NTwAAAAAACwR9Rakf/rpp5k+fXp9DQ8AAAAAAEtEnQfp8+bNy+2335577703Xbt2revhAQAAAABgiarVw0YHDBgw3/by8vJ88sknmTt3bpo1a5YTTzxxsYoDAAAAAICGVqsgvVAozH+wZs2y8cYbp3v37hk0aFA23njjxSoOAAAAAAAaWq2C9Icffriu6wAAAAAAgEap3h42CgAAAAAAywJBOgAAAAAAFFHjpV1OO+20RR68pKQk55xzziLvBwAAAAAAjUWNg/RRo0bVeNCSkpIUCgVBOgAAAAAAS70aB+k33XRTjfr95z//yV/+8pd88MEHtS4KAAAAAAAaixoH6T179iy6/dNPP81f//rX3HzzzZkzZ0569+6dX/7yl4tdIAAAAAAANKQaB+kLMmPGjAwbNizDhw/P119/nY033jgnnHBCtt9++7qoDwAAAAAAGlStg/Ty8vKMGDEif/vb3zJ16tSsueaa+fWvf5299torTZo0qcsaAQAAAACgwdQqSL/33nvz5z//OR988EHatWuXk046KUOGDEnLli3ruj4AAAAAAGhQixSkP/fccxk6dGjeeOONNG/ePD/+8Y9z1FFHZcUVV6yv+gAAAAAAoEHVOEj/yU9+kqeeeipNmjTJnnvumeOOOy5rrrlmfdYGAAAAAAANrsZB+pNPPpmSkpJ07NgxU6dOzW9/+9uF7lNSUpK///3vi1UgAAAAAAA0pEVa2qVQKOSjjz7KRx99VKP+JSUltSoKAAAAAAAaixoH6Q899FB91gEAAAAAAI1SjYP0Tp061WcdAAAAAADQKDVp6AIAAAAAAKAxE6QDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKaNbQBQBLxgcffJCpU6fW6zFWW221rLPOOvV6DAAAAABY0gTpsBz44IMP0rlL18ycMb1ej9NqhdZ5a2yZMB0AAACAZYogHZYDU6dOzcwZ07P+j4emVceN6uUYMye8k/eH/zJTp04VpAMAAACwTBGkw3KkVceN0madTRu6DAAAAABYqnjYKAAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoIhGF6S/9tprOfPMM7PLLrtks802y/e///0cd9xxef/996v1fffdd3P44Ydn8803T79+/fKrX/0qn376abV+8+bNy5VXXpntt98+3bt3z2677Za77rprvsev6ZgAAAAAACwfmjV0Ad911VVX5eWXX87AgQPTuXPnTJkyJddff3323nvv3HTTTSktLU2STJw4MYccckjatWuXE044IdOnT8/VV1+dt99+O7fccktatGhROeZFF12Uv//979l///3TvXv3PPTQQznppJNSUlKSXXbZpbLfoowJAAAAAMDyodEF6YceemiGDh1aJbTeeeeds9tuu+Xvf/97hg4dmiS5/PLLM2PGjIwcOTJrrbVWkqRHjx758Y9/nFGjRuWAAw5IkkyaNCnDhw/PIYcckjPOOCNJst9++2XQoEE577zzMnDgwDRt2nSRxgQAAAAAYPnR6JZ26dWrV7U7v9dbb71svPHGee+99yrbHnjggXz/+9+vDLyT5H/+53+y3nrr5d57761se/DBBzNnzpwcfPDBlW0lJSU56KCDMnHixIwePXqRxwQAAAAAYPnR6IL0+SkUCpk6dWpWXnnlJN/cZf7JJ5+kW7du1fr26NEjZWVllR+XlZWldevW2XDDDav1q9i+qGMCAAAAALD8aHRLu8zPnXfemUmTJuXYY49NkkyePDlJ0qFDh2p9O3TokM8//zyzZ89OixYtMmXKlKy66qopKSmp1u/bYy3KmDVVXl5e477LgorXO2/evAaupG6Vl5cv9Z/LJVn/snC+WDwVn3/XAWA+ABJzAfBf5gMgaVxzwaLU0OiD9HfffTdnnnlmNt988+y1115JklmzZiXJfEPtli1bJklmzpyZFi1aVP5drN+ijllTr7/+eo37Lkveeeedhi6hTr399ttp0mSp+OWNBXr77beX6LGW9vNF3Vhe50CgOvMBkJgLgP8yHwDJ0jcXNOogfcqUKTnyyCPTrl27XHzxxZUPBa0ItmfPnl1tn4pAvFWrVpV/16TfooxZU927d6+seXlQXl6e119/PRtttFFDl1KnSktLs9lmm9XrMT744INMnTq13sZfkr8lsCTOF41bxVywvM2BQHXmAyAxFwD/ZT4AksY1F1TUUhONNkj/6quv8tOf/jRfffVVrr/++qyxxhqV21ZfffUk3wTt3zVlypS0b9++8s7xDh065LnnnkuhUKiyvEvFvhVjLcqYNdW0adMGvxgawrJ2N3J9fx4/+OCDbLJpt8ycMb3ejrEkLa/XPdW5FoAK5gMgMRcA/2U+AJKlby5olEH6rFmzctRRR2XcuHEZPnx4tTuc11hjjayyyip54403qu372muvpUuXLpUfd+3aNbfcckvefffdKuO8+uqrldsXdUyoS1OnTs3MGdOz/o+HplXH+rmb/4vXH83H//pzvYwNAAAAAMu6Rhekl5eX5/jjj88rr7ySyy67LJtvvvl8++2www65/fbbM2HChHTs2DFJ8swzz2TcuHE59NBDK/sNGDAg5557bm644YacccYZSZJCoZARI0ZkjTXWqDJ+TceE+tCq40Zps86m9TL2jInv1su4AAAAALA8aHRB+h//+Mc8/PDD2W677fL555/njjvuqLJ9jz32SJIcddRRue+++zJkyJAMGTIk06dPz7Bhw1JaWpp99tmnsv+aa66ZIUOGZNiwYZk7d266d++eBx98MC+++GKGDh1a5dcHajomAAAAAADLj0YXpI8dOzZJ8sgjj+SRRx6ptr0iSO/YsWP++c9/5o9//GMuuOCCNG/ePNtuu21OPfXUamuZ//KXv8xKK62Um266KSNHjsx6662X888/P7vttluVfosyJgAAAAAAy4dGF6Rfd911Ne678cYbZ9iwYQvt16RJkxx55JE58sgj62xMAAAAAACWD00augAAAAAAAGjMBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAimjV0AdDYlZWVLdXjAwAAAACLR5AOCzDniylJSZMMGjSooUsBAAAAABqQIB0WYO6ML5PCvKz/46Fp1XGjejvOF68/mo//9ed6Gx8AAAAAWDyCdFiIVh03Spt1Nq238WdMfLfexgYAAAAAFp+HjQIAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFBEs4YuAFi2lJWV1fsxVltttayzzjr1fhwAAAAASATpQB2Z88WUpKRJBg0aVO/HarVC67w1tkyYDgAAAMASIUgH6sTcGV8mhXlZ/8dD06rjRvV2nJkT3sn7w3+ZqVOnCtIBAAAAWCIE6UCdatVxo7RZZ9OGLgMAAAAA6oyHjQIAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIoQpAMAAAAAQBGCdAAAAAAAKEKQDgAAAAAARQjSAQAAAACgCEE6AAAAAAAUIUgHAAAAAIAiBOkAAAAAAFCEIB0AAAAAAIpo1tAFANRGWVlZvY6/2mqrZZ111qnXYwAAAACwdBCkA0uVOV9MSUqaZNCgQfV6nFYrtM5bY8uE6QAAAAAI0oGly9wZXyaFeVn/x0PTquNG9XKMmRPeyfvDf5mpU6cK0gEAAAAQpANLp1YdN0qbdTZt6DIAAAAAWA542CgAAAAAABQhSAcAAAAAgCIE6QAAAAAAUIQgHQAAAAAAihCkAwAAAABAEYJ0AAAAAAAoQpAOAAAAAABFCNIBAAAAAKAIQToAAAAAABTRrKELAGisysrK6nX81VZbLeuss069HgMAAACAxSdIB/iOOV9MSUqaZNCgQfV6nFYrtM5bY8uE6QAAAACNnCAd4DvmzvgyKczL+j8emlYdN6qXY8yc8E7eH/7LTJ06VZAOAAAA0MgJ0gEWoFXHjdJmnU0bugwAAAAAGpggHaAB1fc67Im12AEAAAAWlyAdoAEsqXXYE2uxAwAAACwuQTpAA1gS67An1mIHAAAAqAuCdIAGtKTWYa/vJWQsHwMAAAAsywTpAMuwJbWEjOVjAAAAgGWZIB1gGbYklpCxfAwAAACwrBOkAywHlsQSMhXLx5SXl+ftt9/OvHnz0rRp0zob3/IxAAAAQEMRpAOwWCwfAwAAACzrBOkALJYluXzME088ka5du9bLMSq48x0AAAD4LkE6AHWiPpePWVJ3vSfufAcAAACqE6QD0OgtibveEw9OBQAAAOZPkA7AUmNJPDQ1+e+DU+uL5WMAAABg6SJIB4D/35JaQqZly1a57bZb07Fjx3o7xqxZs9KyZct6G7+CHwoAAACwPBCkA8D/b0ksITPt3y/kw1vPza677lov41cqaZIU5tXvMWJNeQAAAJYPgvTvmD17di6++OLccccd+fLLL9O5c+ccf/zx2XLLLRu6NACWkPpcQmbGxHfrPaz/4vVH8/G//rzE1pR/4okn0rVr13o7jrveAQAAaGiC9O849dRTc//992fIkCFZb731MmrUqBxxxBH5xz/+kT59+jR0eQAsI+o9rK/nYySWwqkNPxQAAABYOgnSv+W1117L3XffnZNPPjmHH354kmTPPffMrrvumqFDh2bEiBENXCEANB6Wwll0S+KHAsJ6AACAuidI/5b77rsvTZs2zQEHHFDZ1rJly+y777658MILM2HChHr9jy8ALI0shVMzS+qHAksirE9qdhd/eXl53n777cybNy9Nmzatl2MsrmXpBw8ffPBBpk6dWq/HWJbOFwAALApB+reUlZVlvfXWS9u2bau09+jRo3K7IB0AlrxlYSmcJfFDgSV2B3+yZO7iXwLHaEw/eFgcEyZMyD777pdZM2fU2zGSZed8LUvHWFLHWZxj1PSHasvSD2qWxA+2LEsGAEuWIP1bpkyZkg4dOlRrr2ibPHlyjcYpFApJvnlwaW3uvlpalZeXJ0nmzZuXNm3apGTq+ylvVlIvx2r6xcRl4hhL6jjLyjGW1HGWlWMsqeMsK8dYUsdZVo6xpI6zrBzj28dZoXnTtKyn48yeNzttWq+QNXb4SVqsXH9B5/Rxr+eT526v1+MsiWPM+PjfmfrkzVV+G7HeLIEfCjRr2iSd9jrO+VrejrGkjrMEjtGiZatc+49rssYaa9TrcZo0aZJ58+rvtUyaNClDfnRoZs+aWW/HSLLErq8l8Xmp78/JkjrGkjrO0nyMefPm5b333svcuXPTpEmTpfq1LOljLKnjLCvHWFLHWVaOkSRrrLFG1lxzzXo/TvLfDLExZKcVtVTkucWUFGrSaznxgx/8IOuvv36uvPLKKu0ffvhhfvCDH+S0007LoYceutBxZs+enddff72eqgQAAAAAoK507949LVq0KNrHHenf0qpVq8yePbta+6xZsyq310SzZs3SvXv3NGnSJCUl9XdnGwAAAAAAtVMoFDJv3rw0a7bwmFyQ/i0dOnTIpEmTqrVPmTIlSbL66qvXaJwmTZos9CcYAAAAAAAsHZo0dAGNSZcuXTJu3LhMmzatSvurr76aJOnatWtDlAUAAAAAQAMSpH/LwIEDU15enptuuqmybfbs2Rk5cmR69uyZjh3r76FdAAAAAAA0TpZ2+ZaePXtm4MCBufDCC/PJJ59k3XXXzahRozJ+/PicffbZDV0eAAAAAAANoKRQKBQauojGZNasWfnzn/+cf/3rX/niiy/SuXPnHHfccdl6660bujQAAAAAABqAIB0AAAAAAIqwRjoAAAAAABQhSAcAAAAAgCIE6Sy22bNn5/zzz89WW22VHj16ZL/99stTTz3V0GUBdeC5555L586d5/vnlVdeqdL35ZdfzkEHHZSePXtmyy23zFlnnZWvv/662pjmDGjcvv7661xyySU5/PDD069fv3Tu3DkjR46cb9933303hx9+eDbffPP069cvv/rVr/Lpp59W6zdv3rxceeWV2X777dO9e/fstttuueuuuxZrTKD+1XQ+OPXUU+f7vcLAgQOr9TUfwNLntddey5lnnplddtklm222Wb7//e/nuOOOy/vvv1+tr+8NYNlV07lgWf6+oNkSPRrLpFNPPTX3339/hgwZkvXWWy+jRo3KEUcckX/84x/p06dPQ5cH1IHBgwene/fuVdrWWWedyn+XlZXl0EMPzYYbbphTTz01EydOzNVXX51x48blqquuqrKfOQMat88++yx//etfs9Zaa6Vz5855/vnn59tv4sSJOeSQQ9KuXbuccMIJmT59eq6++uq8/fbbueWWW9KiRYvKvhdddFH+/ve/Z//990/37t3z0EMP5aSTTkpJSUl22WWXWo0J1L+azgdJ0qJFi5x11llV2tq1a1etn/kAlj5XXXVVXn755QwcODCdO3fOlClTcv3112fvvffOTTfdlNLS0iS+N4BlXU3ngmQZ/r6gAIvh1VdfLZSWlhauuuqqyraZM2cWfvCDHxQOOOCABqwMqAvPPvtsobS0tHDvvfcW7feTn/yksOWWWxa++uqryrabb765UFpaWnjiiScq28wZ0PjNmjWrMHny5EKhUCi89tprhdLS0sJtt91Wrd/vfve7Qo8ePQrjx4+vbHvqqacKpaWlhREjRlS2TZw4sbDpppsWfv/731e2zZs3r3DwwQcXttlmm8LcuXMXeUxgyajpfHDKKacUNttss4WOZz6ApdNLL71UmDVrVpW2999/v9CtW7fCSSedVNnmewNYttV0LliWvy+wtAuL5b777kvTpk1zwAEHVLa1bNky++67b0aPHp0JEyY0YHVAXZo2bVrmzp073/ann346u+++e9q2bVvZvscee6R169a59957K9vMGdD4tWjRIh06dFhovwceeCDf//73s9Zaa1W2/c///E/WW2+9Ku/7Bx98MHPmzMnBBx9c2VZSUpKDDjooEydOzOjRoxd5TGDJqOl8UKG8vDzTpk1b4HbzASydevXqVe1uz/XWWy8bb7xx3nvvvco23xvAsq2mc0GFZfH7AkE6i6WsrCzrrbdelfAsSXr06FG5HVj6nXbaaendu3d69OiRwYMH5/XXX6/c9tZbb2Xu3Lnp1q1blX1atGiRrl27VpkHzBmwbJg0aVI++eSTau/75Jv383ff961bt86GG25YrV/F9kUdE2h8ZsyYkd69e6d3797p169ffv/731d7Vor5AJYdhUIhU6dOzcorr5zE9wawvPruXFBhWf2+wBrpLJYpU6bM9y6VirbJkycv6ZKAOtS8efPsuOOO2WabbbLyyivn3XffzbBhw3LIIYdkxIgR2WSTTTJlypQkyeqrr15t/w4dOuSll16q/NicAcuGivfqgt7Pn3/+eWbPnp0WLVpkypQpWXXVVVNSUlKt37fHWpQxgcalQ4cO+clPfpJNNtkkhUIhTzzxRG644YaMHTs21113XZo1++a/neYDWHbceeedmTRpUo499tgkvjeA5dV354Jk2f6+QJDOYpk5c+Z8L9SWLVtWbgeWXr169UqvXr0qPx4wYEB23HHH7L777rngggsybNiwyvf5guaCb88D5gxYNsyaNSvJgt/3yX/f7zV93y/KmEDjctJJJ1X5eJdddsl6662Xiy66KPfff3/lw8LMB7BsePfdd3PmmWdm8803z1577ZXE9wawPJrfXJAs298XWNqFxdKqVavMnj27WnvFRd6qVaslXRJQz9Zdd90MGDAgzz33XMrLyyvf5wuaC749D5gzYNlQ8Q1rTd7PNX3fL8qYQON36KGHpkmTJnn66acr28wHsPSbMmVKjjzyyLRr1y4XX3xxmjZtmsT3BrC8WdBcsCDLyvcFgnQWS4cOHSqXdfi2Yks9AEu/NddcM3PmzMmMGTOKLssyZcqUKvOAOQOWDRXv1QW9n9u3b195R0iHDh0yderUFAqFav2+PdaijAk0fq1atUr79u3zxRdfVLaZD2Dp9tVXX+WnP/1pvvrqq1x11VVZY401Krf53gCWH8XmggVZVr4vEKSzWLp06ZJx48ZVewrvq6++miTp2rVrQ5QF1LOPPvooLVu2TOvWrVNaWppmzZrljTfeqNJn9uzZKSsrS5cuXSrbzBmwbFhjjTWyyiqrVHvfJ8lrr71W5X3ftWvXzJgxI++++26Vft993y/KmEDjN23atHz22WdZZZVVKtvMB7D0mjVrVo466qiMGzcul19+eTbaaKMq231vAMuHhc0FC7KsfF8gSGexDBw4MOXl5bnpppsq22bPnp2RI0emZ8+e6dixYwNWByyuTz/9tFrb2LFj8/DDD2fLLbdMkyZN0q5du2yxxRa58847qwTkd9xxR6ZPn56BAwdWtpkzYNmxww475NFHH82ECRMq25555pmMGzeuyvt+wIABad68eW644YbKtkKhkBEjRmSNNdbI5ptvvshjAo3HrFmzqv2APEkuu+yyFAqFbL311pVt5gNYOpWXl+f444/PK6+8kosvvrjKe/XbfG8Ay7aazAXL+vcFHjbKYunZs2cGDhyYCy+8MJ988knWXXfdjBo1KuPHj8/ZZ5/d0OUBi+n4449Pq1atsvnmm2fVVVfNO++8k5tvvjmtWrXKL3/5y8p+J5xwQg488MAMHjw4+++/fyZOnJjhw4dnq622yjbbbFPZz5wBS4d//vOf+fLLLyuXbHrkkUcyceLEJMngwYPTrl27HHXUUbnvvvsyZMiQDBkyJNOnT8+wYcNSWlqaffbZp3KsNddcM0OGDMmwYcMyd+7cdO/ePQ8++GBefPHFDB06tMp6ijUdE1hyFjYffPHFF9lrr72yyy67ZIMNNkiSPPnkk3nsscey9dZbZ8CAAZVjmQ9g6fTHP/4xDz/8cLbbbrt8/vnnueOOO6ps32OPPZLU/H1rLoClU03mgilTpizT3xeUFL67EA0solmzZuXPf/5z/vWvf+WLL75I586dc9xxx1X5KROwdLr22mvzr3/9Kx988EGmTZuWlVdeOVtssUWOOeaYrLvuulX6VnyxGzNmTNq0aZOddtopJ554Ytq2bVulnzkDGr/tt98+48ePn++2hx56KGuvvXaS5N///nf++Mc/5qWXXkrz5s2z7bbb5tRTT81qq61WZZ958+blyiuvzE033ZTJkydnvfXWyxFHHJHdd9+92vg1HRNYMhY2H6y44or5wx/+kFdffTWTJ09OeXl51l133ey222457LDD0rx58yr7mA9g6TN48OA8//zzC9z+1ltvVf7b9waw7KrJXPDll18u098XCNIBAAAAAKAIa6QDAAAAAEARgnQAAAAAAChCkA4AAAAAAEUI0gEAAAAAoAhBOgAAAAAAFCFIBwAAAACAIgTpAAAAAABQhCAdAAAAAACKEKQDAAAAAEARgnQAAGgkTj311HTu3DkfffRRQ5dSJ5588skceOCB6du3bzp37pyf//znS7yGzp07Z/DgwUv8uAAALFuaNXQBAABQ1z766KMMGDAgSbLVVltl2LBh1fq88sorOeCAA7LXXnvlj3/845IucZn30Ucf5ec//3lWXHHF7L333mnbtm022GCD+fYdOXJkTjvttBqP7XMGAMCSJkgHAGCZ9uSTT+aZZ57JFlts0dClLFeeeeaZzJo1K6ecckp22223on27du2aY445pkrb+PHjM2rUqHTp0iU/+MEPqvUHAIAlSZAOAMAyq1OnTpkwYUKGDh2aW2+9NSUlJQ1d0nJj0qRJSZLVV199oX27du1aLRx/7rnnMmrUqHTt2jW/+MUv6qVGAACoKWukAwCwzFp//fWzxx575I033si9995bo3223377bL/99vPdNnjw4HTu3LlK26WXXprOnTvnueeey2233ZbddtstPXr0yPbbb59rr702SVIoFHL11Vdnxx13TPfu3bPDDjvk9ttvX2ANhUIhV155ZXbYYYd0794922+/ff7yl79kzpw58+3/wgsv5Kijjkr//v3TrVu37LDDDrnooosyY8aMKv2ee+65dO7cOZdeemlefvnlHHbYYenTp0+117Qgb7/9do477rhsscUW6datW7bffvucffbZ+eyzzyr7fPTRR5XHSJIhQ4akc+fOleeoLrz00ks54ogj0q9fv3Tv3j0DBw7MJZdcUu31LkihUMg555yTzp0756STTqo8r4VCIbfeemsOPPDA9OrVKz179szee++dW2+9tdoY3/68/+tf/8oee+yRHj16ZKuttspZZ52VmTNnVtvn/vvvz6BBg7LFFluke/fu2WqrrXLooYfm/vvvX7wTAgBAvXNHOgAAy7Rjjz02d999d/785z/nhz/8YZo3b14vx/nHP/6R559/PgMGDEj//v3zwAMP5Oyzz84KK6yQMWPG5IEHHsj3v//9NG/ePPfcc09OOeWUdOrUKX379q021tlnn53Ro0dn4MCBad26dR555JFceumlefvtt3PJJZdU6XvDDTfkzDPPzIorrpjtttsuq6yySt54441cfvnlee6553LttdemRYsWVfYZPXp0rrjiivTv3z/7779/JkyYsNDX9+KLL+YnP/lJ5syZkx133DGdOnXKK6+8kmuvvTaPPvpobrrppqyyyipZccUVc8wxx+T555/P888/n7322iudOnVKksq/F8e9996bk046KS1atMhOO+2UVVddNU899VT++te/5sknn8x1112Xli1bLnD/OXPm5NRTT81dd92VH/3oRznttNNSUlKSQqGQX/7yl7nrrruy3nrrZdddd02LFi3y1FNP5Te/+U3efffdnHLKKdXGu/766/PEE09k++23z//7f/8vTzzxRK677rp89tlnueCCCyr73XDDDfn973+fDh065Ic//GHat2+fKVOm5PXXX8///d//Zccdd1zscwMAQP0RpAMAsExba621MmjQoFx99dW56aabMmjQoHo5zksvvZRRo0ble9/7XpLk8MMPzw9/+MP86U9/yqqrrpp//etfWWWVVZJ887DM/fffP8OGDZtvkP7qq6/mjjvuyJprrpkkOeGEE3LYYYfl/vvvz/33318Zur7zzjs5++yz07lz51xzzTVZeeWVK8f4+9//ngsuuCD//Oc/c9hhh1UZ/6mnnso555yTffbZp0avbd68eTnttNMyY8aMXHXVVdl6660rt5133nkZNmxYhg4dmnPOOScrrrhifvGLX+TSSy+tDNL79++/CGdywaZNm5bf/va3adq0aUaMGJEuXbokSU488cScdNJJueeee3LVVVfl/2vvbmNq/v84jr+qI8WhHBwTZWYMtRqZ4YZuMERT0QzTYZOGppVrkzE22VzMjVyN5WIMixrCjC1zkYlYyPUqF3Mxuepyq8P537Bz/k7nOIjMfp6Pez6fz/fzffc9br3O57y/KSkpbq+vra1VamqqLl26pAULFig5Odkxl5OTo/z8fE2YMEGrV692fOHS0NCg1NRUZWdna9y4cQoLC3Pas7CwUEePHnW8SDU9PV2xsbE6deqUFi9erC5dukiSjhw5olatWunYsWPq2LGj0x5fn+gHAADA34nWLgAAAPjPmz17ttq3b6+tW7eqtra2Re6RmJjoCNElqWvXroqMjFR1dbXmzJnjCNElKSIiQsHBwXrw4IHbvSwWiyNElyRfX1+lpaVJkvLy8hzjhw4dktVq1YoVK5xCdElKSkqSyWRSfn6+y/6hoaE/HKJL0o0bN/T06VMNHz7cKUSXpJSUFAUGBio/P18NDQ0/vGdznDt3TtXV1Zo4caIjRJckb29vLVq0SAaDwen5fO3du3eaPn26rly5orVr1zqF6JK0f/9+tWnTRitXrnT61YKvr6/S09MlSSdPnnTZ12KxOEJ0SfLz81NMTIw+f/6s0tJSp7WtWrWSweB6lqnpZwcAAIC/DyfSAQAA8J8XEBCgWbNmaePGjcrOzm6Rl1c2fVmmJHXu3FmSnELfr+du3brldq9Bgwa5jA0YMEAGg0F37951jJWUlEiSLl68qCtXrrhcYzAYVF5e7jLe9FT199jvOXjwYJe5tm3bKiwsTJcuXVJ5efkP91tvjnv37n2zjqCgIHXv3l0VFRWqqamR0Wh0zFVWVmrKlCl69eqVsrKyXHrg19fX6+HDhzKbzdq5c6fL3larVZJUVlbmMhcaGuoyZv8SpKqqyjE2duxYrV+/XjExMYqJidGQIUMUGRnpVCcAAAD+XgTpAAAA+CdYLBYdOHBA2dnZmjp16m/f310gaj99/K05e0DbVNPWH5Lk4+OjwMBAVVdXO8Y+fvwoSdq+fftP1dqpU6efWl9TU+PxOvsXBvZ1LeV7dZjNZlVUVKi2ttbpmb9580Y1NTXq0aOHIiIiXK6rqqqSzWbT69evlZWV9c3719XVuYy5+2x9fHwkfWmJYzdz5kwFBgbq4MGD2r17t7Kzs2UwGBQVFaVly5Y5/ZoBAAAAfx+CdAAAAPwT/Pz8NG/ePC1fvlxZWVmKjY11u87Ly0uNjY1u574OsVvS27dvndqFSNKnT5/04cMHp5DdHuIWFxf/1MlmLy+vn6rHvndlZaXb+Tdv3jitayk/Wkfbtm2dxvv166e4uDhlZGTIYrFo7969TmG8fX1oaKhyc3NbonR5eXkpISFBCQkJev/+vYqLi5Wfn6/Tp0/ryZMnOn78uCOABwAAwN+HHukAAAD4Z8THx6t3797KycnRkydP3K4JCAjQu3fvXE6L19XVffOa3+369esuYzdv3pTValX//v0dY+Hh4ZL+3+KlpdjvWVRU5DJXV1enO3fuyM/PTz179mzROuztc9zV8fLlSz179kzBwcFuA/2JEycqMzNTZWVlslgsTmG80WhUr169VFZW5tSOpaV06NBBI0eO1ObNmzVkyBA9fvz4j/3fAgAAQPMQpAMAAOCf4ePjo/T0dDU2Nn6zhUdYWJgaGxt14sQJx5jNZtOmTZvctvZoCfv27dOrV68c/25oaNDmzZslffkywG7q1KkyGAxas2aNXrx44bJPVVWVU0/15ho4cKBCQkJ04cIFFRYWOs1t27ZNHz580Lhx4+Tr6/vL9/Jk5MiRateunXJzc/Xo0SPHuM1m04YNG2S1Wp2eT1NxcXHKzMxUeXm5EhMTHSfYpS8vi62vr1dGRobbz/nZs2d6/vx5s2u/evWqbDab01hjY6OjPU/r1q2bvTcAAABaHq1dAAAA8E8ZMWKEIiMjVVxc7HZ+2rRpys3NVUZGhi5fviyTyaTr16+rurpaffv21f3791u8xoiICMXGxio6Olr+/v4qKChQeXm5Ro0apdGjRzvW9enTRytXrtSqVas0ZswYRUVFKTg4WLW1tXr+/LmKiooUHx+v1atX/1I93t7eyszMVFJSkpKTkzV69Gh169ZNN2/eVFFRkUJCQrRw4cJf/bO/y2g0as2aNVqwYIEmTZqk6OhomUwmFRYWqrS0VOHh4UpKSvK4R1xcnLy9vbV06VIlJiZq3759MpvNmjx5skpKSpSXl6cbN25o2LBhMpvNevv2rcrKylRSUqKNGzeqe/fuzao9JSVFRqNRERERCgoKktVqVWFhoR4/fux4ngAAAPh7EaQDAADgn7Nw4UJNmTLF7VyfPn20a9cubdq0SWfOnFGbNm0UFRWlJUuWKC0t7Y/Ut3z5cp0+fVpHjhzRixcvZDabNW/ePCUnJ7usnTRpkvr27as9e/bo2rVrKigokNFoVFBQkGbMmKG4uLjfUtOgQYN0+PBhbdmyRZcvX1ZNTY3MZrMsFovmzJkjk8n0W+7zPdHR0ercubN27Nihs2fPqr6+Xt26ddPcuXM1a9asHzrZPX78eHl7e2vx4sWOnuldunTRunXrNHz4cOXk5Oj8+fOqq6uTyWRSjx49tGTJEg0dOrTZdc+fP18XL17U7du3VVBQIH9/f4WEhGjVqlVKSEho9r4AAAD4M7xsTX9fCAAAAAAAAAAAHOiRDgAAAAAAAACABwTpAAAAAAAAAAB4QJAOAAAAAAAAAIAHBOkAAAAAAAAAAHhAkA4AAAAAAAAAgAcE6QAAAAAAAAAAeECQDgAAAAAAAACABwTpAAAAAAAAAAB4QJAOAAAAAAAAAIAHBOkAAAAAAAAAAHhAkA4AAAAAAAAAgAcE6QAAAAAAAAAAeECQDgAAAAAAAACAB/8DsPf56zLK/REAAAAASUVORK5CYII=\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAJOCAYAAACz9fURAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLQklEQVR4nOzdeVyU9f7//+cAAiIuqbhnlAkuLC6ov9I0lxRzzy0XyOWkduxTmubSsTqnTEvJsjplpVJZuRWmaS5HzTyWuS+oo5ZploGC5oKgwDC/P/oyxxEcZ0bgGuRxv93OTbmu9/W+XnP5muH05OJ9maxWq1UAAAAAAAAAACBfXkYXAAAAAAAAAACAJyNIBwAAAAAAAADAAYJ0AAAAAAAAAAAcIEgHAAAAAAAAAMABgnQAAAAAAAAAABwgSAcAAAAAAAAAwAGCdAAAAAAAAAAAHCBIBwAAAAAAAADAAYJ0AAAAAAAAAAAcIEgHAOA20a5dO4WGhtr+V69ePTVu3FitW7dWTEyMXnvtNe3fv9/hHDExMQoNDdW2bduKqGrHcl/T77//brfd0+qUpEmTJik0NFQJCQlGl1IoNm7cqIEDB6pJkya2HiuI679t2zaFhoYqJiamAKr0XLnXDCVXZmamZs2apY4dOyosLEyhoaFq166d0WXZJCUlaebMmerZs6eaNWumsLAwtW7dWqNHj9aqVatktVqNLrHY+f777zV58mR16tRJTZo0UVhYmFq1aqWhQ4fqo48+0rlz5wrkPJ74PREAgNsRQToAALeZJk2aqFevXurZs6fatGmju+++W0eOHNH8+fPVt29fxcTE6LfffivUGm4UgBdXCQkJCg0N1aRJk4wuxRBms1lPPfWU9u7dq0aNGqlnz57q1auXKleufNNji1MvlJRQH677/fffbzn4fvPNN/X+++/r8uXLat++vXr16qVOnToVYJXu++yzz9SxY0fNnTtXSUlJatq0qTp27KgqVapow4YNeuaZZ9S3b1+dPn26QM/riQFwQdR07tw5DR06VMOGDVNCQoKysrLUokULderUSffcc4/27Nmj6dOnq3379tq3b18BVg8AAAqTj9EFAACAgtW3b1898sgjdtusVqs2b96sadOmafv27Xr00Ue1aNEi3XnnnXbjXnvtNWVkZKhGjRpFWfINffTRR8rKylLVqlWNLuWmnnnmGT3++OOqUqWK0aUUuPXr1ysrK0ujRo3S2LFjjS4HKJbWrFkj6a/QOjg42NhirvHxxx9r2rRp8vLy0rhx4zR06FCVKlXKtv/YsWN69tlnlZiYqEGDBikhIUHlypUzsGLPdunSJQ0cOFDHjx/XPffco5dffllRUVF2YzIzM7Vs2TK9/fbbSklJMahSAADgKu5IBwCgBDCZTGrTpo2WLl2q4OBgpaamasqUKXnG1ahRQ3Xq1FHp0qUNqDKv2rVrq06dOnahjqeqUqWK6tSpo7JlyxpdSoH7448/JEl33XWXwZUAxVfu+8iTQvSff/5ZM2fOlCRNnjxZI0aMyPN5W6dOHX388ceqXbu2fvvtN7388stGlFpsvPzyyzp+/Lhq1qyphQsX5gnRJcnX11f9+/fXV199pXvuuceAKgEAgDsI0gEAKEHKlSun5557TpL0448/6sCBA3b7b/Qr7ZmZmZo7d64eeeQRNW7cWGFhYWrZsqV69+6tGTNm6Pz585L+twTKqVOnJEnt27e3W7c9d95rl9DIyMjQ7Nmz1blzZ0VGRtotneDMsiDbt2/XsGHD1Lx5c0VGRqpPnz766quv8h17s1/Zf/vttxUaGqq3337brobJkydLkpYtW2b3eq5dAuRma6SvWrVKjz32mJo3b66wsDC1bdtWkydP1vHjx/Mdf+1r//HHHzVs2DA1a9ZMERER6tWr1w1f481kZ2dr4cKFevTRR9W0aVOFh4erY8eOmjp1ap5lG3KvR+5rmjx5cr6vPT/O9sK1srKy9MEHH6hLly6KiIhQixYt9OSTT+rYsWM3PM+FCxf01ltvqUePHmrcuLEiIyPVrVs3vfvuu8rIyHD6usTExCg2NlbSXz11ba3XL+fhyjW8GYvFohdffFGhoaHq1q2bkpKS7M6zdOlSxcTE2PqmXbt2evHFF+3G5br2feXqtTxw4IDGjBmj1q1bKywsTE2aNFH79u31f//3f1q/fr1Lr0mSjh8/rn/+85/q1KmTIiMj1aRJEz388MP65z//qaNHj+YZf+zYMU2ePFlt27ZVWFiYmjdvrscee0zffPNNvvPf7P12o+WYrt2enp6u119/XQ899JDtM23ixIl5/g0nTZqk9u3bS5JOnTpl1xvOrHuf+17OXWP82mOvr/9WPifWr1+v2NhYNW/e3OmlSebNm6esrKybvqfLli2rCRMm2Gq8dnkwZ5a9uf6zPLdXt2/fLkmKjY3N97pcO3d2drY+/PBDu55++umn8+3pwqzJkd9++00rV66U9NfnZYUKFRyOr1y5cr5Buqt9cCPufM+7fvvp06f1j3/8Q61atVJERIS6du2qpUuX2sYeO3ZM48aNU8uWLRUeHq7u3bvf8H1bWN/XAAAoKiztAgBACdO6dWtVqFBB58+f1w8//KCwsDCH43NycjRixAht3bpVgYGBioqKUrly5XTu3Dn9+uuvmjdvnrp166YKFSqodu3a6tWrl9auXav09HR16tRJAQEBtrmuX1P76tWriomJ0bFjxxQVFaV69erZQnln/Oc//9Fnn32me+65R61atdKZM2e0a9cuTZw4UYcPHy6QNc07deqkvXv3avfu3apdu7aaNm1q2+fMnYRWq1WTJk3SV199JR8fH0VFRalSpUo6ePCgEhIStHr1ar311ltq3bp1vsd/+eWXeu+999SgQQM98MADOnXqlPbu3auJEyfq/PnzGjJkiNOvJTMzUyNHjtQPP/wgPz8/tWjRQoGBgdqzZ48WLFiglStXat68eWrYsKEkqX79+urVq5d27dqlkydPqkmTJra70m/22l3thaysLI0YMUJ79uxRVFSU6tSpo/379+s///mPtm3bpmXLlqlWrVp2x/z888/629/+pqSkJAUFBalp06by8fFRYmKiZs+erXXr1mnBggVO/ZbAAw88IF9fX23ZskWVK1fWAw88YNt3xx13uH0NHbl8+bLGjBmjzZs3q2XLlnrrrbcUGBgoSUpLS9MTTzyh7du3KyAgQGFhYbrjjjt09OhRLVq0SGvWrFF8fLwaNGiQZ15Xr+XWrVv1+OOPKysrS/Xq1VOjRo2Uk5Oj06dPa9OmTbJYLOrQocNNX0+ur7/+Ws8995wyMzNVo0YNtWnTRjk5Ofrtt9+0aNEiVapUSSEhIbbxmzZt0lNPPaWrV6/q7rvvVseOHXX27Fnt2LFDP/74o7Zs2aJp06Y5fX5nXLp0SY8++qhtPfC6detq7969+uqrr7Rjxw4tX77c1jdNmzZVenq61q5dq4CAAJfXNe/UqZP+/PNPLVu2TJLUq1cv277atWtLuvXPifj4eH366acKCwvTAw88oDNnzsjb29thXVarVRs3bpQk9ejRQyaTyeH4tm3bqly5crp48aI2bdp0S88SqFy5snr16qX//ve/Sk1NVatWrRQUFGTbn3tdrjV27Fh9++23atasmUJDQ7V//36tWbNGmzdv1vz589W4cWO363G3put9++23slgsKleunFvr6d9qHxS0P/74Q71791apUqUUFRWlc+fOaefOnZoyZYouXbqkJk2aaNiwYapSpYpatGihP/74Q3v27LEtAfbwww/nO29Bfl8DAKBIWQEAwG2hbdu21pCQEOuXX35507FDhgyxhoSEWMePH2+3ffDgwdaQkBDrjz/+aNu2fft2a0hIiLVnz57WS5cu5Zlr//791nPnzuVby2+//Zbv+X/88UdrSEiINSQkxNqtWzfrmTNnHL6m6+fJrTMkJMQ6Z84cu33btm2zRkREWENCQqybN2++6eu71ltvvWUNCQmxvvXWW3bbv/zyS2tISIh14sSJ+R5ntVqtEydOzPf6f/7559aQkBBrixYtrIcOHbJtz8nJsZ0vKirKevbs2Xxfe8OGDa0bN27Mt56mTZtaMzIybljT9WbOnGkNCQmxdujQwe6aZmZmWp977jlrSEiItV27dtarV6869dqc4Uov9OzZ064Xrly5Yh02bJg1JCTE+vzzz9sdl5GRYe3QoYM1JCTE+sYbb9jVnJ6ebn3mmWesISEh1kmTJjlda24tgwcPvuEYd69h7mvMlZycbO3Ro4etxszMTLvxufWPHDnSmpqaarcvPj7eGhISYu3YsaM1Ozs7T/2uXsuYmBhrSEiIdfny5Xle78WLF6179uy54fW4XmJiorVhw4bW0NBQ6yeffGK1WCx2+3///XdrYmKi7euUlBRr06ZNrSEhIdZ3333XmpOTY9u3f/9+a7NmzawhISHWxYsX281zs5680Xs2d3tISIh12LBhdp9p58+ft/2bXP+58ttvv1lDQkKsbdu2dfpaXO/6HrjWrX5O1K9f37p+/XqX6jl58qStpu3btzt1TG6vTJgwwbbNmWtzs8/yG30m586de23MZrNtX3Z2tvXll1+2nfva91xh1uTIs88+aw0JCbHGxsa6fKzV6n4f3Khmd7/n5W4PCQmxvvDCC9asrCzbvg0bNlhDQkKsjRs3trZt2zbP+/ajjz6yhoSEWB966KE85yuM72sAABQllnYBAKAEyr3D1pm7v1NTUyX9dVdm7t2y1woPD7e7Y9dVL7zwgt1df65o0KCBRo4cabetefPmGjhwoKS/7tI02vz58yVJo0ePVv369W3bTSaTnnzySYWGhurixYtasmRJvscPHjxYbdu2tdv2yCOP6J577tGlS5fyLM9zI1evXtVnn30m6a8lB669I7lUqVKaMmWKKleurN9//11r16516TUWBJPJpOnTp9v1gp+fn5566ilJ0g8//GA3ftmyZTp58qTatm2rMWPGyNfX17avdOnSeumll1SpUiWtWLFCFy5cKJAaC+oaHj58WP369ZPZbNZTTz2l6dOn53m446pVq1SlShXFxcWpUqVKdscPGTJEbdq00YkTJ7R58+Y887t6Lc+ePStJatOmTZ65ypYtq0aNGt3wtVzvvffeU1ZWlgYPHqyYmBh5edn/50bNmjXtfgtmyZIlunTpkho2bKgnnnjC7q7o8PBwjRo1StJfS5AUpICAAE2fPt3uM618+fIaMWKEpLzXqLDd6udEz549bcvPOOvcuXO2v1/fYzeS+5sk1x5bVJ544gnVq1fP9rW3t7cmTJigqlWr6tSpU4Z8bl0v97o4ez2vd6t9UNBq1Kih5557Tj4+//tF9tzlWS5fvqxKlSpp1KhRdu/bQYMGqUKFCvr1119tzwW4XkF9XwMAoKgRpAMAUALl5ORI0k1/lV+SGjZsKG9vb3355Zf67LPPdObMmQKro1KlSvk+iM1ZPXr0yHd7z549JUm7du2SxWJxe/5blZycrJMnT0qyX84hl8lk0iOPPCJJN1zD9vqwIVedOnUkyek1uRMTE5Wenq4KFSrku+RA6dKlbb+G78zaygWtRo0adiFZrhu9zu+++06S1Llz53znK1OmjMLCwpSdna3ExMQCqbEgruF///tfDRw4UGfPntWMGTM0evToPGO+++47Wa1WtW7dOt8fXkl//cBIkvbs2ZNnn6vXMiIiQpI0fvx47dy5U9nZ2fme82YsFostgO7Xr59Tx+SuR53f+0OS+vTpI0k6ceKEy+vPOxIWFqYqVark2Z67ZFFBnutmCuJzwtXlZtxl/X/rvBshv2vj6+tre8/l9lJxVRB9UNBatGghPz+/PNtzH5jbunXrPP8/wsfHRzVr1pSkG/7/hYL6vgYAQFFjjXQAAEqgP//8U9Jfd2DeTO3atTV58mTNmDFDL730kl566SXVrFlTjRo10oMPPqjo6Gi7u4Fdkfsf2+66fs3s67dfuXJF58+fd/vuwFuVGwZUqFDhhoFo7rq7NwoOatSoke/23PmuXr3qVC25gYaja36zWgpT9erV892e+zozMzPttuc+7HDChAm2hyDeSEHdPVsQ13DUqFHKzs7WzJkz1b1793zH5L62L774Ql988YXDmvJ7ba5ey2eeeUZHjhzR5s2btXnzZvn7+6tBgwZq3ry5unfvbgu3bub8+fNKT0+XJN19991OHZN7nW70Xi5XrpztmQ6nT59W1apVnZr3Zly9RoWpID4nbnT9HLn2N4nOnj3r1DMfcn97oWLFii6f71aUK1dO5cqVy3df7mtPTk4uypLylXtdcq+TKwqiDwrajd4nuc+7uNH+MmXKSLrx96eC+r4GAEBRI0gHAKCEsVqtMpvNkmT3wD9HYmJi1LlzZ23cuFG7du3Srl27tGrVKq1atUpvv/22Pvvss3zv7rwZf39/l49xlSt3UObeqe9JnPmtgdvB9UuA3Ezuv9UDDzyQ58Gl17tRaGOEnj176osvvtDs2bPVuHFj3XnnnXnG5L62+vXr53tn+bUiIyPzbHP1WgYFBenLL7/U9u3b9cMPP2j37t3av3+/du/erffff1/PPPOMbcmT4uJm72VXr5Gny++u4ZupVauWypcvrwsXLmjfvn1q1qyZw/HZ2dk6dOiQJDn1MN1rFcVnq6t3yxdGTQ0bNtTy5ct16NAhWSyWmz7w1Wi3+j5x931UUr6vAQBuPwTpAACUMN99951tzehWrVo5fVzlypXVr18/25INx44d0z/+8Q/t2bNHr7/+ul577bVCqdeR33//Pd/tp06dkvRXuFShQgXb9tx1qC9fvpzvcTdaz9VduXfPnj9/XmlpafneZZh793FB3Wl7I7k/6Mi9NvkpqloKQvXq1fXLL7+oT58+io6OLpJzFsQ1nDp1qgICAvTJJ59o0KBBio+Pz3PHd+5dnk2aNNELL7xQEKXflMlkUosWLdSiRQtJf90RmpCQoJdeeklvvPGGoqOjbXfD3kiFChVUunRpZWRk6Pjx4079oK5q1ar65ZdfbNftepcuXbI9y+Haa1rU7+XCZNTnhJeXl9q2bauvvvpKy5cv1/Dhwx0GnBs3btSlS5fk5eWlBx980Lb9Zv8WWVlZSklJuaVaL168qIsXL+Z7V3ru+7FatWpFWlN+2rZtq1dffVUXL17Uxo0b9dBDDzl9bGH0we30PgEAwBPcXrdiAAAAhy5duqTp06dLklq2bGn3MDNX1alTR3/7298kyXaHe67c/3gv7PXJV6xYke/2r776StJfD0i99iFpueHDsWPH8hyTkZFxw3Vnc1+Pq2tHV6tWzRY+JiQk5NlvtVq1bNkySbIFmIUlPDxcAQEBOn/+vDZs2JBn/5UrV/TNN98UeC2F1QutW7eWJK1evbrA5rzZv3NBXEOTyaR//OMfeuKJJ3T69GkNHjw4z/sn97Vt3LjRsCUO/Pz8NGDAAIWGhionJ0dHjhy56THe3t66//77JcnphyHmrvWe+5693pdffinprzWZrw0PHb2XrVZrvg9hvRXufgY4w8jPieHDh8vHx0dHjx7VJ598csNxly5d0syZMyVJDz/8sN0PVSpWrKhSpUrp/Pnz+S5psmXLlhteN1c+H5YvX55nW2Zmpu09l9tLRVnT9WrXrq0uXbpIkl599dWbPtD77Nmz+uWXXyQVTh+4+z0PAADkjyAdAIASwGq16rvvvlOfPn104sQJBQUF6eWXX3bq2K1bt+q7775TVlZWnjk3bdokKe/SGbn/8f7TTz/devEOHDx4UB9++KHdtp07d+rzzz+XJA0ZMsRu33333SdJ+vzzz+3WmE1PT9fzzz+vpKSkfM+Te6djfmHEzQwbNkyS9O677+rw4cO27VarVe+++67MZrPKlSvn9MMZ3eXn56dBgwZJkl577TW7u6qzsrL0yiuvKCUlRbVq1SrQBxcWVi/069dPNWvW1Jo1azRz5kylpaXlGZOSkuJ0oCv979/5119/zdPvUsFewzFjxujZZ5/VuXPnFBsba/fQ0AYNGqhTp05KSkrSk08+me9vXqSnp2vFihVKTU11+vXdyLx58/K9M/XYsWP69ddfJTm/PM6oUaPk4+Ojzz77TJ999lme5TZOnTqlAwcO2L7u16+fAgMDdfDgQc2ZM8du/KFDh/Tee+9J+ivwvVbue3n58uX6+eefbduzsrI0c+bMAnvAbK7cYDY1NfWm4ag7jPqcCAkJ0fjx4yX9Ffx++OGHeQLmY8eOaciQITp58qRq1qyp559/3m5/qVKlbMvCvPnmm3bLhRw+fNjh9xpXPh/effddHT161PZ1Tk6O4uLilJycrOrVq9u954qqpvw8//zzuuuuu/T7779r4MCB2rlzZ54xmZmZ+uKLL9SzZ09bkC4VfB+4+z0PAADkj6VdAAC4zSxdulTbt2+X9Nd/rP/55586dOiQLfxp3ry5pk2b5vSDPo8cOaLp06crMDBQDRo0UJUqVXT16lUdOnRIp06dUtmyZfX000/bHdOpUydt27ZNzz77rFq1amX7dfzhw4c79UA7Z8XExGjWrFlavny5QkNDdebMGe3cuVM5OTmKjY1VmzZt7MZ37txZH3/8sQ4cOKAuXbqoadOmysnJ0YEDB1SqVCn17t3bdgfstSIjI1WlShUdOnRIvXr1UkhIiHx8fHT33Xfb7sq/kUcffVR79uzR8uXL1bt3bzVr1kyVKlXSwYMHdfz4cfn7+ysuLq5IHt731FNP6cCBA9q6dasefvhhtWjRQmXKlNHevXv1xx9/qEKFCpo9e7bbD4/NT2H1QkBAgN5//32NHDlSc+fO1ZIlSxQaGqqqVavqypUrOnHihI4dO6ZKlSo5HTrVqFFDYWFhOnDggLp166awsDD5+fnpjjvusIWNBXkN//a3v6lMmTL617/+pWHDhundd9+1BV/Tpk3TxYsXtXnzZkVHR6tevXqqVauWrFarTp06pcOHDysrK0vffPPNTdeIv5n33ntPM2bM0D333KM6derIz89PZ86c0e7du5Wdna2ePXs6vSZ2RESEXnnlFU2ZMkUvvfSS5s2bp7CwMFmtVv322286fPiwRo8erbCwMEl/LRkVFxenp59+Wm+88YaWL1+uBg0a6OzZs9qxY4eys7P1yCOP5Pk3bNq0qdq3b68NGzaod+/eatq0qfz8/HTo0CGlpaUpNjbW4R3WripVqpTatWuntWvXqmfPnmratKntGQ+vvPLKLc9v5OfE0KFD5e3trRkzZiguLk5z585V48aNFRAQoN9//1379++X1WpVw4YN9e6779otl5VrzJgx2rFjh5YsWaLt27fbPo8PHDigrl27avv27fkuidSpUyclJCRo5syZ2rp1qypWrCiTyaTevXurSZMmtnE1atRQw4YN9cgjj6h58+aqUKGCEhMTdfLkSQUEBCguLi7POvGFXdONlC9fXgsXLtSYMWO0fft2DRo0SLVq1VJoaKhKly6t1NRU7d+/X+np6QoMDLR7vkhB94G73/MAAED+CNIBALjN7N69W7t375b0V9gYGBiokJAQhYWFqXPnzoqIiHBpvnbt2iktLU07d+7Ur7/+qn379snf31/VqlXTiBEjNGjQILu1aSVpwIABunz5slasWKHvvvvOtjxF9+7dCzRIf+ihh9S+fXu9//77trvmGzRooMGDB6tXr155xpcqVUrx8fGaPXu21q9fr++//14VK1bUQw89pKefftp2J/v1fH19NW/ePL3xxhvau3evDh8+rJycHDVv3vymQbrJZNKMGTPUunVrLV68WAcPHlRGRoYqV66sRx55RI8//niBXhNHfH19baHz8uXLtXPnTmVmZqp69eqKiYnR448/XuDroxdmL9StW1crVqzQokWLtH79eh05ckR79+5VhQoVVK1aNQ0bNsylNYol6e2339brr7+ubdu2afXq1crOzlbNmjVtQXpBX8MBAwaoTJkymjx5skaOHKnZs2erbdu2CgwM1Pz58/XNN99oxYoVOnjwoA4fPqwyZcqoSpUq6tatm9q3b3/Tdcud8cILL2jr1q06cOCAduzYofT0dAUFBen+++9X//791b59e5fm69mzp8LCwhQfH68ff/xR3377rfz8/FS1alUNGjRInTt3thvftm1bLVu2TB9++KG2bt2qtWvXqnTp0mratKkeffRRPfzww/me580339S7776rlStXavv27SpXrpzuu+8+Pf300/neBXyrXnrpJVWoUEH//e9/tXbtWttvLRREkG7050RsbKzat2+vzz77TN9//7127typK1eu6I477lDbtm318MMPq0uXLjd8uGRkZKQ+/fRTvf3229q7d6+Sk5MVHBys5557TgMGDLhhDz344IOaOnWqFi5cqB9//FEZGRmS/vpBybWhtclk0ptvvqm5c+dq+fLl2rFjhwICAtSpUyc99dRTuvfee4u8JkcqVaqkBQsWaPPmzVq1apX27NmjrVu3KisrSxUqVFDjxo3Vpk0b9ejRw+4HEwXdB+5+zwMAAPkzWV19vDkAAAAAAIXs999/V/v27VWzZk1t3LjR6HIAAEAJxxrpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADjAGukAAAAAAAAAADjAHekAAAAAAAAAADhAkA4AAAAAAAAAgAM+RhdwO8rJyVF2dra8vLxkMpmMLgcAAAAAAAAAcB2r1aqcnBz5+PjIy8vxPecE6YUgOztbiYmJRpcBAAAAAAAAALiJ8PBw+fr6OhxDkF4Icn96ER4eLm9vb4OrKVoWi0WJiYkl8rXDc9CHMBo9CKPRgzAaPQij0YMwGj0Io9GDMFpx6cHcOm92N7pEkF4ocpdz8fb29uhGKUwl+bXDc9CHMBo9CKPRgzAaPQij0YMwGj0Io9GDMFpx6UFnlufmYaMAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAM+RheA29PJkyf1559/Fuo5KleurNq1axfqOQAAAAAAAACAIB0FLjk5Wa0eaK0rGemFeh7/0gE6cthMmA4AAAAAAACgUBGko8CdP39eVzLSdffQOPlXv7dQznEl6Wcdjx+v1NRUgnQAAAAAAAAAhYogHYXGv/q9KlO7odFlAAAAAAAAAMAt4WGjAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAMeGaSfOHFCY8eOVevWrRUZGano6Gi98847ysjIsBu3e/duDRgwQJGRkWrZsqWmTp2qy5cv55kvMzNTM2fOVKtWrRQREaG+ffvq+++/z/fczs4JAAAAAAAAACgZfIwu4HpJSUnq27evypYtq8GDB6t8+fLau3ev3n77bR08eFDvvfeeJMlsNmvIkCGqU6eOJk2apOTkZM2fP18nTpzQ3Llz7eacNGmS1q5dq9jYWAUHB2vZsmUaMWKEPv74Y0VFRdnGuTInAAAAAAAAAKBk8Lggffny5bp48aI+//xz1a1bV5LUv39/5eTk6KuvvtKFCxdUvnx5zZo1S+XKldOCBQsUGBgoSapVq5amTJmiLVu2qFWrVpKk/fv3a9WqVZowYYKGDx8uSerZs6e6du2quLg4LVq0yHZuZ+cEAAAAAAAAAJQcHre0S1pamiSpUqVKdtuDgoLk5eWlUqVKKS0tTT/88IO6d+9uC7wlqUePHgoICNDq1att29asWSNvb2/179/fts3Pz099+vTRnj17lJSUZDuvs3MCAAAAAAAAAEoOjwvSmzdvLkn6xz/+IbPZrKSkJH3zzTdauHChYmJiFBAQoCNHjig7O1thYWF2x/r6+qp+/foym822bWazWcHBwXbhuCRFRETY9ktyaU4AAAAAAAAAQMnhcUu7tG7dWk8//bTef/99bdy40bZ91KhRGjt2rCQpJSVFklSlSpU8xwcFBWnXrl22r1NSUhQUFJTvOEk6c+aMy3M6y2KxuHxMcVfUr9lisZTI6wzHcnuC3oBR6EEYjR6E0ehBGI0ehNHoQRiNHoTRiksPulKfxwXpklSzZk1FRUWpU6dOqlChgjZt2qT3339fQUFBGjx4sK5cuSLpr7vFr+fn52fbL0lXrly54bjc/df+6cyczkpMTHT5GLjm6NGj8vLyuF+sgIfgPQij0YMwGj0Io9GDMBo9CKPRgzAaPQij3U496HFB+qpVq/TCCy9o7dq1qlatmiSpY8eOslqtiouLU5cuXeTv7y9JyszMzHP81atXbfslyd/f/4bjcvdf+6czczorPDxc3t7eLh9XnFksFh0+fLjIzhcSEqJGjRoV2flQPFgsFiUmJpbI9yA8Az0Io9GDMBo9CKPRgzAaPQij0YMwWnHpwdw6neFxQfrnn3+u+vXr20L0XO3atVNCQoLMZnOeZVmulZKSYrc8S1BQkE6fPp3vOOl/S7m4MqezvL29PbpRbgdcYzhCf8Bo9CCMRg/CaPQgjEYPwmj0IIxGD8Jot1MPetyaGKmpqcrJycmzPSsrS5KUnZ2tkJAQ+fj46MCBA3ZjMjMzZTabVa9ePdu2evXq6cSJE0pLS7Mbu2/fPklS/fr1JcmlOQEAAAAAAAAAJYfHBel33323Dh06pOPHj9ttX7Vqlby8vBQaGqqyZcvqvvvu04oVK+wC8uXLlys9PV3R0dG2bdHR0bJYLFq8eLFtW2ZmphISEhQZGanq1atLkktzAgAAAAAAAABKDo9b2mX48OHavHmzBg0apEGDBtkeNrp582b17dtXVatWlSSNHTtWjz76qGJiYtSvXz8lJycrPj5erVq1UuvWrW3zRUZGKjo6WrNmzdLZs2d11113admyZTp16pReeeUVu3M7OycAAAAAAAAAoOTwuCC9WbNmWrRokd5++20tXLhQ58+fV82aNTV27Fj97W9/s41r2LCh4uPjFRcXp+nTp6tMmTLq06ePnnnmmTxzzpgxQ2+++aZWrFihCxcuKDQ0VHPmzFGzZs3sxrkyJwAAAAAAAACgZPC4IF2SIiIi9OGHH950XFRUlBYtWnTTcX5+fpo4caImTpxYYHMCAAAAAAAAAEoGj1sjHQAAAAAAAAAAT0KQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAM+RhdwvUmTJmnZsmU33L9582ZVrVpVkrR7927NnDlThw4dUmBgoDp37qyxY8eqTJkydsdkZmZq9uzZWr58uS5evKjQ0FCNGTNGLVu2zDO/s3MCAAAAAAAAAEoGjwvS+/fvr/vuu89um9Vq1T//+U/VrFnTFqKbzWYNGTJEderU0aRJk5ScnKz58+frxIkTmjt3rt3xkyZN0tq1axUbG6vg4GAtW7ZMI0aM0Mcff6yoqCjbOFfmBAAAAAAAAACUDB4XpDdu3FiNGze227Zz505lZGSoW7dutm2zZs1SuXLltGDBAgUGBkqSatWqpSlTpmjLli1q1aqVJGn//v1atWqVJkyYoOHDh0uSevbsqa5duyouLk6LFi1yeU4AAAAAAAAAQMlRLNZIX7lypUwmk7p27SpJSktL0w8//KDu3bvbAm9J6tGjhwICArR69WrbtjVr1sjb21v9+/e3bfPz81OfPn20Z88eJSUluTwnAAAAAAAAAKDk8PggPSsrS6tXr1bjxo1Vq1YtSdKRI0eUnZ2tsLAwu7G+vr6qX7++zGazbZvZbFZwcLBdOC5JERERtv2uzgkAAAAAAAAAKDk8bmmX623ZskXnz5+3W9YlJSVFklSlSpU844OCgrRr1y67sUFBQfmOk6QzZ864PKezLBaLy8cUd0X9mi0WS4m8znAstyfoDRiFHoTR6EEYjR6E0ehBGI0ehNHoQRituPSgK/V5fJC+cuVKlSpVSp07d7Ztu3LliqS/7ha/np+fn21/7tgbjbt2LlfmdFZiYqLLx8A1R48elZeXx/9iBQzCexBGowdhNHoQRqMHYTR6EEajB2E0ehBGu5160KOD9MuXL2vDhg1q1aqV7rjjDtt2f39/SVJmZmaeY65evWrbnzv2RuOuncuVOZ0VHh4ub29vl48rziwWiw4fPlxk5wsJCVGjRo2K7HwoHiwWixITE0vkexCegR6E0ehBGI0ehNHoQRiNHoTR6EEYrbj0YG6dzvDoIH39+vXKyMiwW9ZFyrssy7VSUlLslmcJCgrS6dOn8x0n/W8pF1fmdJa3t7dHN8rtgGsMR+gPGI0ehNHoQRiNHoTR6EEYjR6E0ehBGO126kGPXhPj66+/VkBAgNq1a2e3PSQkRD4+Pjpw4IDd9szMTJnNZtWrV8+2rV69ejpx4oTS0tLsxu7bt0+SVL9+fZfnBAAAAAAAAACUHB4bpJ87d05bt27VQw89pNKlS9vtK1u2rO677z6tWLHCLiBfvny50tPTFR0dbdsWHR0ti8WixYsX27ZlZmYqISFBkZGRql69ustzAgAAAAAAAABKDo9d2uWbb75RdnZ2nmVdco0dO1aPPvqoYmJi1K9fPyUnJys+Pl6tWrVS69atbeMiIyMVHR2tWbNm6ezZs7rrrru0bNkynTp1Sq+88opbcwIAAAAAAAAASg6PvSP966+/VqVKlXT//ffnu79hw4aKj4+Xn5+fpk+friVLlqhPnz6aPXt2nrEzZsxQbGysVqxYoalTpyo7O1tz5sxRs2bN3J4TAAAAAAAAAFAyeOwd6dcuxXIjUVFRWrRo0U3H+fn5aeLEiZo4cWKBzQkAAAAAAAAAKBk89o50AAAAAAAAAAA8AUE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOBAgQbpVqtVJ06cUFJSUkFOCwAAAAAAAACAYdwK0tetW6cJEybowoULtm2///67unfvrs6dO6tdu3YaO3asLBZLgRUKAAAAAAAAAIAR3ArSFy5cKLPZrPLly9u2TZ8+XT/99JNatGih0NBQrVmzRl9++WWBFQoAAAAAAAAAgBHcCtJ//vlnRURE2L5OS0vTd999p4cfflgfffSRli5dqjp16hCkAwAAAAAAAACKPbeC9AsXLqhy5cq2r3ft2qXs7Gx16dJFklSqVCndf//9OnnypNuFHTx4UKNGjVLz5s0VGRmprl276pNPPrEbs3v3bg0YMECRkZFq2bKlpk6dqsuXL+eZKzMzUzNnzlSrVq0UERGhvn376vvvv8/3vM7OCQAAAAAAAAAoGXzcOSgwMFDnz5+3fb1t2zZ5eXkpKirqfxP7+CgjI8OtorZs2aJRo0apQYMG+vvf/66AgACdPHlSycnJtjFms1lDhgxRnTp1NGnSJCUnJ2v+/Pk6ceKE5s6dazffpEmTtHbtWsXGxio4OFjLli3TiBEj9PHHH9vV7MqcAAAAAAAAAICSwa0g/Z577tG3336rMWPGyNvbWytXrlTDhg3t1kz/448/VKlSJZfnTktL08SJE/Xggw/qrbfekpdX/jfNz5o1S+XKldOCBQsUGBgoSapVq5amTJmiLVu2qFWrVpKk/fv3a9WqVZowYYKGDx8uSerZs6e6du2quLg4LVq0yOU5AQAAAAAAAAAlh1tLu8TExOjMmTNq06aNHnzwQaWkpGjAgAF2Y/bt26d69eq5PPfXX3+t1NRUjR07Vl5eXkpPT1dOTo7dmLS0NP3www/q3r27LfCWpB49eiggIECrV6+2bVuzZo28vb3Vv39/2zY/Pz/16dNHe/bsUVJSkstzAgAAAAAAAABKDreC9E6dOumFF17Qvffeq+DgYI0fP16PPPKIbf/27duVlpamBx54wOW5t27dqsDAQJ0+fVqdOnVS48aN1bRpU7344ou6evWqJOnIkSPKzs5WWFiY3bG+vr6qX7++zGazbZvZbFZwcLBdOC7J9rDU3LGuzAkAAAAAAAAAKDncWtpFkgYOHKiBAwfmu6958+basWOHW/OeOHFCFotFf//739WnTx+NGzdO27dv14IFC3Tp0iXNmjVLKSkpkqQqVarkOT4oKEi7du2yfZ2SkqKgoKB8x0nSmTNnbOOcndNZFovF5WOKu6J+zRaLpUReZziW2xP0BoxCD8Jo9CCMRg/CaPQgjEYPwmj0IIxWXHrQlfrcDtILS3p6ujIyMvToo49qypQpkqSOHTsqMzNTixcv1lNPPaUrV65I+utu8ev5+fnZ9kvSlStXbjgud/+1fzozp7MSExNdPgauOXr06A3X0Qd4D8Jo9CCMRg/CaPQgjEYPwmj0IIxGD8Jot1MPuh2kZ2dn69NPP9XKlSv1yy+/6MqVKzp06JCkv5ZLWbx4sR577DHdfffdLs3r7+8vSeratavd9m7dumnx4sXau3evbUxmZmae469evWrbnzvfjcZdez5X5nRWeHi4vL29XT6uOLNYLDp8+HCRnS8kJESNGjUqsvOheLBYLEpMTCyR70F4BnoQRqMHYTR6EEajB2E0ehBGowdhtOLSg7l1OsOtIP3KlSsaNmyY9uzZozvuuEOBgYHKyMiw7a9Vq5YSEhJUvnx5jR071qW5q1Spop9++kmVKlWy216xYkVJ0oULF3TnnXdK+t+yLNdKSUmxW54lKChIp0+fzndc7vlyxzk7p7O8vb09ulFuB1xjOEJ/wGj0IIxGD8Jo9CCMRg/CaPQgjEYPwmi3Uw+6tSbGnDlztHv3bj3zzDP6/vvv1bdvX7v9ZcuWVbNmzbRlyxaX527YsKEk5Qm/cwPuihUrKiQkRD4+Pjpw4IDdmMzMTJnNZtWrV8+2rV69ejpx4oTS0tLsxu7bt0+SVL9+fUlyaU4AAAAAAAAAQMnhVpC+evVqtWjRQo8//rhMJpNMJlOeMXfeeaeSkpJcnrtz586SpC+++MJu+xdffCEfHx81b95cZcuW1X333acVK1bYBeTLly9Xenq6oqOjbduio6NlsVi0ePFi27bMzEwlJCQoMjJS1atXlySX5gQAAAAAAAAAlBxuLe3yxx9/qEOHDg7HlClTRpcuXXJ57gYNGqh379768ssvZbFY1KxZM23fvl1r1qzRyJEjVbVqVUnS2LFj9eijjyomJkb9+vVTcnKy4uPj1apVK7Vu3do2X2RkpKKjozVr1iydPXtWd911l5YtW6ZTp07plVdesTu3s3MCAAAAAAAAAEoOt4L0MmXK6Ny5cw7H/Pbbb7Z1zV31r3/9SzVq1FBCQoLWr1+vGjVqaPLkyRoyZIhtTMOGDRUfH6+4uDhNnz5dZcqUUZ8+ffTMM8/kmW/GjBl68803tWLFCl24cEGhoaGaM2eOmjVrZjfOlTkBAAAAAAAAACWDW0F6o0aNtHHjRl28eFHlypXLsz8pKUnffffdTe9av5FSpUrpySef1JNPPulwXFRUlBYtWnTT+fz8/DRx4kRNnDjxpmOdnRMAAAAAAAAAUDK4tUb68OHDdfHiRQ0ZMkS7du1Sdna2JCkjI0Nbt27V8OHDZbFYNHTo0AItFgAAAAAAAACAoubWHenNmjXT888/r2nTpmnw4MG27U2aNJEkeXt768UXX1RYWFjBVAkAAAAAAAAAgEHcCtIlaeDAgWrRooUWLlyo/fv368KFCypTpowiIyM1cOBA1a1btyDrBAAAAAAAAADAEG4H6ZJUp04dTZkypaBqAQAAAAAAAADA47i1RjoAAAAAAAAAACWFU3ek//HHH26foEaNGm4fCwAAAAAAAACA0ZwK0tu1ayeTyeTy5CaTSYcOHXL5OAAAAAAAAAAAPIVTQXrPnj3dCtIBAAAAAAAAACjunArSX3311cKuAwAAAAAAAAAAj8TDRgEAAAAAAAAAcMCpO9IdOXTokA4dOqS0tDQFBgaqQYMGatCgQUHUBgAAAAAAAACA4dwO0vfv36/nn39eR48elSRZrVbbOuohISGaOnWqwsPDC6ZKAAAAAAAAAAAM4laQfvDgQT322GPKyMjQfffdp6ZNm6py5cpKTU3Vzp079eOPPyo2Nlaff/656tevX9A1AwAAAAAAAABQZNwK0mfNmqWsrCzNmzdPLVu2zLP/v//9r5544gnFxcVp3rx5t1wkAAAAAAAAAABGcetho7t371Z0dHS+IbokPfDAA+rUqZP27NlzS8UBAAAAAAAAAGA0t4J0Hx8f1axZ0+GYWrVqydvb262iAAAAAAAAAADwFG4F6Y0bN9a+ffscjtm7d6+aNm3qVlEAAAAAAAAAAHgKt4L0CRMm6ODBg3rjjTeUkZFhty8jI0OzZs2S2WzWs88+WyBFAgAAAAAAAABgFLceNjpv3jyFhobqgw8+0KJFi1S/fn1VqlRJZ8+eldls1sWLFxUVFaW5c+faHWcymTRt2rQCKRwAAAAAAAAAgKLgVpC+bNky298vXLigH3/8Mc+YHTt2aMeOHXbbCNIBAAAAAAAAAMWNW0H6hg0bCroOAAAAAAAAAAA8kltBes2aNQu6DgAAAAAAAAAAPJJbDxsFAAAAAAAAAKCkcOuO9Fxms1mHDx/WmTNnlJWVlWe/yWTS6NGjb+UUAAAAAAAAAAAYyq0g/ezZsxo3bpy2bdsmSbJarfmOI0gHAAAAAAAAABR3bgXp//rXv/Tjjz+qTZs2evjhh1WlShV5e3sXdG0AAAAAAAAAABjOrSB9y5YtatGihd5///2CrgcAAAAAAAAAAI/i1sNGS5UqpYYNGxZ0LQAAAAAAAAAAeBy3gvSmTZvq8OHDBV0LAAAAAAAAAAAex60gfdy4cTpw4IA+/fTTgq4HAAAAAAAAAACP4tYa6XXq1NFnn32mQYMGacGCBQoNDVWZMmXyjDOZTJo2bdotFwkAAAAAAAAAgFHcCtJ/++03jR49WhcvXtTFixf166+/5juOIB0AAAAAAAAAUNy5FaRPnTpVJ0+e1IABA9SlSxdVqVJF3t7eBV0bAAAAAAAAAACGcytI37Fjh9q2basXX3yxoOsBAAAAAAAAAMCjuPWwUV9fXwUHBxdwKQAAAAAAAAAAeB63gvSWLVtqz549BV0LAAAAAAAAAAAex60gfcKECUpJSdFrr72mq1evFnRNAAAAAAAAAAB4DLfWSH/22WdVtmxZffTRR1qyZInuuusuBQYG5hlnMpn08ccf33KRAAAAAAAAAAAYxa0gffv27ba/X758WYcOHcp3nMlkcq8qAAAAAAAAAAA8hFtB+uHDhwu6DgAAAAAAAAAAPJJba6QDAAAAAAAAAFBSEKQDAAAAAAAAAOCAW0u75EpOTtaPP/6oM2fOKDMzM89+k8mk0aNHuzTntm3bFBsbm+++xYsXq1GjRravd+/erZkzZ+rQoUMKDAxU586dNXbsWJUpU8buuMzMTM2ePVvLly/XxYsXFRoaqjFjxqhly5Z5zuHsnAAAAAAAAACAksHtIP21117TggULZLFYbNusVqvtAaO5f3c1SM8VExOj8PBwu221a9e2/d1sNmvIkCGqU6eOJk2apOTkZM2fP18nTpzQ3Llz7Y6bNGmS1q5dq9jYWAUHB2vZsmUaMWKEPv74Y0VFRbk1JwAAAAAAAACgZHArSF+yZIni4+PVsmVLPfroo/q///s/9erVSw888IB27NihpUuXqkOHDho4cKDbhUVFRSk6OvqG+2fNmqVy5cppwYIFCgwMlCTVqlVLU6ZM0ZYtW9SqVStJ0v79+7Vq1SpNmDBBw4cPlyT17NlTXbt2VVxcnBYtWuTynAAAAAAAAACAksOtNdIXL16smjVr6sMPP9RDDz0kSapZs6Yefvhhvfjii5o/f77Wr1+vc+fO3VJxaWlpys7Oznf7Dz/8oO7du9sCb0nq0aOHAgICtHr1atu2NWvWyNvbW/3797dt8/PzU58+fbRnzx4lJSW5PCcAAAAAAAAAoORwK0j/5Zdf9MADD8jL63+HX7vES/PmzdWmTRvNnz/f7cImT56spk2bKiIiQjExMUpMTLTtO3LkiLKzsxUWFmZ3jK+vr+rXry+z2WzbZjabFRwcbBeOS1JERIRtv6tzAgAAAAAAAABKDrfXSC9Xrpzt76VLl9b58+ft9t9999364YcfXJ63VKlS6tSpk1q3bq077rhDx44d07x58zRo0CAtWrRIDRo0UEpKiiSpSpUqeY4PCgrSrl27bF+npKQoKCgo33GSdObMGds4Z+d01rU/XCgpivo1WyyWEnmd4VhuT9AbMAo9CKPRgzAaPQij0YMwGj0Io9GDMFpx6UFX6nMrSK9ataqSk5NtX9euXVv79u2zG/PTTz8pICDA5bmbNGmiJk2a2L5u3769OnXqpO7du+v111/XvHnzdOXKFUl/3S1+PT8/P9t+Sbpy5coNx+Xuv/ZPZ+Z01rV30aNwHD161O43I4Br8R6E0ehBGI0ehNHoQRiNHoTR6EEYjR6E0W6nHnQrSG/SpIndHdrt27fXe++9pxdeeEHt2rXTrl27tHnzZnXs2LFAirzrrrvUvn17rVu3ThaLRf7+/pKkzMzMPGOvXr1q2y9J/v7+NxyXu//aP52Z01nh4eHy9vZ2+bjizGKx6PDhw0V2vpCQEDVq1KjIzofiwWKxKDExsUS+B+EZ6EEYjR6E0ehBGI0ehNHoQRiNHoTRiksP5tbpDLeC9B49eujMmTM6deqUatasqeHDh2vTpk1asmSJli5dKqvVqpo1a2rChAnuTJ+vatWqKSsrSxkZGXmWZblWSkqK3fIsQUFBOn36dL7jpP8t5eLKnM7y9vb26Ea5HXCN4Qj9AaPRgzAaPQij0YMwGj0Io9GDMBo9CKPdTj3oVpDeokULtWjRwvZ1mTJltHjxYm3YsEEnT55UzZo11bZtW7eWdrmR33//XX5+fgoICFBISIh8fHx04MABPfzww7YxmZmZMpvN6ty5s21bvXr1tG3bNqWlpdk9cDR3KZr69etLkktzAgAAAAAAAABKjgJbXLpUqVKKjo7WiBEj1KVLF7dD9HPnzuXZdvjwYW3cuFEtW7aUl5eXypYtq/vuu08rVqxQWlqabdzy5cuVnp6u6Oho27bo6GhZLBYtXrzYti0zM1MJCQmKjIxU9erVJcmlOQEAAAAAAAAAJYdbd6Tv2bNHjRs3vum4zz//XAMHDnRp7jFjxsjf31+NGzdWpUqV9PPPP2vJkiXy9/fX+PHjbePGjh2rRx99VDExMerXr5+Sk5MVHx+vVq1aqXXr1rZxkZGRio6O1qxZs3T27FndddddWrZsmU6dOqVXXnnF7tzOzgkAAAAAAAAAKDncuiM9JiZG7777rqxWa777z58/ryeeeEIvv/yyy3N36NBBf/75pz766CP961//0jfffKOHHnpIX375perUqWMb17BhQ8XHx8vPz0/Tp0/XkiVL1KdPH82ePTvPnDNmzFBsbKxWrFihqVOnKjs7W3PmzFGzZs3sxrkyJwAAAAAAAACgZHDrjvQ6dero7bff1tatWxUXF6eqVava9v3444+aOHGiTp8+rW7durk8d2xsrGJjY50aGxUVpUWLFt10nJ+fnyZOnKiJEycW2JwAAAAAAAAAgJLBrTvSly5dqkGDBmnHjh3q3r271q5dK4vFopkzZ2rYsGG6fPmyZsyYoZkzZxZ0vQAAAAAAAAAAFCm37kj39fXVlClT9MADD2jy5MkaM2aMqlWrpuTkZEVGRmrmzJm68847C7pWAAAAAAAAAACKnFt3pOdq06aNhgwZIqvVqqSkJFWoUEGzZ88mRAcAAAAAAAAA3DbcDtLT0tI0btw4vfHGG6pataq6dOmiP//8U71799bmzZsLskYAAAAAAAAAAAzjVpC+Z88e9ejRQ6tWrVKHDh20YsUKvf7665o9e7YyMzM1cuRIvfLKK8rMzCzoegEAAAAAAAAAKFJuBemDBw/W2bNn9a9//Utvv/22ypcvL0nq1KmTvv76a0VFRWnBggXq27dvgRYLAAAAAAAAAEBRcytIr1u3rhISEtS/f/88+6pWrapPPvlETz31lI4dO3bLBQIAAAAAAAAAYCQfdw5asmSJfH19b7jfZDLp73//u1q2bOl2YQAAAAAAAAAAeAK37kh3FKJfKzIy0p3pAQAAAAAAAADwGE4H6e+884527Nhht+3s2bM6fPhwvuO/+eYbPfnkk7dWHQAAAAAAAAAABnMpSN+2bZvdtoULF6pXr175jv/ll1+0YcOGW6sOAAAAAAAAAACDubW0CwAAAAAAAAAAJQVBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOCAjyuDf/rpJ33zzTe2r48ePSpJWr16taxWq93Y3H0AAAAAAAAAABRnLgXp69at07p162xf54bnzzzzTJ6xVqtVJpPpFssDAAAAAAAAAMBYTgfpTz75ZGHWAQAAAAAAAACARyJIBwAAAAAAAADAAR42CgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOOBUkP7kk0/qm2++sX29Y8cO/fHHH4VWFAAAAAAAAAAAnsKpIH39+vX65ZdfbF/HxsYqISGh0IoCAAAAAAAAAMBTOBWklytXTpcvX7Z9bbVaC60gAAAAAAAAAAA8iY8zg+rUqaOVK1cqPDxcQUFBkqRTp05px44dNz22WbNmt1YhAAAAAAAAAAAGcipIHz16tEaPHq1x48bZtn311Vf66quvbnqs2Wx2uzgAAAAAAAAAAIzmVJDeqlUrffPNN/rhhx90+vRpvfPOO2rWrJmaN29e2PUBAAAAAAAAAGAop4J0SapZs6b69u0rSXrnnXfUvHlzPfnkk4VWGAAAAAAAAAAAnsDpIP1aGzZsULly5Qq6FgAAAAAAAAAAPI5bQXrNmjVtf8/Oztbx48eVlpamwMBA3X333fLxcWtaAAAAAAAAAAA8jtuJ9/nz5xUXF6eVK1fq6tWrtu3+/v7q2rWrnnnmGd1xxx0FUiQAAAAAAAAAAEZxK0g/f/68+vfvr19//VXly5dX06ZNVaVKFaWkpOjAgQNaunSptm/frsWLF6tChQoFXDIAAAAAAAAAAEXHrSD93Xff1a+//qrhw4dr9OjRCggIsO3LyMjQu+++qw8//FBz5szRpEmTCqxYAAAAAAAAAACKmtsPG23evLmeffbZPPtKly6tcePGad++ffrPf/5DkI5CZTabC3X+ypUrq3bt2oV6DgAAAAAAAACeza0g/cyZM+ratavDMY0bN9aePXvcKgq4mawLKZLJS4MHDy7U8/iXDtCRw2bCdAAAAAAAAKAEcytIL1u2rE6dOuVwzKlTp1S2bFm3igJuJjvjomTN0d1D4+Rf/d5COceVpJ91PH68UlNTCdIBAAAAAACAEsytIL1Zs2Zas2aNHnnkEd1///159m/dulVr1qxRhw4dbrlAwBH/6veqTO2GRpcBAAAAAAAA4DbmVpD+5JNP6rvvvtPw4cPVpk0bNWvWTJUqVdLZs2e1fft2bd68Wf7+/ho9evQtF/jee+/pzTffVN26dbVy5Uq7fbt379bMmTN16NAhBQYGqnPnzho7dqzKlCljNy4zM1OzZ8/W8uXLdfHiRYWGhmrMmDFq2bJlnvM5OycAAAAAAAAAoGRwK0ivW7eu5s6dq8mTJ2vTpk3atGmTTCaTrFarJKl27dqaPn266tate0vFJScn6/3331dAQECefWazWUOGDFGdOnU0adIkJScna/78+Tpx4oTmzp1rN3bSpElau3atYmNjFRwcrGXLlmnEiBH6+OOPFRUV5dacAAAAAAAAAICSwa0gXZKioqK0bt067dq1S2azWWlpaQoMDFT9+vXVtGlTmUymWy7utddeU2RkpHJycvTnn3/a7Zs1a5bKlSunBQsWKDAwUJJUq1YtTZkyRVu2bFGrVq0kSfv379eqVas0YcIEDR8+XJLUs2dPde3aVXFxcVq0aJHLcwIAAAAAAAAASg6vWznYZDIpKipKMTExeuKJJxQTE6OoqKgCCdF37NihtWvX6rnnnsuzLy0tTT/88IO6d+9uC7wlqUePHgoICNDq1att29asWSNvb2/179/fts3Pz099+vTRnj17lJSU5PKcAAAAAAAAAICS45aC9MJisVj08ssvq0+fPgoNDc2z/8iRI8rOzlZYWJjddl9fX9WvX19ms9m2zWw2Kzg42C4cl6SIiAjbflfnBAAAAAAAAACUHG4v7VKYFi1apD/++EMfffRRvvtTUlIkSVWqVMmzLygoSLt27bIbGxQUlO84STpz5ozLczrLYrG4fExxdzu+ZovFclu+rttZ7r8X/24wCj0Io9GDMBo9CKPRgzAaPQij0YMwWnHpQVfq87gg/c8//9Rbb72lv//976pYsWK+Y65cuSLpr7vFr+fn52fbnzv2RuOuncuVOZ2VmJjo8jHwPEePHpWXl0f+8gZugvcgjEYPwmj0IIxGD8Jo9CCMRg/CaPQgjHY79aDHBelvvvmmypcvr8GDB99wjL+/vyQpMzMzz76rV6/a9ueOvdG4a+dyZU5nhYeHy9vb2+XjijOLxaLDhw8bXUaBCgkJUaNGjYwuAy6wWCxKTEwske9BeAZ6EEajB2E0ehBGowdhNHoQRqMHYbTi0oO5dTrDo4L0EydOaMmSJXruuedsS65IfwXZWVlZ+v333xUYGJhnWZZrpaSk2C3PEhQUpNOnT+c7TvrfUi6uzOksb29vj24UOId/x+KLfzsYjR6E0ehBGI0ehNHoQRiNHoTR6EEY7XbqQY9ar+L06dPKycnR1KlT1b59e9v/9u3bpxMnTqh9+/b697//rZCQEPn4+OjAgQN2x2dmZspsNqtevXq2bfXq1dOJEyeUlpZmN3bfvn2SpPr160uSS3MCAAAAAAAAAEoOt4L0+vXra9y4cQVdi+rWrat///vfef5Xt25d1ahRQ//+97/Vp08flS1bVvfdd59WrFhhF5AvX75c6enpio6Otm2Ljo6WxWLR4sWLbdsyMzOVkJCgyMhIVa9eXZJcmhMAAAAAAAAAUHK4tbRLYGCgLYAuSBUrVlSHDh3ybP/4448lyW7f2LFj9eijjyomJkb9+vVTcnKy4uPj1apVK7Vu3do2LjIyUtHR0Zo1a5bOnj2ru+66S8uWLdOpU6f0yiuv2J3H2TkBAAAAAAAAACWHW3ekR0REGP5AyYYNGyo+Pl5+fn6aPn26lixZoj59+mj27Nl5xs6YMUOxsbFasWKFpk6dquzsbM2ZM0fNmjVze04AAAAAAAAAQMng1h3pTz75pGJiYvTVV1+pZ8+eBVxSXgsWLMh3e1RUlBYtWnTT4/38/DRx4kRNnDjxpmOdnRMAAAAAAAAAUDK4FaR///33atGihSZPnqwFCxYoPDxclStXzjPOZDJp9OjRt1wkAAAAAAAAAABGcStIf+edd2x/P3jwoA4ePJjvOIJ0AAAAAAAAAEBx51aQ/sknnxR0HQAAAAAAAAAAeCS3gvTmzZsXdB0AAAAAAAAAAHgkL6MLAAAAAAAAAADAk7kdpGdnZ+ujjz5Snz591KRJEzVo0MC2z2w265///KeOHz9eIEUCAAAAAAAAAGAUt5Z2uXLlioYNG6Y9e/bojjvuUGBgoDIyMmz7a9WqpYSEBJUvX15jx44tsGIBAAAAAAAAAChqbgXpc+bM0e7duzVu3Dj97W9/0zvvvKN3333Xtr9s2bJq1qyZtmzZQpCOYs9sNhf6OSpXrqzatWsX+nkAAAAAAAAAuM6tIH316tVq0aKFHn/8cUmSyWTKM+bOO+8skgASKCxZF1Ikk5cGDx5c6OfyLx2gI4fNhOkAAAAAAACAB3IrSP/jjz/UoUMHh2PKlCmjS5cuuVUU4AmyMy5K1hzdPTRO/tXvLbTzXEn6Wcfjxys1NZUgHQAAAAAAAPBAbgXpZcqU0blz5xyO+e2331SxYkW3igI8iX/1e1WmdkOjywAAAAAAAABgEC93DmrUqJE2btyoixcv5rs/KSlJ3333naKiom6pOAAAAAAAAAAAjOZWkD58+HBdvHhRQ4YM0a5du5SdnS1JysjI0NatWzV8+HBZLBYNHTq0QIsFAAAAAAAAAKCoubW0S7NmzfT8889r2rRpdg9ibNKkiSTJ29tbL774osLCwgqmSgAAAAAAAAAADOJWkC5JAwcOVIsWLbRw4ULt379fFy5cUJkyZRQZGamBAweqbt26BVknAAAAAAAAAACGcDtIl6Q6depoypQpBVULAAAAAAAAAAAex6010gEAAAAAAAAAKClu6Y70//znP0pISJDZbNalS5dUtmxZ1a9fX71791aHDh0KqkYAAAAAAAAAAAzjVpCenZ2tcePGad26dbJarfLx8VGFChWUmpqqb7/9Vps2bVLHjh31+uuvy8fnlrJ6AAAAAAAAAAAM5dbSLu+//77Wrl2rqKgoffbZZ9q/f7+2bNmi/fv369NPP1XTpk21bt06ffDBBwVdLwAAAAAAAAAARcqtID0hIUH33HOP4uPj1bRpU3l5/TWNl5eXoqKiFB8fr+DgYH355ZcFWiwAAAAAAAAAAEXNrSA9JSVFbdu2veGyLaVKlVLbtm2VkpJyS8UBAAAAAAAAAGA0t4L06tWrKz093eGYjIwMVa9e3a2iAAAAAAAAAADwFG4F6X369NHq1at15syZfPefPn1a33zzjfr27XtLxQEAAAAAAAAAYLT812a5zh9//GH3defOnbV792716tVLjz32mJo0aaLKlSsrNTVVu3bt0ieffKKmTZsqOjq6UIoGAAAAAAAAAKCoOBWkt2vXTiaTKc92q9WqN954I9/tGzdu1KZNm3To0KFbrxIAAAAAAAAAAIM4FaT37Nkz3yAdAAAAAAAAAIDbnVNB+quvvlrYdQAAAAAAAAAA4JHcetgoAAAAAAAAAAAlBUE6AAAAAAAAAAAOOLW0S3527typ+fPn6/Dhwzpz5owsFkueMSaTiYeNAgAAAAAAAACKNbeC9K+++kqTJ0+W1WrVnXfeqYiICHl7exd0bQAAAAAAAAAAGM6tIP29995TuXLl9OGHHyoiIqKgawIAAAAAAAAAwGO4tUZ6UlKSunTpQogOAAAAAAAAALjtuRWk16hRQ1lZWQVdCwAAAAAAAAAAHsetIL1fv3769ttvdf78+QIuBwAAAAAAAAAAz+LWGunDhg3Tb7/9pgEDBuiJJ55QvXr1FBgYmO/YGjVq3FKBAAAAAAAAAAAYya0gXZIaNGiglStXauLEiTccYzKZdOjQIXdPAQAAAAAAAACA4dwK0hcsWKBp06bJx8dHLVq0UFBQkHx83M7kAQAAAAAAAADwWG6l3x999JGqVq2qRYsWqVq1agVdEwAAAAAAAAAAHsOth42mpqaqY8eOhOgAAAAAAAAAgNueW0F67dq1denSpYKuBQAAAAAAAAAAj+NWkD5kyBBt2LBBp06dKuh6AAAAAAAAAADwKG6tkV67dm01a9ZMvXv31mOPPaZ69eopMDAw37HNmjVzae6ffvpJb7/9tg4ePKjU1FT5+/vr3nvv1fDhw9WuXTu7sceOHdO0adO0e/dulSpVSm3atNHkyZNVsWJFu3E5OTmaN2+eFi5cqJSUFAUHB2vkyJHq2rVrnvM7OycAAAAAAAAAoGRwK0iPiYmRyWSS1WrV7NmzZTKZbjjWbDa7NPcff/yhy5cvq1evXqpSpYoyMjK0bt06PfHEE3rppZfUv39/SVJycrIGDRqksmXLauzYsUpPT9f8+fN19OhRLV26VL6+vrY533jjDX3wwQfq16+fwsPDtWHDBo0bN04mk0ldunSxjXNlTgAAAAAAAABAyeBWkD569GiH4fmtaNOmjdq0aWO3bfDgwXrkkUcUHx9vC9LnzJmjjIwMJSQkqEaNGpKkiIgIDR06VMuWLbONO336tOLj4zVo0CC98MILkqS+fftq8ODBmjFjhqKjo+Xt7e3SnAAAAAAAAACAksOtIP3//u//CroOh7y9vVW9enUlJibatq1bt04PPvigLfCWpPvvv1/BwcFavXq1LfRev369srKyNHDgQNs4k8mkAQMGaNy4cdqzZ4+ioqJcmhMAAAAAAAAAUHK49bDRopCenq5z587p5MmT+uijj7R582b9f//f/yfpr7vMz549q7CwsDzHRURE2C0nYzabFRAQoDp16uQZl7vf1TkBAAAAAAAAACWHW3ekF4VXX31VixcvliR5eXnpoYcesi3NcubMGUlSUFBQnuOCgoJ0/vx5ZWZmytfXVykpKapUqVKepWhyj82dy5U5nWWxWJwee7soia+5oFgsFq5fAcm9jlxPGIUehNHoQRiNHoTR6EEYjR6E0ehBGK249KAr9bkVpNerV8+pNdJNJpMOHTrkzin02GOPKTo6WmfOnNHq1auVk5OjrKwsSdLVq1clKd9Q28/PT5J05coV+fr62v50NM7VOZ117VI0wM0cPXpUXl4e+0sixRLvQRiNHoTR6EEYjR6E0ehBGI0ehNHoQRjtdupBt4L0Zs2a5bs9LS1NJ06cUEZGhurVq6eyZcu6XVidOnVsy7H07NlTw4YN06hRo7R06VJbsJ2ZmZnnuNxA3N/f3/anM+NcmdNZ4eHhtgeZlhQWi0WHDx82uoxiKSQkRI0aNTK6jNuCxWJRYmJiiXwPwjPQgzAaPQij0YMwGj0Io9GDMBo9CKMVlx7MrdMZbgXpCxYsuOG+jIwMvf766/rvf/+r+fPnuzN9vjp16qQXXnhBx48fV5UqVSRJKSkpecalpKSoQoUKtjvHg4KCtG3bNlmtVru76HOPzZ3LlTmd5e3t7dGNAs9CvxQ8rimMRg/CaPQgjEYPwmj0IIxGD8Jo9CCMdjv1YIGvI1G6dGlNmTJFgYGBmjlzZoHNm7sES1pamqpWraqKFSvqwIEDecbt379f9erVs31dv359ZWRk6NixY3bj9u3bZ9svyaU5AQAAAAAAAAAlR6EtyBwVFaVNmza5fNzZs2fzbMvKytLy5cvl7+9vW+6lY8eO2rRpk5KSkmzjtm7dqhMnTig6Otq2rX379ipVqpQ+//xz2zar1apFixapatWqaty4sW27s3MCAAAAAAAAAEoOt5Z2cca5c+eUnp7u8nEvvPCC0tLS1KxZM1WtWlUpKSn6+uuv9csvv2jSpEkqU6aMJGnUqFFas2aNYmNjFRsbq/T0dM2bN08hISHq3bu3bb5q1aopNjZW8+bNU3Z2tsLDw7V+/Xrt3LlTcXFxdr9a4OycAAAAAAAAAICSo8CD9JycHK1YsUKrV69WWFiYy8c//PDD+uKLL7Rw4UKdP39eZcqUUcOGDTV+/Hi1b9/eNq569er69NNP9eqrr+r1119XqVKl1KZNG02aNCnPWubjx49X+fLltXjxYiUkJCg4OFgzZ85Ut27d7Ma5MicAAAAAAAAAoGRwK0i/NtC+lsVi0dmzZ5WdnS0fHx8988wzLs/dpUsXdenSxamxdevW1bx58246zsvLSyNHjtTIkSMLbE4AAAAAAAAAQMngVpButVrzn8zHR3Xr1lV4eLgGDx6sunXr3lJxAAAAAAAAAAAYza0gfePGjQVdBwAAAAAAAAAAHsnL6AIAAAAAAAAAAPBkBOkAAAAAAAAAADjg9NIukydPdnlyk8mkadOmuXwcAAAAAAAAAACewukgfdmyZU5PajKZZLVaCdIBAAAAAAAAAMWe00H64sWLnRr366+/6p133tHJkyfdLgoAAAAAAAAAAE/hdJAeGRnpcP+5c+f073//W0uWLFFWVpaaNm2q8ePH33KBAAAAAAAAAAAYyekg/UYyMjI0b948xcfH6/Lly6pbt67Gjh2rdu3aFUR9AAAAAAAAAAAYyu0g3WKxaNGiRXrvvfeUmpqqatWq6bnnnlOvXr3k5eVVkDUCAAAAAAAAAGAYt4L01atX680339TJkydVtmxZjRs3TrGxsfLz8yvo+gAAAAAAAAAAMJRLQfq2bdsUFxenAwcOqFSpUho6dKhGjRqlcuXKFVZ9AAAAAAAAAAAYyukg/W9/+5u+//57eXl5qWfPnnr66adVrVq1wqwNAAAAAAAAAADDOR2kb9myRSaTSdWrV1dqaqqef/75mx5jMpn0wQcf3FKBAAAAAAAAAAAYyaWlXaxWq37//Xf9/vvvTo03mUxuFQUAAAAAAAAAgKdwOkjfsGFDYdYBAAAAAAAAAIBHcjpIr1mzZmHWAQAAAAAAAACAR/IyugAAAAAAAAAAADwZQToAAAAAAAAAAA649LBRAIXHbDYX6vyVK1dW7dq1C/UcAAAAAAAAwO2IIB0wWNaFFMnkpcGDBxfqefxLB+jIYTNhOgAAAAAAAOAignTAYNkZFyVrju4eGif/6vcWyjmuJP2s4/HjlZqaSpAOAAAAAAAAuIggHfAQ/tXvVZnaDY0uAwAAAAAAAMB1eNgoAAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOEKQDAAAAAAAAAOAAQToAAAAAAAAAAA4QpAMAAAAAAAAA4ABBOgAAAAAAAAAADhCkAwAAAAAAAADgAEE6AAAAAAAAAAAOeFyQvn//fr300kvq0qWLGjVqpAcffFBPP/20jh8/nmfssWPHNHz4cDVu3FjNmzfXs88+q3PnzuUZl5OTow8//FDt2rVTeHi4unXrppUrV+Z7fmfnBAAAAAAAAACUDD5GF3C9uXPnavfu3YqOjlZoaKhSUlL02Wef6ZFHHtHixYsVEhIiSUpOTtagQYNUtmxZjR07Vunp6Zo/f76OHj2qpUuXytfX1zbnG2+8oQ8++ED9+vVTeHi4NmzYoHHjxslkMqlLly62ca7MCQAAAAAAAAAoGTwuSB8yZIji4uLsQuuHH35Y3bp10wcffKC4uDhJ0pw5c5SRkaGEhATVqFFDkhQREaGhQ4dq2bJl6t+/vyTp9OnTio+P16BBg/TCCy9Ikvr27avBgwdrxowZio6Olre3t0tzAgAAAAAAAABKDo9b2qVJkyZ57vwODg5W3bp19csvv9i2rVu3Tg8++KAt8Jak+++/X8HBwVq9erVt2/r165WVlaWBAwfatplMJg0YMEDJycnas2ePy3MCAAAAAAAAAEoOjwvS82O1WpWamqo77rhD0l93mZ89e1ZhYWF5xkZERMhsNtu+NpvNCggIUJ06dfKMy93v6pwAAAAAAAAAgJLD45Z2yc+KFSt0+vRpPfXUU5KkM2fOSJKCgoLyjA0KCtL58+eVmZkpX19fpaSkqFKlSjKZTHnGXTuXK3M6y2KxOD32dlESX3NxYrFYSsS/Ue5rLAmvFZ6JHoTR6EEYjR6E0ehBGI0ehNHoQRituPSgK/V5fJB+7NgxvfTSS2rcuLF69eolSbp69aok5Rtq+/n5SZKuXLkiX19f25+Oxrk6p7MSExOdHgsUhaNHj8rLq1j8IkqB4D0Io9GDMBo9CKPRgzAaPQij0YMwGj0Io91OPejRQXpKSopGjhypsmXLavbs2baHguYG25mZmXmOyQ3E/f39bX86M86VOZ0VHh5uq7mksFgsOnz4sNFl4AZCQkLUqFEjo8sodBaLRYmJiSXyPQjPQA/CaPQgjEYPwmj0IIxGD8Jo9CCMVlx6MLdOZ3hskH7p0iU9/vjjunTpkj777DNVrVrVtq9KlSqS/grar5eSkqIKFSrY7hwPCgrStm3bZLVa7ZZ3yT02dy5X5nSWt7e3RzcKSp6S1pMl7fXC89CDMBo9CKPRgzAaPQij0YMwGj0Io91OPeiRazxcvXpVo0aN0okTJzRnzhzde++9dvurVq2qihUr6sCBA3mO3b9/v+rVq2f7un79+srIyNCxY8fsxu3bt8+239U5AQAAAAAAAAAlh8cF6RaLRWPGjNHevXs1e/ZsNW7cON9xHTt21KZNm5SUlGTbtnXrVp04cULR0dG2be3bt1epUqX0+eef27ZZrVYtWrRIVatWtZvf2TkBAAAAAAAAACWHxy3t8uqrr2rjxo1q27atzp8/r+XLl9vt79GjhyRp1KhRWrNmjWJjYxUbG6v09HTNmzdPISEh6t27t218tWrVFBsbq3nz5ik7O1vh4eFav369du7cqbi4OLtfLXB2TgAAAAAAAABAyeFxQXrugyq//fZbffvtt3n25wbp1atX16effqpXX31Vr7/+ukqVKqU2bdpo0qRJedYyHz9+vMqXL6/FixcrISFBwcHBmjlzprp162Y3zpU5AQAAAAAAAAAlg8cF6QsWLHB6bN26dTVv3rybjvPy8tLIkSM1cuTIApsTAAAAAAAAAFAyeNwa6QAAAAAAAAAAeBKCdAAAAAAAAAAAHCBIBwAAAAAAAADAAYJ0AAAAAAAAAAAc8LiHjQIoPGazuVDnr1y5smrXrl2o5wAAAAAAAACKGkE6UAJkXUiRTF4aPHhwoZ7Hv3SAjhw2E6YDAAAAAADgtkKQDpQA2RkXJWuO7h4aJ//q9xbKOa4k/azj8eOVmppKkA4AAAAAAIDbCkE6UIL4V79XZWo3NLoMAAAAAAAAoFjhYaMAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAM+RhcA4PZiNpsL/RyVK1dW7dq1C/08AAAAAAAAgESQDqCAZF1IkUxeGjx4cKGfy790gI4cNhOmAwAAAAAAoEh4XJB++fJlzZs3T/v27VNiYqIuXLig6dOn65FHHskz9tixY5o2bZp2796tUqVKqU2bNpo8ebIqVqxoNy4nJ0fz5s3TwoULlZKSouDgYI0cOVJdu3Z1e04A9rIzLkrWHN09NE7+1e8ttPNcSfpZx+PHKzU1lSAdAAAAAAAARcLjgvQ///xT//73v1WjRg2FhoZq+/bt+Y5LTk7WoEGDVLZsWY0dO1bp6emaP3++jh49qqVLl8rX19c29o033tAHH3ygfv36KTw8XBs2bNC4ceNkMpnUpUsXt+YEkD//6veqTO2GRpcBAAAAAAAAFBiPC9KrVKmiLVu2KCgoSImJierTp0++4+bMmaOMjAwlJCSoRo0akqSIiAgNHTpUy5YtU//+/SVJp0+fVnx8vAYNGqQXXnhBktS3b18NHjxYM2bMUHR0tLy9vV2aEwAAAAAAAABQcngZXcD1fH19FRQUdNNx69at04MPPmgLvCXp/vvvV3BwsFavXm3btn79emVlZWngwIG2bSaTSQMGDFBycrL27Nnj8pwAAAAAAAAAgJLD44J0Z5w+fVpnz55VWFhYnn0REREym822r81mswICAlSnTp0843L3uzonAAAAAAAAAKDk8LilXZxx5swZScr3zvWgoCCdP39emZmZ8vX1VUpKiipVqiSTyZRn3LVzuTKnsywWi9Njbxcl8TXDGBaL5Yb9lrudfoRR6EEYjR6E0ehBGI0ehNHoQRiNHoTRiksPulJfsQzSr169Kkn5htp+fn6SpCtXrsjX19f2p6Nxrs7prMTERKfHAnDN0aNH5eXl+JdqeA/CaPQgjEYPwmj0IIxGD8Jo9CCMRg/CaLdTDxbLID032M7MzMyzLzcQ9/f3t/3pzDhX5nRWeHi47UGmJYXFYtHhw4eNLgMlQEhIiBo1apTvPovFosTExBL5HoRnoAdhNHoQRqMHYTR6EEajB2E0ehBGKy49mFunM4plkF6lShVJUkpKSp59KSkpqlChgu3O8aCgIG3btk1Wq9VueZfcY3PncmVOZ3l7e3t0owDFmTPvL96DMBo9CKPRgzAaPQij0YMwGj0Io9GDMNrt1IPF8mGjVatWVcWKFXXgwIE8+/bv36969erZvq5fv74yMjJ07Ngxu3H79u2z7Xd1TgAAAAAAAABAyVEsg3RJ6tixozZt2qSkpCTbtq1bt+rEiROKjo62bWvfvr1KlSqlzz//3LbNarVq0aJFqlq1qho3buzynAAAAAAAAACAksMjl3b59NNPdfHiRZ05c0aS9O233yo5OVmSFBMTo7Jly2rUqFFas2aNYmNjFRsbq/T0dM2bN08hISHq3bu3ba5q1aopNjZW8+bNU3Z2tsLDw7V+/Xrt3LlTcXFxdr9a4OycAAAAAAAAAICSwyOD9Pnz5+vUqVO2r9etW6d169ZJkrp3766yZcuqevXq+vTTT/Xqq6/q9ddfV6lSpdSmTRtNmjQpz1rm48ePV/ny5bV48WIlJCQoODhYM2fOVLdu3ezGuTInAAAAAAAAAKBk8MggfePGjU6Nq1u3rubNm3fTcV5eXho5cqRGjhxZYHMCMJbZbL7hPovFoqNHjyonJ8ftB1pUrlxZtWvXdrc8AAAAAAAA3EY8MkgHgBvJupAimbw0ePDgQj2Pf+kAHTlsJkwHAAAAAAAAQTqA4iU746JkzdHdQ+PkX/3eQjnHlaSfdTx+vFJTUwnSAQAAAAAAQJAOoHjyr36vytRuaHQZAAAAAAAAKAG8jC4AAAAAAAAAAABPRpAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADPkYXAACeymw2F+r8lStXVu3atQv1HAAAAAAAALh1BOkAcJ2sCymSyUuDBw8u1PP4lw7QkcNmwnQAAAAAAAAPR5AOANfJzrgoWXN099A4+Ve/t1DOcSXpZx2PH6/U1FSCdAAAAAAAAA9HkA4AN+Bf/V6Vqd3Q6DIAAAAAAABgMB42CgAAAAAAAACAAwTpAAAAAAAAAAA4QJAOAAAAAAAAAIADBOkAAAAAAAAAADhAkA4AAAAAAAAAgAME6QAAAAAAAAAAOECQDgAAAAAAAACAAz5GFwAAJZnZbC70c1SuXFm1a9cu9PMAAAAAAADcrgjSAcAAWRdSJJOXBg8eXOjn8i8doCOHzYTpAAAAAAAAbiJIBwADZGdclKw5untonPyr31to57mS9LOOx49XamoqQToAAAAAAICbCNIBwED+1e9VmdoNjS4DAAAAAAAADvCwUQAAAAAAAAAAHCBIBwAAAAAAAADAAZZ2AYASwGw2F+r8lStXZg12AAAAAABw2yJIB4DbWNaFFMnkpcGDBxfqefxLB+jIYTNhOgAAAAAAuC0RpAPAbSw746JkzdHdQ+PkX/3eQjnHlaSfdTx+vFJTUwnSAQAAAADAbYkgHQBKAP/q96pM7YZGlwEAAAAAAFAs8bBRAAAAAAAAAAAc4I50AECB4IGmAAAAAADgdkWQDgC4JTzQFAAAAAAA3O4I0gEAt4QHmgIAAAAAgNsdQToAoEDwQFMAAAAAAHC7IkgHABQbhb0Ou8Ra7AAAAAAAIC+CdACAxyuqddgl1mIHAAAAAAB5EaQDADxeUazDLrEWOwAAAAAAyB9BOgCg2CiqddhvdQkZi8Wio0ePKicnR97e3nn2s3wMAAAAAADFC0E6AAD/T1EtIcPyMQAAAAAAFC8E6QAA/D9FsYRM7vIx//3vf1W/fv1COYfEXe8AAAAAABQkgvTrZGZmavbs2Vq+fLkuXryo0NBQjRkzRi1btjS6NABAESnMJWS46x0AAAAAgOKHIP06kyZN0tq1axUbG6vg4GAtW7ZMI0aM0Mcff6yoqCijywMAFHO3013vEne+AwAAAABKBoL0a+zfv1+rVq3ShAkTNHz4cElSz5491bVrV8XFxWnRokUGVwgAuF3cDne9S5Kfn7++/PILVa9evdDOQVgPAAAAADAaQfo11qxZI29vb/Xv39+2zc/PT3369NGsWbOUlJRUqEEBAAAFoSjuepektJ926Lcvpqtr166Fdg6paML6q1evys/Pr9DmL8rzVK5cWTVr1izUcwAAAABASUOQfg2z2azg4GAFBgbabY+IiLDtJ0gHABQXhXnXuyRlJB8r9MC+qMJ6mbwka07hnqOIzuPn56+lS5fo4sWLysnJkbe3d6Gcpyh+KHC7nKOozlNUP6jhN0QAAABQEhGkXyMlJUVBQUF5tuduO3PmjFPzWK1WSX89uLSw/uPVU1ksFnl5ealMmTIypR6XxcdUKOfxvpB8W5yjqM5zu5yjqM5zu5yjqM5zu5yjqM5zu5zj2vOULuUtv0I6T2ZOpsoElFbVjn+T7x2F88Ps9BOJOrvtq0I9R1GdJ+OPn5S6ZYkGDBhQKPPbKYofPtwu5yiq8xTBOXz9/PXJxx+patWqDsfl5OTol19+UXZ2try8vFw+j5eXl3JyCve13C7nKKrzFLdzOOrB4vZajDxHUZ3ndjnHtee51c9BZ85RmOgvzzuHq+dxtwdL6vUq6eeQpKpVq6patWoFNp/FYpHk+flobp25ea4jJqszo0qIDh066O6779aHH35ot/23335Thw4dNHnyZA0ZMuSm82RmZioxMbGQqgQAAAAAAAAAFJTw8HD5+vo6HMMd6dfw9/dXZmZmnu1Xr1617XeGj4+PwsPD5eXlJZOp8O4EBAAAAAAAAAC4x2q1KicnRz4+N4/JCdKvERQUpNOnT+fZnpKSIkmqUqWKU/N4eXnd9CcYAAAAAAAAAIDioWAX6irm6tWrpxMnTigtLc1u+759+yRJ9evXN6IsAAAAAAAAAICBCNKvER0dLYvFosWLF9u2ZWZmKiEhQZGRkapevfAeQAYAAAAAAAAA8Ews7XKNyMhIRUdHa9asWTp79qzuuusuLVu2TKdOndIrr7xidHkAAAAAAAAAAAOYrFar1egiPMnVq1f15ptv6uuvv9aFCxcUGhqqp59+Wg888IDRpQEAAAAAAAAADECQDgAAAAAAAACAA6yRDgAAAAAAAACAAwTpAAAAAAAAAAA4QJCOApGZmamZM2eqVatWioiIUN++ffX9998bXRaKuW3btik0NDTf/+3du9du7O7duzVgwABFRkaqZcuWmjp1qi5fvpxnTnoVN3L58mW99dZbGj58uJo3b67Q0FAlJCTkO/bYsWMaPny4GjdurObNm+vZZ5/VuXPn8ozLycnRhx9+qHbt2ik8PFzdunXTypUrb2lO3N6c7cNJkybl+9kYHR2dZyx9CGft379fL730krp06aJGjRrpwQcf1NNPP63jx4/nGcvnIAqDsz3IZyAKy08//aSnnnpK7du3V2RkpFq0aKFBgwZp48aNecbyOYjC4GwP8jmIovTee+8pNDRUXbt2zbOvMLIYZ+c0go/RBeD2MGnSJK1du1axsbEKDg7WsmXLNGLECH388ceKiooyujwUczExMQoPD7fbVrt2bdvfzWazhgwZojp16mjSpElKTk7W/PnzdeLECc2dO9fuOHoVN/Lnn3/q3//+t2rUqKHQ0FBt374933HJyckaNGiQypYtq7Fjxyo9PV3z58/X0aNHtXTpUvn6+trGvvHGG/rggw/Ur18/hYeHa8OGDRo3bpxMJpO6dOni1py4vTnbh5Lk6+urqVOn2m0rW7ZsnnH0IZw1d+5c7d69W9HR0QoNDVVKyv/f3p1HRXmdYQB/WEVERAwQQYXEyIAiVHDDuCSgLHUBlONWQGuQum/YoNXUqHFpqglRSTUKMbgEFKUKSjG22rBYUETEPQrEjIKgojCCMMDXPzx8dRwYGXEgxed3jsdw7/3euQzveYPvfHOnBPv27cP48eMRGxsLW1tbAKyDpDlNzUGANZA04+7du3jy5An8/Pxgbm6OyspKnDhxArNnz8aaNWswadIkAKyDpDlNzUGAdZBaRlFREXbs2AFDQ0OlOU30YtSJ2SoEombKyckRbG1thV27doljT58+FUaOHClMmjSpFXdG/+/+85//CLa2tkJSUpLKdcHBwcL7778vlJeXi2MHDhwQbG1thZSUFHGMuUqqVFVVCcXFxYIgCMLFixcFW1tb4dChQ0rrVq1aJTg6Ogp37twRx9LS0gRbW1shJiZGHCsqKhL69OkjrF69Whyrq6sTpk6dKgwfPlyoqalROya1fU3Nw7CwMOE3v/nNS+MxD0kdWVlZQlVVlcJYfn6+4ODgIISGhopjrIOkKU3NQdZAakk1NTXCuHHjBE9PT3GMdZBaUkM5yDpILWXRokVCUFCQEBAQIIwePVphThO9mKbGbC082oWa7R//+Ad0dHQUXhlt164d/P39kZ2djcLCwlbcHbUVMpkMNTU1DY6np6dj3LhxMDIyEsd9fHxgaGiIpKQkcYy5Sqro6+vDzMzspetOnDiBDz74AJaWluLYkCFDYGNjo5BvJ0+ehFwux9SpU8UxLS0tTJkyBUVFRcjOzlY7JrV9Tc3DerW1tZDJZI3OMw9JHc7Ozkp3m9nY2KBXr17Iy8sTx1gHSVOamoP1WAOpJejo6KBr164oLy8Xx1gHqSU1lIP1WAdJk86ePYvk5GT86U9/UprTRC9GnZithY10ararV6/CxsZGIckBwNHRUZwnao7ly5fDxcUFjo6OCAwMRG5urjh3/fp11NTUwMHBQeEafX192NvbK+Qfc5Wa6969e3jw4IFSvgHP8ujFfDM0NETPnj2V1tXPqxuT6HmVlZVwcXGBi4sLBg4ciNWrVyudHcg8pOYSBAH3799H586dAbAOUst7MQfrsQaSJlVUVODhw4e4ffs2du/ejR9//BGDBw8GwDpILUNVDtZjHSRNqq2txdq1a+Hv7w+JRKI0r4lejDoxWwvPSKdmKykpafDuufqx4uLilt4StRF6enrw9PTE8OHD0blzZ9y6dQuRkZH43e9+h5iYGPTu3RslJSUAAHNzc6XrzczMkJWVJX7NXKXmqs+RxvLo0aNHqK6uhr6+PkpKStClSxdoaWkprXs+ljoxieqZmZkhODgYvXv3hiAISElJwf79+3Ht2jXs2bMHurrPfsVjHlJzHT16FPfu3cOCBQsAsA5Sy3sxBwHWQNK8jRs3IjY2FgCgra2NUaNG4c9//jMA1kFqGapyEGAdJM2LiYnB3bt3sXv37gbnNdGLUSdma2EjnZrt6dOnDRbTdu3aifNEr8LZ2RnOzs7i1+7u7vD09MS4ceOwefNmREZGivnVWA4+n3/MVWquqqoqAI3nG/C/PGtqvqkTk6heaGiowtejR4+GjY0NvvzySyQnJ4sfHMU8pOa4desW1qxZg379+sHPzw8A6yC1rIZyEGANJM2bNm0avLy8UFxcjKSkJNTV1UEulwNgHaSWoSoHAdZB0qzS0lJs2bIFc+bMgampaYNrNNGLUSdma+HRLtRsBgYGqK6uVhqvL8QGBgYtvSVqw6ytreHu7o6MjAzU1taK+dVYDj6ff8xVaq76/9E3JY+amm/qxCRSZfr06dDW1kZ6ero4xjykV1VSUoI//OEP6NixI7766ivo6OgAYB2kltNYDjaGNZBep549e2LIkCHw9fXFjh07UFFRgVmzZkEQBNZBahGqcrAxrIP0uoSHh6NTp04ICAhodI0mejHqxGwtbKRTs5mZmYlvv3ieqrdkEDXH22+/DblcjsrKSpXHspSUlCjkH3OVmqs+RxrLIxMTE/HVczMzM9y/f1/pl90X802dmESqGBgYwMTEBI8fPxbHmIf0KsrLyzFz5kyUl5dj165dsLCwEOdYB6klqMrBxrAGkiZ5enoiNzcX+fn5rIPUKp7PwcawDtLrUFBQgAMHDiAwMBDFxcWQSqWQSqWoqqqCXC6HVCrFo0ePNNKLUSdma2EjnZrNzs4OBQUFSp8UnZOTAwCwt7dvjW1RGyaVStGuXTsYGhrC1tYWurq6uHTpksKa6upqXL16FXZ2duIYc5Way8LCAqampkr5BgAXL15UyDd7e3tUVlbi1q1bCutezDd1YhKpIpPJUFpaqvD2S+YhqauqqgqzZs1CQUEBtm/fjvfee09hnnWQNO1lOdgY1kDSpPrjBGQyGesgtYrnc7AxrIP0Oty7dw91dXX47LPP4O7uLv7JyclBQUEB3N3dERERoZFejDoxWwsb6dRsXl5eqK2tFT8IA3iW5IcPH4aTkxO6du3airuj/2cPHz5UGrt27Rr+9a9/4f3334e2tjY6duwIV1dXHD16VKEoHzlyBBUVFfDy8hLHmKv0Onh4eOD06dMoLCwUx86cOYOCggKFfHN3d4eenh72798vjgmCgJiYGFhYWKBfv35qxyQCnjWZGvpH1Ndffw1BEDBs2DBxjHlI6qitrcWiRYtw4cIFfPXVVwr58TzWQdKUpuQgayBp0oMHD5TG5HI5jhw5AgMDA/Ts2RMA6yBpTlNykHWQNKlXr16IiIhQ+tOrVy9YWloiIiIC/v7+GunFqBOztWgJqg5YImqihQsX4uTJk5g2bRqsra0RHx+P3Nxc7N69GwMGDGjt7dH/qaCgIBgYGKBfv37o0qULbt68iQMHDkBXVxexsbHiL7KXL1/G5MmT8d5772HixIkoKirCt99+iwEDBiAyMlIhJnOVVNm7dy/KyspQXFyM77//Hh4eHuKr44GBgejYsSMKCwvh6+sLY2NjBAUFoaKiApGRkbCwsMChQ4cU3vL4+eefIzIyEpMmTULfvn1x8uRJnD59Gps2bcLYsWPFderEpLbvZXn4+PFj+Pn5YfTo0Xj33XcBAKmpqfj3v/+NYcOG4ZtvvoG29v/ulWAeUlOtW7cO0dHR+PDDD+Ht7a007+PjA0C9XGH+kTqakoNSqZQ1kDRm7ty5kMlkGDBgACwsLFBSUoKEhATk5eVh2bJl+P3vfw+AdZA0pyk5yDpIrSEwMBClpaVITEwUxzTRi1EnZmtgI51ei6qqKoSHhyMhIQGPHz+GRCLBwoULFV4JJVJXdHQ0EhIScPv2bchkMnTu3Bmurq6YN28erK2tFdaeO3cOmzZtwpUrV9ChQwd4e3tjyZIlMDIyUljHXCVV3NzccOfOnQbn/vnPf6Jbt24AgJ9++gkbN25EVlYW9PT0MGLECCxbtgxvvfWWwjV1dXXYuXMnYmNjUVxcDBsbG4SEhGDcuHFK8Zsak9q+l+WhsbEx1q5di5ycHBQXF6O2thbW1tYYO3YsZsyYAT09PYVrmIfUVIGBgcjMzGx0/vr16+J/sw6SJjQlB8vKylgDSWOOHTuGuLg43LhxA48ePUKHDh3Qp08fBAQEwN3dXWEt6yBpQlNykHWQWkNDjXRAM72YpsZsDWykExERERERERERERGpwDPSiYiIiIiIiIiIiIhUYCOdiIiIiIiIiIiIiEgFNtKJiIiIiIiIiIiIiFRgI52IiIiIiIiIiIiISAU20omIiIiIiIiIiIiIVGAjnYiIiIiIiIiIiIhIBTbSiYiIiIiIiIiIiIhUYCOdiIiIiIiIiIiIiEgFNtKJiIiIiIiIiIiIiFRgI52IiIiI6Fdi2bJlkEgkkEqlrb2V1yI1NRWTJ0/GgAEDIJFIMGfOnBbfg0QiQWBgYIs/LhERERG1LbqtvQEiIiIiotdNKpXC3d0dADB06FBERkYqrblw4QImTZoEPz8/bNy4saW32OZJpVLMmTMHxsbGGD9+PIyMjPDuu+82uPbw4cNYvnx5k2PzZ0ZERERELY2NdCIiIiJq01JTU3HmzBm4urq29lbeKGfOnEFVVRXCwsIwduxYlWvt7e0xb948hbE7d+4gPj4ednZ2GDlypNJ6IiIiIqKWxEY6EREREbVZVlZWKCwsxKZNmxAXFwctLa3W3tIb4969ewAAc3Pzl661t7dXao5nZGQgPj4e9vb2mD9/vkb2SERERETUVDwjnYiIiIjarHfeeQc+Pj64dOkSkpKSmnSNm5sb3NzcGpwLDAyERCJRGNu6dSskEgkyMjJw6NAhjB07Fo6OjnBzc0N0dDQAQBAEREVFwdPTE3379oWHhwf+/ve/N7oHQRCwc+dOeHh4oG/fvnBzc8O2bdsgl8sbXH/27FnMmjULgwYNgoODAzw8PPDll1+isrJSYV1GRgYkEgm2bt2K8+fPY8aMGejfv7/S99SYGzduYOHChXB1dYWDgwPc3Nywbt06lJaWimukUqn4GAAQFBQEiUQiPkevQ1ZWFkJCQjBw4ED07dsXXl5e2LJli9L32xhBELB+/XpIJBKEhoaKz6sgCIiLi8PkyZPh7OwMJycnjB8/HnFxcUoxnv+5JyQkwMfHB46Ojhg6dCg+++wzPH36VOma5ORkBAQEwNXVFX379sXQoUMxffp0JCcnN+8JISIiIiKN4x3pRERERNSmLViwAMeOHUN4eDhGjRoFPT09jTzOd999h8zMTLi7u2PQoEE4ceIE1q1bh/bt2+PKlSs4ceIEPvjgA+jp6eH48eMICwuDlZUVBgwYoBRr3bp1yM7OhpeXFwwNDXHq1Cls3boVN27cwJYtWxTW7t+/H2vWrIGxsTE+/PBDmJqa4tKlS9i+fTsyMjIQHR0NfX19hWuys7OxY8cODBo0CBMnTkRhYeFLv79z584hODgYcrkcnp6esLKywoULFxAdHY3Tp08jNjYWpqamMDY2xrx585CZmYnMzEz4+fnBysoKAMS/myMpKQmhoaHQ19eHt7c3unTpgrS0NERERCA1NRV79uxBu3btGr1eLpdj2bJlSExMxLRp07B8+XJoaWlBEAQsXboUiYmJsLGxwZgxY6Cvr4+0tDSsWLECt27dQlhYmFK8ffv2ISUlBW5ubhg8eDBSUlKwZ88elJaWYvPmzeK6/fv3Y/Xq1TAzM8OoUaNgYmKCkpIS5Obm4ocffoCnp2eznxsiIiIi0hw20omIiIioTbO0tERAQACioqIQGxuLgIAAjTxOVlYW4uPj0b17dwDARx99hFGjRuEvf/kLunTpgoSEBJiamgJ49mGZEydORGRkZION9JycHBw5cgRvv/02AGDx4sWYMWMGkpOTkZycLDZdb968iXXr1kEikWD37t3o3LmzGOObb77B5s2bsXfvXsyYMUMhflpaGtavX48JEyY06Xurq6vD8uXLUVlZiV27dmHYsGHi3Oeff47IyEhs2rQJ69evh7GxMebPn4+tW7eKjfRBgwap8Uw2TiaT4ZNPPoGOjg5iYmJgZ2cHAFiyZAlCQ0Nx/Phx7Nq1C3Pnzm3w+idPnmDBggVITU1FaGgoQkJCxLmDBw8iMTER48ePx5o1a8QXXKqrq7FgwQJERUVh9OjRcHBwUIiZnp6OQ4cOiR+kunjxYvj4+OD48eP4+OOPYWFhAQCIi4uDnp4ejhw5gi5duijEeP6OfiIiIiL6deLRLkRERETU5s2aNQvGxsb4+uuv8eTJE408RmBgoNhEB4CuXbvCxcUF5eXlmD17tthEBwAnJyd0794d169fbzBWUFCQ2EQHAH19fSxatAgAEB8fL47HxMSgpqYGn3zyiUITHQCCg4NhamqKxMREpfh9+vRpchMdAM6fP4/bt29j+PDhCk10AJg7dy5MTEyQmJiI6urqJsd8FSdPnkR5eTkmTJggNtEBQFtbG3/84x+hq6ur8Pw87+HDh5g2bRrOnDmD9evXKzTRAWDv3r0wNDTEqlWrFN61oK+vj8WLFwMAjh07phQ3KChIbKIDgIGBAcaMGYO6ujpcvnxZYa2enh50dZXvZXrxZ0dEREREvz68I52IiIiI2rxOnTph5syZ2Lx5M6KiojTy4ZUvflgmAJiZmQGAQtP3+bmLFy82GKt///5KY/369YOuri6uXLkijuXk5AAAUlJScObMGaVrdHV1kZ+frzT+4l3VL1P/mAMHDlSa69ChAxwcHJCamor8/Pwmn7f+Kq5evdroPiwtLdGtWzcUFBRAJpPByMhInLt//z6mTJmCoqIibNu2TekM/MrKSty4cQPm5ubYuXOnUuyamhoAQF5entJcnz59lMbqXwQpKysTx37729/ir3/9K8aMGYMxY8Zg8ODBcHFxUdgnEREREf16sZFORERERG+EoKAg7Nu3D1FRUZg6deprj99QQ7T+7uPG5uobtC968egPANDR0YGJiQnKy8vFscePHwMAtm/frtZe33rrLbXWy2QyldfVv2BQv05TXrYPc3NzFBQU4MmTJwrPeUlJCWQyGaytreHk5KR0XVlZGQRBwL1797Bt27ZGH7+iokJprKGfrY6ODoBnR+LU++ijj2BiYoLvv/8e3377LaKioqCrq4sRI0Zg+fLlCu9mICIiIqJfHzbSiYiIiOiNYGBggPnz52PFihXYtm0bfHx8GlynpaUFuVze4NzzTWxNevDggcJxIQBQW1uLR48eKTTZ65u4WVlZat3ZrKWlpdZ+6mPfv3+/wfmSkhKFdZrS1H106NBBYdze3h6+vr5YuXIlgoKC8N133yk04+vX9+nTB4cPH9bE1qGlpQV/f3/4+/ujtLQUWVlZSExMRFJSEn7++WccPXpUbMATERER0a8Pz0gnIiIiojeGn58fevXqhYMHD+Lnn39ucE2nTp3w8OFDpbvFKyoqGr3mdTt37pzSWHZ2NmpqatC7d29xzNHREcD/jnjRlPrHzMzMVJqrqKjApUuXYGBggHfeeUej+6g/PqehfRQWFuKXX35B9+7dG2zoT5gwARs2bEBeXh6CgoIUmvFGRkbo2bMn8vLyFI5j0ZTOnTtj5MiRCA8Px+DBg3Hz5s0Wyy0iIiIiejVspBMRERHRG0NHRweLFy+GXC5v9AgPBwcHyOVyJCQkiGOCIOCLL75o8GgPTYiOjkZRUZH4dXV1NcLDwwE8ezGg3tSpU6Grq4u1a9fi7t27SnHKysoUzlR/Vc7OzujRowd+/PFHpKenK8z97W9/w6NHjzB69Gjo6+s3+7FUGTlyJDp27IjDhw/jp59+EscFQcCmTZtQU1Oj8Py8yNfXFxs2bEB+fj4CAwPFO9iBZx8WW1lZiZUrVzb4c/7ll18glUpfee8ZGRkQBEFhTC6Xi8fztGvX7pVjExEREZHm8WgXIiIiInqjuLu7w8XFBVlZWQ3OBwQE4PDhw1i5ciXS0tJgamqKc+fOoby8HHZ2drh27ZrG9+jk5AQfHx94e3ujffv2OHXqFPLz8+Hh4QFPT09xna2tLVatWoVPP/0UXl5eGDFiBLp3744nT55AKpUiMzMTfn5+WLNmTbP2o62tjQ0bNiA4OBghISHw9PSElZUVsrOzkZmZiR49emDp0qXN/bZfysjICGvXrkVoaCgmTpwIb29vmJqaIj09HZcvX4ajoyOCg4NVxvD19YW2tjaWLVuGwMBAREdHw9zcHJMnT0ZOTg7i4+Nx/vx5DBkyBObm5njw4AHy8vKQk5ODzZs3o1u3bq+097lz58LIyAhOTk6wtLRETU0N0tPTcfPmTfH5JCIiIqJfLzbSiYiIiOiNs3TpUkyZMqXBOVtbW+zatQtffPEFkpOTYWhoiBEjRiAsLAyLFi1qkf2tWLECSUlJiIuLw927d2Fubo758+cjJCREae3EiRNhZ2eH3bt34+zZszh16hSMjIxgaWmJ6dOnw9fX97XsqX///oiNjUVERATS0tIgk8lgbm6OoKAgzJ49G6ampq/lcV7G29sbZmZm2LFjB3744QdUVlbCysoKc+bMwcyZM5t0Z/e4ceOgra2Njz/+WDwz3cLCAhs3bsTw4cNx8OBBnD59GhUVFTA1NYW1tTXCwsLg6ur6yvtesmQJUlJSkJubi1OnTqF9+/bo0aMHPv30U/j7+79yXCIiIiJqGVrCi+8vJCIiIiIiIiIiIiIiEc9IJyIiIiIiIiIiIiJSgY10IiIiIiIiIiIiIiIV2EgnIiIiIiIiIiIiIlKBjXQiIiIiIiIiIiIiIhXYSCciIiIiIiIiIiIiUoGNdCIiIiIiIiIiIiIiFdhIJyIiIiIiIiIiIiJSgY10IiIiIiIiIiIiIiIV2EgnIiIiIiIiIiIiIlKBjXQiIiIiIiIiIiIiIhXYSCciIiIiIiIiIiIiUoGNdCIiIiIiIiIiIiIiFdhIJyIiIiIiIiIiIiJS4b+HNAfAZcLrdAAAAABJRU5ErkJggg==\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAJOCAYAAACz9fURAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNQ0lEQVR4nOzdd3gU5f7+8XvTIaEIhBBQBJENJQVIABEEKUJoCtIEQkRQwQNHQVRAPViOgtKxYoGoWCgKwlEpAtKUToAAgSiI9JCAlJCEtP394W/3y5Jks1k2Bfb9ui4vzMwzz3xmss9scmf2GYPJZDIJAAAAAAAAAADkya2kCwAAAAAAAAAAoDQjSAcAAAAAAAAAwAaCdAAAAAAAAAAAbCBIBwAAAAAAAADABoJ0AAAAAAAAAABsIEgHAAAAAAAAAMAGgnQAAAAAAAAAAGwgSAcAAAAAAAAAwAaCdAAAAAAAAAAAbCBIB4CbULt27RQUFGT5r169emrcuLFat26tQYMG6e2339bevXtt9jFo0CAFBQVp69atxVS1beZjOnHihNXy0lanJI0bN05BQUFavHhxSZdSJNauXasBAwaoSZMmlteYM87/1q1bFRQUpEGDBjmhytLLfM7gujIyMjR9+nR17NhRwcHBCgoKUrt27Uq6rJuao+OqNL6H5MWROt99912XuKYWpxMnTjBe8/D333/rvffeU9++fdW8eXMFBwerVatWGjp0qBYsWKDMzMySLvGms2fPHr3yyivq2rWrIiIiFBwcrBYtWigqKkoffPCBTp065ZT93Oo/swJAcSNIB4CbWJMmTdSzZ0/16NFDbdq0Ue3atXXo0CHNnTtXffr00aBBg3T8+PEirSG/APxmtXjxYgUFBWncuHElXUqJiI+P19NPP63du3erUaNG6tGjh3r27KkqVaoUuO3N9FpwlVAfheeMIG3mzJn66KOPdOXKFbVv3149e/ZUp06dnFglUPJuxuvozfQ+VVqsWrVKHTp00Lvvvqvff/9dwcHB6tSpk2rWrKktW7ZowoQJ6tatmw4fPuzU/ZbGANgZNaWlpWnMmDHq27ev5s+fr4sXLyo8PFydOnVSgwYNdOjQIc2aNUsdO3bU6tWrnVg9AMAZPEq6AACA4/r06aOHH37YapnJZNKGDRs0ceJEbdu2TY888ojmz5+vO+64w6rd22+/rbS0NFWvXr04S87XZ599pszMTAUEBJR0KQV69tln9cQTT6hq1aolXYrTrV69WpmZmRo+fLhGjx5d0uUAN6UVK1ZIkr766ivVqlWrZItxcaXtvQ6lW0BAgH766Sd5enqWdCmlws8//6xnnnlGOTk5evTRRzV69GiVKVPGsj4xMVEvvviiNm3apAEDBui7777T7bffXoIVl26ZmZkaOnSodu7cKX9/f7322mtq3769VZusrCz9/PPPmjFjBn/wAYBSiDvSAeAWYzAY1KZNGy1atEi1atVScnKyXn755Vztqlevrjp16lj9QlSSatasqTp16twUv7xWrVpVderUUbly5Uq6FKczf5T4zjvvLOFKgJuXeRwRope80vZeh9LN09NTderUUc2aNUu6FIeYpwhyRgB7/vx5jR8/Xjk5ORo8eLBefPHFXOMoICBAH374oRo3bqwLFy7ohRdeuOH93so++OAD7dy5U+XLl9c333yTK0SXJA8PD3Xu3FlLlixRs2bNSqBKAIAtBOkAcIsqX768XnzxRUnSli1btG/fPqv1+c3HmpGRoU8//VQPP/ywGjdurODgYLVs2VK9evXS5MmTdeHCBUn/NwXKyZMnJUnt27e3mrfd3O+1H/1OS0vTrFmz1LlzZ4WFhVlNnWDPx623bdumIUOGqFmzZgoLC1Pv3r31/fff59m2oPlmzXPLvvvuu1Y1jB8/XpK0ZMkSq+O59qPrBX2098cff9Sjjz6qZs2aKTg4WG3bttX48eP1559/5tn+2mPfsmWLhgwZoqZNmyo0NFQ9e/bM9xgLkpWVpW+++UaPPPKIwsPDFRISoo4dO+qNN95QYmJinufDfEzjx4/P89jzYu9r4VqZmZn6+OOP1bVrV4WGhqp58+YaOXKkzY+GX7x4Ue+8844eeughNW7cWGFhYerevbs++OADpaWl2X1eBg0apOjoaEn/vKaurfX66TwKcw4Lkp2drVdeeUVBQUHq3r27Tp8+bbWfRYsWadCgQZbXTbt27fTKK69YtTO7dlwV9lzu27dPo0aNUuvWrRUcHKwmTZqoffv2+ve//+3Qx8j//PNPvfrqq+rUqZPCwsLUpEkTdenSRa+++qoSEhJytT98+LDGjx+vtm3bKjg4WM2aNdOjjz6qn376Kc/+Cxpv+U3HdO3y1NRUTZs2TQ888IDlmjZ27Nhc38Nx48ZZgo2TJ09avTbsmZ/bPJZNJpMkWW17ff03cp1YvXq1oqOj1axZs0LPq71v3z6NHTtW7dq1U0hIiJo1a6YHH3xQb7/9tmUMX2vv3r165pln1KpVK8scvsOHD9evv/6aZ//Xfr+OHDmiUaNGqUWLFmrUqJF69epl9Rrbs2ePhg8frnvuuUehoaHq16+fNm/eXOAxLFy4UA8//LAaNWqkiIgIPfHEE9q9e3eebfN7L7i2zuPHj+v5559Xy5YtFRwcrA4dOmjGjBnKyMiweR7HjBmj+++/3/I6Hjp0qNavX5/vNqdPn9b48ePVqlUry7VkxowZSk9PL/CYC+Pa6YlMJpMWLFhgOV/h4eEaMmSIYmNj89z26NGjGj9+vNq1a6fg4GA1btxYbdu21ZNPPqnvvvvO0s7e6+i15zkhIUGjRo1Sq1atVL9+fcv7b17vx9cqaAqZxMREvf322+revbsaN26sRo0aqVOnTho3bpx27dolyf73qYKmdjpz5oz++9//qmPHjgoJCVF4eLjlk3/Z2dm52jtyHSotvv76a12+fFmVKlXSs88+m287Ly8vTZgwQZK0c+dObdu2zWp9QdfP68eo+XuwZMkSSdY/j1z/Orm278JcF4qypvykpKToiy++kCSNGDEi1ydFr+fr66sGDRrkWr5x40YNGzZMLVq0sMxVP2rUKMXFxRVYw7Wc8d56+fJlTZo0yfJ+0rFjR3388cfKycmR9M/YnDBhgtq0aWOZEmjevHl57u/acx4fH6+RI0da5uPv0qWL5s6da3lvBYCSxNQuAHALa926tSpWrKgLFy7ot99+U3BwsM32OTk5evLJJ7V582b5+fkpIiJC5cuX1/nz5/XXX39pzpw56t69uypWrKiaNWuqZ8+eWrlypVJTU9WpUyeVLVvW0tf1c2pfvXpVgwYN0uHDhxUREaF69epZQnl7/Pzzz/rqq6901113qVWrVjp79qx27typsWPH6uDBg06Z07xTp07avXu3du3apZo1ayo8PNyy7q677ipwe5PJpHHjxun777+Xh4eHIiIiVLlyZe3fv1+LFy/W8uXL9c4776h169Z5bv/dd9/pww8/VIMGDXTffffp5MmT2r17t8aOHasLFy5o8ODBdh9LRkaGhg0bpt9++03e3t5q3ry5/Pz8FBsbq3nz5umHH37QnDlz1LBhQ0lS/fr11bNnT+3cuVPHjh1TkyZNLHelF3TshX0tZGZm6sknn1RsbKwiIiJUp04d7d27Vz///LO2bt2qJUuW5Ppo+B9//KHHH39cp0+flr+/v8LDw+Xh4aG4uDjNmjVLq1at0rx58+z6lMB9990nLy8vbdq0SVWqVNF9991nWXfbbbc5fA5tuXLlikaNGqUNGzaoZcuWeuedd+Tn5yfpn1+un3rqKW3btk1ly5ZVcHCwbrvtNiUkJGj+/PlasWKFYmJi8vyFurDncvPmzXriiSeUmZmpevXqqVGjRsrJyVFiYqLWrVun7OxsdejQocDjMfvf//6nF198URkZGapevbratGmjnJwcHT9+XPPnz1flypVlNBot7detW6enn35aV69eVe3atdWxY0edO3dO27dv15YtW7Rp0yZNnDjR7v3b4/Lly3rkkUd0+vRphYeHq27dutq9e7e+//57bd++XUuXLrW8bsLDw5WamqqVK1eqbNmyhZ7XvFOnTvr7778tYUvPnj0t68x3uN7odSImJkZffvmlgoODdd999+ns2bNyd3e3q75PP/1U06ZNU05OjmrVqqX27dsrPT1dx44d09y5c1W3bl2r6cIWLlyoV155RTk5OWrQoIGaN2+ukydP6pdfftEvv/yif//73xo5cmSe+zpw4ID++9//KiAgQC1atNCpU6cUGxurkSNHaubMmfLw8NCoUaNUt25dtWjRQkeOHNHu3bv1+OOP6/PPP1dERESe/U6aNEmff/655Q9ACQkJ2rBhg3777TfNnDlTDzzwgF3nwiw+Pl5vvvmmKlSooKZNm+rixYvatWuXZs+erT/++EPvv/9+rm0+//xzvfXWW8rJyVH9+vUVGhqq5ORkbd26VZs2bcrzvBw+fFiDBg3SuXPn5O/vr3bt2iktLU2fffZZkT4Idfz48frhhx8UHh6u+++/X/Hx8fr111+1fft2ffnllwoLC7O0TUhIUP/+/ZWSkqLatWurbdu2cnNzU2JiorZv367ExET16tVLkv3XUbPY2Fi98sor8vf3V0REhNLT0+Xr63vDx7d582Y9/fTTunTpkipXrqwWLVrI09NTJ0+e1A8//CDpn+fJFPZ9Ki979+7VE088oQsXLqh69erq0KGDLl++rG3btik2NlY///yzPvzwQ3l5eeXatjDXodLC/Eevzp07y9vb22bbBg0ayGg0KiEhQWvXrr2hO6nLli2b788j0j8/r1zP2dcFZ9R0va1btyolJUUGg0EPPfSQQ3XMnDlTH374oQwGgxo3bqzq1avr8OHDWr58uVatWqXXX39dvXv3dqjvwrp06ZL69eunCxcuKCIiQleuXNGOHTs0bdo0JSYm6tFHH9WAAQPk4eGhxo0b6/z589qxY4feeOMNpaWl6cknn8yz302bNikmJkY1a9ZUy5YtlZSUpJ07d+rtt9/W6dOn9dJLLxXL8QFAvkwAgJtO27ZtTUaj0fTdd98V2Hbw4MEmo9Foeu6556yWR0VFmYxGo2nLli2WZdu2bTMZjUZTjx49TJcvX87V1969e03nz5/Ps5bjx4/nuf8tW7aYjEajyWg0mrp37246e/aszWO6vh9znUaj0TR79myrdVu3bjWFhoaajEajacOGDQUe37Xeeecdk9FoNL3zzjtWy7/77juT0Wg0jR07Ns/tTCaTaezYsXme/6+//tpkNBpNzZs3Nx04cMCyPCcnx7K/iIgI07lz5/I89oYNG5rWrl2bZz3h4eGmtLS0fGu63pQpU0xGo9HUoUMHq3OakZFhevHFF01Go9HUrl0709WrV+06NnsU5rXQo0cPq9dCenq6aciQISaj0Wj6z3/+Y7VdWlqaqUOHDiaj0WiaMWOGVc2pqammZ5991mQ0Gk3jxo2zu1ZzLVFRUfm2cfQcmo/R7MyZM6aHHnrIUmNGRoZVe3P9w4YNMyUnJ1uti4mJMRmNRlPHjh1NWVlZueov7LkcNGiQyWg0mpYuXZrreC9dumSKjY3N93xcLy4uztSwYUNTUFCQ6YsvvjBlZ2dbrT9x4oQpLi7O8nVSUpIpPDzcZDQaTR988IEpJyfHsm7v3r2mpk2bmoxGo2nBggVW/RT0msxvzJqXG41G05AhQ6yuaRcuXLB8T66/rhw/ftxkNBpNbdu2tftcXO/618C1bvQ6Ub9+fdPq1asLXdPq1atNRqPRFBISYvrxxx9zrf/9999Nf/zxh+XrgwcPmho0aGAKCgoyLVmyxKrtunXrTA0bNjQZjUbTpk2brNaZv195fZ+/+OILk9FoNLVu3drUtGnTXP2++eabJqPRaBo8eHCu+sx9hoaGmn777TerdZ988onlOnn9GMrvveDaOqdPn241vg4dOmRq1KiRyWg0mnbt2mW13YYNG0xBQUGm5s2bm7Zt22a17uDBg6bWrVubjEajaevWrVbrevXqZTIajaZnnnnGlJ6ebll+8uRJy/XN1ntWXsyvl+uvY+bXsPl1fOTIEcu6rKws0/jx4y3j4lrjxo2zfN+ul5aWlut47bmOXnuep06dmus6ce1xXP9+XNB+Tp06ZbmmTJ06Nde1ODk52bR9+3arZQW9T+U3/q9evWrZdsKECVbX8WPHjlnWTZ8+3Wo7R69DjjK/3vM7PntlZGSY6tWrZzIajbnGaX7Mr5+BAwdaLbd1PTSZCh6jtn4ecfS6UJQ15WfmzJkmo9Foat++faG3NZlMpvXr11uu4ddfdxcuXGj5OTIhIcGump3x3jps2DBTamqqZd2+fftMDRo0MNWrV8/UpUsX04QJE0yZmZmW9T///LPJaDSamjRpYrWdyWT98/4333xjte63334zBQUFmerXr286ffp0AWcKAIoWU7sAwC3OfGeYPXd/JycnS/rnrkzz3bLXCgkJyfNOM3tNmDBB/v7+Dm3boEEDDRs2zGpZs2bNNGDAAEn/3KVZ0ubOnSvpn4/sXnt3ksFg0MiRIxUUFKRLly5p4cKFeW4fFRWltm3bWi17+OGHddddd+ny5cu5pufJz9WrV/XVV19J+uduxGvvSPb09NTLL7+sKlWq6MSJE1q5cmWhjtEZDAaDJk2aZPVa8Pb21tNPPy1J+u2336zaL1myRMeOHVPbtm01atQoq7v9ypQpo9dff12VK1fWsmXLdPHiRafU6KxzePDgQfXt21fx8fF6+umnNWnSJKvnABw+fFg//vijqlatqqlTp6py5cpW2w8ePFht2rTR0aNHtWHDhlz9F/Zcnjt3TpLUpk2bXH2VK1dOjRo1yvdYrvfhhx8qMzNTUVFRGjRokNzcrH+srFGjhtWnYBYuXKjLly+rYcOGeuqpp2QwGCzrQkJCNHz4cEnSnDlz7K7BHmXLltWkSZOsrmkVKlSw3A13/Tkqajd6nejRo0ee8+oWxDz1wOjRo9WlS5dc6++++27VqVPH8vUXX3yhrKwsPfDAA+rRo4dV2zZt2qhfv36S8v9+hYaGavjw4Vbf5/79+6tixYo6c+aMWrRokavfp556SpK0fft2ZWZm5tlvv3791KJFC6tljz/+uIKDg3X58mUtWrQoz+3y07BhQ40aNcrqrn6j0agHH3xQUu7Xx7vvviuTyaTXXntNTZs2tVp37TQIX375pWX5zp07FRcXp7Jly+qVV16xuru3evXqGjt2bKFqLoyXX35ZtWvXtnzt7u5ueZD0tm3brM6zreuDj49PruMtjFq1amnUqFG5rhM3IiYmRpcvX1bbtm01ZsyYXHeCV65cOd9PNhTW8uXLdfLkSVWtWlUvvfSS1XX8jjvusHwP582bp6tXr+bavrRdhwpy8eJFy/Qc178v5cd8V//58+eLrK78OPu6UBTM58Xe83k983vHgAED1LJlS6t1ffr0Udu2bZWZmWmZPqaolS1bVm+++abVvPkNGzZU69atlZOTo9TUVL344ovy8Pi/SRA6dOggo9GolJSUfH+m7dixox555BGrZS1atFCrVq2UnZ2tLVu2FM0BAYCdCNIB4BZn/kXo2jAjPw0bNpS7u7u+++47ffXVVzp79qzT6rjRX2jz+xisOYjZuXNnnvOTFpczZ87o2LFjkqynczAzGAyWKRPy+xj/9SG6mTncsnce1bi4OKWmpqpixYp5zvNapkwZS5BWlFMK5Kd69eqqV69eruX5Had5zuHOnTvn2Z+vr6+Cg4OVlZVV6DlC8+OMc7hx40YNGDBA586d0+TJkzVixIhcbdavXy+TyaTWrVvn+ccrSZaPyOc1p3Fhz2VoaKgk6bnnntOOHTuUlZWV5z4Lkp2dbQl++vbta9c25nlz8xofkiwfRz969KhT5wwODg5W1apVcy03T1lUnPMTO+M6UdjpZiQpKSlJ8fHxcnNzs/tj//Z+v3bs2JHntbd169a53nc8PDxUo0YNSXmHtbfddpsqVqyozMzMfP/4m1895veC6+dnLkjbtm3zfH/MawydP39ee/fulY+PT77X6+bNm0uSZW7ua2u677778vxjdPv27YtkWg8PDw+rKVfM/P39VaFCBWVkZFidZ/P14dVXX9XGjRvzDIQd1aFDB7unILLXxo0bJcnyR52iZP4edu3aNc+pWzp27KgKFSroypUreQaEzr4Offzxxxo3blyu/44cOSJJmjx5cp7rizLkNpXg/NXOvi6UNllZWZZrSkHX5OL6uS44ODjPPwqYH7LdvHnzPKcEMq/P73eMgn4WdubvJgDgCOZIB4Bb3N9//y3pnzufClKzZk2NHz9ekydP1uuvv67XX39dNWrUUKNGjXT//fcrMjIyz18g7WEOTxx1/ZzZ1y9PT0/XhQsXHL7T50aZfwmuWLFivoGoeY7k/H5hrl69ep7Lzf3ZG2qYf8mwdc4LqqUoBQYG5rncfJzXP+Dv+PHjkqQXXnhBL7zwgs2+nRUSOOMcDh8+XFlZWZoyZYrl7tbrmY/t22+/1bfffmuzpryOrbDn8tlnn9WhQ4e0YcMGbdiwQT4+PmrQoIHlgZPX3pFsy4ULF5SamipJVne72mI+T/mN5fLly1ue6ZCYmKiAgAC7+i1IYc9RUXLGdSK/82eL+YG1/v7+dge2BX2/zA/Ku3r1ap7X3vzOu3lebFvrL1y4kO/1rqD3gjNnzuS5Pj+FeX2cOHFCJpNJ6enpCgkJsdmv+b332pryu54YDAbVqFFDBw8eLFTtBfH397e6c/pafn5+unjxotV5Hjp0qHbu3KnffvtNjz/+uDw9PRUUFKSmTZuqS5culqDdETf6M0BeTp06Jcm+Z5jcqILGg8Fg0O23366LFy/mOXadfR3auHGjzXA4v09KjRw5UpUqVSqw/woVKsjNzU05OTmWTyoUxNzOnv6dzdnXhaJgPi/2ns9rXXtNLOiaXFw/1+X3mjY/e6Cg94D8rvEFjRVn/oEPABxBkA4AtzCTyaT4+HhJsnrgny2DBg1S586dtXbtWu3cuVM7d+7Ujz/+qB9//FHvvvuuvvrqqzzvqiqIj49PobcprMLcDWW+U780sedTA7eCwn603/y9uu+++wp8IFx+f4woCT169NC3336rWbNmqXHjxpZfcq9lPrb69evneWf5ta59KKBZYc+lv7+/vvvuO23btk2//fabdu3apb1792rXrl366KOP9Oyzz+b7ALDSqqCx7MypJEqDgh76V1oUdN6L6vtS2LtiC1OHuW9HHkRbEgp7jsuUKaOYmBjt3btXGzduVGxsrGJjY7Vv3z7FxMRowIABeuWVVxyq5UZ+BiiN79eF5ezX+7x58/JcPmjQIG3btk1r1qxx6I9uZp6enjIajTp48KD27NmTaxqmvJg/EWbPA7ivVRzf38JeF4qiJvN5OXHihP7+++8bmiqxONzoe6ujr/lb7T0bwK2HIB0AbmHr16+3zBndqlUru7erUqWK+vbta5my4fDhw3rppZcUGxuradOm6e233y6Sem05ceJEnstPnjwp6Z9wqWLFipbl5rvwrly5kud25jvZnMV89+yFCxeUkpKS592m5ruPnXWnbX7Mf+gwn5u8FFctzhAYGKgjR46od+/eioyMLJZ9OuMcvvHGGypbtqy++OILDRw4UDExMbnu+DbfedWkSRNNmDDBGaUXyGAwqHnz5pYpKK5evarFixfr9ddf14wZMxQZGWm5Kzo/FStWVJkyZZSWlqY///zTrj/UBQQE6MiRI5bzdr3Lly9bppm49pwW91guSiV1nTC/zpKSknT58mW77koPCAjQsWPHdPz48Ty/v+Zrsre3t12feHKWEydOWM0tb2Yeq9WqVSuyfZv7NhgMmjhxot2Bj/l7aet6Uppex6GhoZa7z7OysrR69WqNHTtWX3/9tTp16qR77rnHqftzdIwHBgbqzz//1JEjR3TnnXc6tabrmb+H+V2/pP8bEzfD+6o92rdvr4MHD2rFihUaN26czT/i7d+/X7///rsk5ZoOzdPTU5mZmfle85zx2i/sdaE4arrePffcI19fX125ckVLly7V4MGD7d62YsWK8vLyUkZGho4fP57nH94L+95xK723AkBx4s99AHCLunz5siZNmiRJatmyZZ6/YNirTp06evzxxyXJcoe7mfkH8aKen3zZsmV5Lv/+++8l/fOA1GsfaGT+ReLw4cO5tklLS8t3Dknz8RR27uhq1apZwsfFixfnWm8ymbRkyRJJ/zeHblEJCQlR2bJldeHCBa1ZsybX+vT0dP30009Or6WoXgutW7eW9M/D3pyloO+zM86hwWDQSy+9pKeeekqJiYmKiorKNX7Mx7Z27doS+7iyt7e3+vfvr6CgIOXk5OjQoUMFbuPu7q57771XkvJ9KOb1zHO9m8fs9b777jtJ/8yfem0QYGssm0ymPB/CeiMcvQbYo6SuE/7+/qpXr55ycnIs57kg5u+XuZ7rmaciioiIsLr2FrWlS5faXG6uuygEBAQoKChIV65csczPbQ9zTRs3bsxz7vc1a9bo0qVLzirTqTw8PBQZGWn5Y/y10884a6zYGuPS/z0n43rm+d/tvQZJjr9Pmb+HP/30U57X6p9//lkXL160PLPjVhAVFSU/Pz+dP39e06ZNy7ddRkaG/vvf/0qSGjdunOvaZf7DtHn+9msdPHjQMvXU9QrzvSrsdaE4arqen5+fBg0aJEl6//33bf5RRvon4D5w4ICkf8ZheHi4pPyvyeZru73vHcX93goAtwqCdAC4xZhMJq1fv169e/fW0aNH5e/vb/kFpyCbN2/W+vXrlZmZmavPdevWSco9dYb5B3HznUhFZf/+/frkk0+slu3YsUNff/21JOW6s6dFixaSpK+//tpqvsjU1FT95z//yfeXJPNdS/n9Qm/LkCFDJEkffPCBVdhgMpn0wQcfKD4+XuXLl7f74YyO8vb21sCBAyVJb7/9ttVdkJmZmXrzzTeVlJSk22+/3anTExTVa6Fv376qUaOGVqxYoSlTpiglJSVXm6SkpEKFKebv819//ZXr9S459xyOGjVKzz//vM6fP6/o6Girh4Y2aNBAnTp10unTpzVy5Mg8P3mRmpqqZcuWKTk52e7jy8+cOXPyvMvs8OHD+uuvvyTZPz3O8OHD5eHhoa+++kpfffVVro/Onzx50uqhe3379pWfn5/279+v2bNnW7U/cOCAPvzwQ0n/zNN8LfNYXrp0qf744w/L8szMTE2ZMsVpD5g1q1Spkjw9PZWcnJzvAy9vREldJ0aOHClJmjFjRp7zJ//xxx9W173o6Gh5eHho9erVuUKqTZs2acGCBVbHU1y++eabXH8I/eyzz7R37175+vra/TBVR40aNUqSNH78eK1duzbXepPJpD179mjTpk2WZREREWrYsKFSU1P1+uuvW82Hffr0aU2ePLlIa7bXV199lWewmJSUZBnL114fCrqO2uuee+6Rm5ubNm3aZDXvt8lk0hdffJHvfN+PPfaYfH19tXbtWs2YMSNXDefOndOOHTusljn6PtW5c2dVr15dZ8+e1aRJk6z+eHD8+HG99dZbkv6ZWuVmmX6pIJUqVdKbb74pg8Ggzz//XJMmTVJaWppVm8TERD311FOKjY1V+fLl83wtm//o+t577+V65sC4cePynXalMN+rwl4XiqOmvIwYMUKNGzfWpUuXNGDAgDyvIdnZ2fr555/18MMPW42Hxx57TNI/x7p582arbRYvXqy1a9fK09NT0dHRdtVS3O+tAHCrYGoXALiJLVq0yPJDdkZGhv7++28dOHDAEv40a9ZMEydOtPshX4cOHdKkSZPk5+enBg0aqGrVqrp69aoOHDigkydPqly5cnrmmWestunUqZO2bt2q559/Xq1atVL58uUl/ROGOfMBYIMGDdL06dO1dOlSBQUF6ezZs9qxY4dycnIUHR2tNm3aWLXv3LmzPv/8c+3bt09du3ZVeHi4cnJytG/fPnl6eqpXr1553pkZFhamqlWr6sCBA+rZs6eMRqM8PDxUu3Zty135+XnkkUcUGxurpUuXqlevXmratKkqV66s/fv3688//5SPj4+mTp1aLA/ievrpp7Vv3z5t3rxZXbp0UfPmzeXr66vdu3fr1KlTqlixombNmuXww2PzUlSvhbJly+qjjz7SsGHD9Omnn2rhwoUKCgpSQECA0tPTdfToUR0+fFiVK1e2O3ysXr26goODtW/fPnXv3l3BwcHy9vbWbbfdpueee06Sc8/h448/Ll9fX7322msaMmSIPvjgA8svsRMnTtSlS5e0YcMGRUZGql69err99ttlMpl08uRJHTx4UJmZmfrpp58KnCO+IB9++KEmT56su+66S3Xq1JG3t7fOnj2rXbt2KSsrSz169LB7ftvQ0FC9+eabevnll/X6669rzpw5Cg4Olslk0vHjx3Xw4EGNGDHCcndmlSpVNHXqVD3zzDOaMWOGli5dqgYNGujcuXPavn27srKy9PDDD+f6HoaHh6t9+/Zas2aNevXqpfDwcHl7e+vAgQNKSUlRdHS0vvjiixs6L9fy9PRUu3bttHLlSvXo0UPh4eGW+Z3ffPPNG+6/pK4TDzzwgEaPHq2ZM2fq6aef1l133aV69eopPT1dx44d0x9//KFJkyZZph8KCgrShAkT9Oqrr+qFF17Q559/rtq1a+vUqVOKjY2VyWTSv//970JNG+YM/fr106OPPqqIiAgFBAQoISFBCQkJcnd318SJE+Xv71+k+2/Xrp1eeuklvf3223rqqad05513qnbt2vLz89Pff/+tgwcP6ty5c3riiSeszs3kyZM1aNAg/fjjj9q+fbvCw8OVnp6uLVu2KCgoSI0bN7b6I1tJWLhwoV5//XXdfvvtqlu3ruWYduzYofT0dN1zzz1W03bYcx21R2BgoKKiovTFF19o8ODBCg8PV8WKFS13Bj/55JP6+OOPc21XvXp1vfPOO3r66ac1e/Zsffvtt2rUqJE8PDx06tQpxcfHq1u3boqIiLBs4+j7lJeXl2bNmqUnnnhC33zzjTZs2KCwsDBduXJFW7Zs0dWrV9WqVSuNGDHC7uO+GURGRmrGjBl66aWX9Nlnn2nRokVq0qSJKlSooMTERMXGxiorK0s1a9bU+++/n+e0YMOGDdPKlSu1fv16derUSSEhITp//rzi4uLUpEmTfF/7HTp00Pvvv6958+bp999/V7Vq1eTm5qZ27dqpffv2Vm0Le10ojpry4uXlpTlz5uill17S8uXL9dRTT8nf31/BwcGWBy3v27dPFy5ckJeXl9U8923atNFTTz2lDz/8UI899piaNGlimd5o//79cnd316uvvqq6desWWIdU/O+tAHCrIEgHgJvYrl27tGvXLkn/hI1+fn4yGo0KDg5W586dLXOc2qtdu3ZKSUnRjh079Ndff2nPnj3y8fFRtWrV9OSTT2rgwIG55pns37+/rly5omXLlmn9+vWWjzw/+OCDTg3SH3jgAbVv314fffSR5a75Bg0aKCoqSj179szV3tPTUzExMZo1a5ZWr16tX3/9VZUqVdIDDzygZ555xnIn+/XMv+TMmDFDu3fv1sGDB5WTk6NmzZoVGKQbDAZNnjxZrVu31oIFC7R//36lpaWpSpUqevjhh/XEE0849ZzY4uXlZQmdly5dqh07digjI0OBgYEaNGiQnnjiCafP41qUr4W6detq2bJlmj9/vlavXq1Dhw5p9+7dqlixoqpVq6YhQ4bogQceKFSf7777rqZNm6atW7dq+fLlysrKUo0aNSwBkLPPYf/+/eXr66vx48dr2LBhmjVrltq2bSs/Pz/NnTtXP/30k5YtW6b9+/fr4MGD8vX1VdWqVdW9e3e1b9++wHnL7TFhwgRt3rxZ+/bt0/bt25Wamip/f3/de++96tevn11BwLV69Oih4OBgxcTEaMuWLfrll1/k7e2tgIAADRw4UJ07d7Zq37ZtWy1ZskSffPKJNm/erJUrV6pMmTIKDw/XI488oi5duuS5n5kzZ+qDDz7QDz/8oG3btql8+fJq0aKFnnnmmVx3nDrD66+/rooVK2rjxo1auXKl5U5XZwTpJXmdGD58uO655x7NmzdP27dv188//yxfX19Vq1ZNjz/+eK65r/v166d69eppzpw52rVrlw4dOiQ/Pz+1adNG0dHRatmyZZHUacuLL76o2rVra8GCBYqLi5OHh4fuu+8+/etf/1KTJk2KpYbo6Gjdc889+vLLL7V161Zt3rxZbm5uqlKliurXr6/7779fHTt2tNrm7rvv1nfffad3331XGzZs0OrVq1WtWjVFRUVpxIgRpeIhv6NHj9a6deu0Z88e7dmzR5cvX1blypUVGhqqXr16qWvXrrmm8SnoOmqvF198UdWrV9eiRYsUGxsrX19fNW7cWDNnzlRKSkqeQbr0z/NffvjhB8XExGjjxo3auHGj3N3dVbVqVT344IO5/jB3I+9ToaGh+v777/XJJ59ow4YN+vnnn+Xl5aUGDRrooYceUp8+fYp1mqPi0rlzZzVv3lxff/211q9fr7i4OF25ckXly5dX8+bN9cADD6hXr175/lH5jjvu0Pz58zVz5kxt3bpVv/zyi2rUqKHhw4fr8ccfz/dTLfXq1dO7776rOXPmaM+ePdq8ebNMJpOqVauW672qsNeF4qgpP76+vpo5c6YGDx6sxYsXa8eOHdq+fbvS09NVrlw51a1bV61atVLPnj1z/YwxatQoNWnSRF9++aVlnN52222KjIzU0KFDC/1zf3G/twLArcBgKuwjrAEAAAAAAEpQUFCQJNn1bA8AAJyBOdIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIE50gEAAAAAAAAAsIE70gEAAAAAAAAAsIEgHQAAAAAAAAAAGzxKuoBbUU5OjrKysuTm5iaDwVDS5QAAAAAAAAAArmMymZSTkyMPDw+5udm+55wgvQhkZWUpLi6upMsAAAAAAAAAABQgJCREXl5eNtsQpBcB818vQkJC5O7uXsLVFI/s7GzFxcW51DEDrorxDrgOxjvgGhjrgOtgvAOug/FuH/N5KuhudIkgvUiYp3Nxd3d3uReqKx4z4KoY74DrYLwDroGxDrgOxjvgOhjv9rFnem4eNgoAAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2OBR0gUAjjp27JiSk5OLdB9VqlRRzZo1i3QfAAAAAAAAAEo3gnTclI4dO6agevWVnpZapPvxKVNWhw7GE6YDAAAAAAAALowgHTel5ORkpaelqvZjU+UTeHeR7CP99B/6M+Y5JScnE6QDAAAAAAAALowgHTc1n8C75VuzYZHuIz4+vkj7l5hCBgAAAAAAACjNCNKBfGReTJIMboqKiiryfTGFDAAAAAAAAFB6EaQD+chKuySZcop0+hiJKWQAAAAAAACA0o4gHShAcUwfAwAAAAAAAKD0civpAgAAAAAAAAAAKM0I0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbSm2Qvn//fg0fPlzNmjVTWFiYunXrpi+++MKqza5du9S/f3+FhYWpZcuWeuONN3TlypVcfWVkZGjKlClq1aqVQkND1adPH/3666957tfePgEAAAAAAAAArsGjpAvIy6ZNmzR8+HA1aNBA//rXv1S2bFkdO3ZMZ86csbSJj4/X4MGDVadOHY0bN05nzpzR3LlzdfToUX366adW/Y0bN04rV65UdHS0atWqpSVLlujJJ5/U559/roiICIf6BAAAAAAAAAC4hlIXpKekpGjs2LG6//779c4778jNLe+b5qdPn67y5ctr3rx58vPzkyTdfvvtevnll7Vp0ya1atVKkrR37179+OOPeuGFFzR06FBJUo8ePdStWzdNnTpV8+fPL3SfAAAAAAAAAADXUeqmdvnf//6n5ORkjR49Wm5ubkpNTVVOTo5Vm5SUFP3222968MEHLYG3JD300EMqW7asli9fblm2YsUKubu7q1+/fpZl3t7e6t27t2JjY3X69OlC9wkAAAAAAAAAcB2lLkjfvHmz/Pz8lJiYqE6dOqlx48YKDw/XK6+8oqtXr0qSDh06pKysLAUHB1tt6+Xlpfr16ys+Pt6yLD4+XrVq1bIKxyUpNDTUsr6wfQIAAAAAAAAAXEepm9rl6NGjys7O1r/+9S/17t1bY8aM0bZt2zRv3jxdvnxZ06dPV1JSkiSpatWqubb39/fXzp07LV8nJSXJ398/z3aSdPbsWUs7e/u0V3Z2dqG3uVmZj7W4jvlWPLfZ2dm35HHh1lPc4x1AyWG8A66BsQ64DsY74DoY7/YpzPkpdUF6amqq0tLS9Mgjj+jll1+WJHXs2FEZGRlasGCBnn76aaWnp0v6527x63l7e1vWS1J6enq+7czrr/3Xnj7tFRcXV+htbnbFdcwJCQnFsp/ilJCQkO8zAYDSyBWvcYCrYrwDroGxDrgOxjvgOhjvzlPqgnQfHx9JUrdu3ayWd+/eXQsWLNDu3bstbTIyMnJtf/XqVct6c3/5tbt2f4Xp014hISFyd3cv9HY3o+zsbMXFxRXbMV8/b/6twGg0qlGjRiVdBlCg4h7vAEoO4x1wDYx1wHUw3gHXwXi3j/k82aPUBelVq1bV77//rsqVK1str1SpkiTp4sWLuuOOOyT937Qs10pKSrKansXf31+JiYl5tjPvz9zO3j7t5e7u7nIv1OI65lvxvLri6wU3N16zgOtgvAOugbEOuA7GO+A6GO/OU+rmkWjYsKEk5Qq/zQF3pUqVZDQa5eHhoX379lm1ycjIUHx8vOrVq2dZVq9ePR09elQpKSlWbffs2SNJql+/viQVqk8AAAAAAAAAgOsodUF6586dJUnffvut1fJvv/1WHh4eatasmcqVK6cWLVpo2bJlVgH50qVLlZqaqsjISMuyyMhIZWdna8GCBZZlGRkZWrx4scLCwhQYGChJheoTAAAAAAAAAOA6St3ULg0aNFCvXr303XffKTs7W02bNtW2bdu0YsUKDRs2TAEBAZKk0aNH65FHHtGgQYPUt29fnTlzRjExMWrVqpVat25t6S8sLEyRkZGaPn26zp07pzvvvFNLlizRyZMn9eabb1rt294+AQAAAAAAAACuo9QF6ZL02muvqXr16lq8eLFWr16t6tWra/z48Ro8eLClTcOGDRUTE6OpU6dq0qRJ8vX1Ve/evfXss8/m6m/y5MmaOXOmli1bposXLyooKEizZ89W06ZNrdoVpk8AAAAAAAAAgGsolUG6p6enRo4cqZEjR9psFxERofnz5xfYn7e3t8aOHauxY8cW2NbePgEAAAAAAAAArqHUzZEOAAAAAAAAAEBpQpAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANpS5I37p1q4KCgvL8b/fu3VZtd+3apf79+yssLEwtW7bUG2+8oStXruTqMyMjQ1OmTFGrVq0UGhqqPn366Ndff81z//b2CQAAAAAAAABwDR4lXUB+Bg0apJCQEKtlNWvWtPx/fHy8Bg8erDp16mjcuHE6c+aM5s6dq6NHj+rTTz+12m7cuHFauXKloqOjVatWLS1ZskRPPvmkPv/8c0VERDjUJwAAAAAAAADANZTaID0iIkKRkZH5rp8+fbrKly+vefPmyc/PT5J0++236+WXX9amTZvUqlUrSdLevXv1448/6oUXXtDQoUMlST169FC3bt00depUzZ8/v9B9AgAAAAAAAABcR6mb2uVaKSkpysrKynP5b7/9pgcffNASeEvSQw89pLJly2r58uWWZStWrJC7u7v69etnWebt7a3evXsrNjZWp0+fLnSfAAAAAAAAAADXUWqD9PHjxys8PFyhoaEaNGiQ4uLiLOsOHTqkrKwsBQcHW23j5eWl+vXrKz4+3rIsPj5etWrVsgrHJSk0NNSyvrB9AgAAAAAAAABcR6mb2sXT01OdOnVS69atddttt+nw4cOaM2eOBg4cqPnz56tBgwZKSkqSJFWtWjXX9v7+/tq5c6fl66SkJPn7++fZTpLOnj1raWdvn/bKzs4u9DY3K/OxFtcx34rnNjs7+5Y8Ltx6inu8Ayg5jHfANTDWAdfBeAdcB+PdPoU5P6UuSG/SpImaNGli+bp9+/bq1KmTHnzwQU2bNk1z5sxRenq6pH/uFr+et7e3Zb0kpaen59vOvP7af+3p017X3kXvKorrmBMSEoplP8UpISFBbm6l9kMiQC6ueI0DXBXjHXANjHXAdTDeAdfBeHeeUhek5+XOO+9U+/bttWrVKmVnZ8vHx0eSlJGRkavt1atXLeslycfHJ9925vXX/mtPn/YKCQmRu7t7obe7GWVnZysuLq7YjjknJ6fI91HcjEajGjVqVNJlAAUq7vEOoOQw3gHXwFgHXAfjHXAdjHf7mM+TPW6KIF2SqlWrpszMTKWlpeWaluVaSUlJVtOz+Pv7KzExMc920v9N5VKYPu3l7u7uci/U4jrmW/G8uuLrBTc3XrOA62C8A66BsQ64DsY74DoY785z08wjceLECXl7e6ts2bIyGo3y8PDQvn37rNpkZGQoPj5e9erVsyyrV6+ejh49qpSUFKu2e/bskSTVr19fkgrVJwAAAAAAAADAdZS6IP38+fO5lh08eFBr165Vy5Yt5ebmpnLlyqlFixZatmyZVUC+dOlSpaamKjIy0rIsMjJS2dnZWrBggWVZRkaGFi9erLCwMAUGBkpSofoEAAAAAAAAALiOUje1y6hRo+Tj46PGjRurcuXK+uOPP7Rw4UL5+Pjoueees7QbPXq0HnnkEQ0aNEh9+/bVmTNnFBMTo1atWql169aWdmFhYYqMjNT06dN17tw53XnnnVqyZIlOnjypN99802rf9vYJAAAAAAAAAHAdpS5I79Chg/73v//ps88+U0pKim677TY98MADGjlypO68805Lu4YNGyomJkZTp07VpEmT5Ovrq969e+vZZ5/N1efkyZM1c+ZMLVu2TBcvXlRQUJBmz56tpk2bWrUrTJ8AAAAAAAAAANdQ6oL06OhoRUdH29U2IiJC8+fPL7Cdt7e3xo4dq7FjxzqtTwAAAAAAAACAayh1c6QDAAAAAAAAAFCaEKQDAAAAAAAAAGADQToAAAAAAAAAADYQpAMAAAAAAAAAYANBOgAAAAAAAAAANhCkAwAAAAAAAABgA0E6AAAAAAAAAAA2EKQDAAAAAAAAAGADQToAAAAAAAAAADYQpAMAAAAAAAAAYANBOgAAAAAAAAAANhCkAwAAAAAAAABgA0E6AAAAAAAAAAA2EKQDAAAAAAAAAGADQToAAAAAAAAAADYQpAMAAAAAAAAAYANBOgAAAAAAAAAANhCkAwAAAAAAAABgA0E6AAAAAAAAAAA2EKQDAAAAAAAAAGADQToAAAAAAAAAADY4NUg3mUw6evSoTp8+7cxuAQAAAAAAAAAoMQ4F6atWrdILL7ygixcvWpadOHFCDz74oDp37qx27dpp9OjRys7OdlqhAAAAAAAAAACUBIeC9G+++Ubx8fGqUKGCZdmkSZP0+++/q3nz5goKCtKKFSv03XffOa1QAAAAAAAAAABKgkNB+h9//KHQ0FDL1ykpKVq/fr26dOmizz77TIsWLVKdOnUI0gEAAAAAAAAANz2HgvSLFy+qSpUqlq937typrKwsde3aVZLk6empe++9V8eOHXNOlQAAAAAAAAAAlBCHgnQ/Pz9duHDB8vXWrVvl5uamiIgIyzIPDw+lpaXdcIEAAAAAAAAAAJQkh4L0u+66S7/88ov+/vtvXbp0ST/88IMaNmxoNWf6qVOnVLlyZacVCgAAAAAAAABASXAoSB80aJDOnj2rNm3a6P7771dSUpL69+9v1WbPnj2qV6+eU4oEAAAAAAAAAKCkeDiyUadOnTRhwgR9++23kqSuXbvq4Ycftqzftm2bUlJSdN999zmnSgAAAAAAAAAASohDQbokDRgwQAMGDMhzXbNmzbR9+3aHiwIAAAAAAAAAoLRwaGoXAAAAAAAAAABchcNBelZWlj777DP17t1bTZo0UYMGDSzr4uPj9eqrr+rPP/90SpEAAAAAAAAAAJQUh6Z2SU9P15AhQxQbG6vbbrtNfn5+SktLs6y//fbbtXjxYlWoUEGjR492WrEAAAAAAAAAABQ3h+5Inz17tnbt2qVnn31Wv/76q/r06WO1vly5cmratKk2bdrklCIBAAAAAAAAACgpDgXpy5cvV/PmzfXEE0/IYDDIYDDkanPHHXfo9OnTN1wgAAAAAAAAAAAlyaEg/dSpUwoODrbZxtfXV5cvX3aoKAAAAAAAAAAASguHgnRfX1+dP3/eZpvjx4+rUqVKDhUFAAAAAAAAAEBp4VCQ3qhRI61du1aXLl3Kc/3p06e1fv16RURE3FBxAAAAAAAAAACUNIeC9KFDh+rSpUsaPHiwdu7cqaysLElSWlqaNm/erKFDhyo7O1uPPfaYU4sFAAAAAAAAAKC4eTiyUdOmTfWf//xHEydOVFRUlGV5kyZNJEnu7u565ZVXCpxHHQAAAAAAAACA0s6hIF2SBgwYoObNm+ubb77R3r17dfHiRfn6+iosLEwDBgxQ3bp1nVknAAAAAAAAAAAlwuEgXZLq1Kmjl19+2Vm1AAAAAAAAAABQ6jg0RzoAAAAAAAAAAK7CrjvST5065fAOqlev7vC2AAAAAAAAAACUNLuC9Hbt2slgMBS6c4PBoAMHDhR6OwAAAAAAAAAASgu7gvQePXo4FKQDAAAAAAAAAHCzsytIf+utt4q6DgAAAAAAAAAASiUeNgoAAAAAAAAAgA123ZFuy4EDB3TgwAGlpKTIz89PDRo0UIMGDZxRGwAAAAAAAAAAJc7hIH3v3r36z3/+o4SEBEmSyWSyzKNuNBr1xhtvKCQkxDlVAgAAAAAAAABQQhwK0vfv369HH31UaWlpatGihcLDw1WlShUlJydrx44d2rJli6Kjo/X111+rfv36zq4ZAAAAAAAAAIBi41CQPn36dGVmZmrOnDlq2bJlrvUbN27UU089palTp2rOnDk3XCQAAAAAAAAAACXFoYeN7tq1S5GRkXmG6JJ03333qVOnToqNjb2h4gAAAAAAAAAAKGkOBekeHh6qUaOGzTa333673N3dHSoKAAAAAAAAAIDSwqEgvXHjxtqzZ4/NNrt371Z4eLhDRQEAAAAAAAAAUFo4FKS/8MIL2r9/v2bMmKG0tDSrdWlpaZo+fbri4+P1/PPPO6VIAAAAAAAAAABKikMPG50zZ46CgoL08ccfa/78+apfv74qV66sc+fOKT4+XpcuXVJERIQ+/fRTq+0MBoMmTpzolMIBAAAAAAAAACgODgXpS5Yssfz/xYsXtWXLllxttm/fru3bt1stI0gHAAAAAAAAANxsHArS16xZ4+w6AAAAAAAAAAAolRwK0mvUqOHsOgAAAAAAAAAAKJUcethocfrwww8VFBSkbt265Vq3a9cu9e/fX2FhYWrZsqXeeOMNXblyJVe7jIwMTZkyRa1atVJoaKj69OmjX3/9Nc/92dsnAAAAAAAAAMA1OHRHull8fLwOHjyos2fPKjMzM9d6g8GgESNGONz/mTNn9NFHH6ls2bJ57nvw4MGqU6eOxo0bpzNnzmju3Lk6evRoroecjhs3TitXrlR0dLRq1aqlJUuW6Mknn9Tnn3+uiIgIh/oEAAAAAAAAALgGh4L0c+fOacyYMdq6daskyWQy5dnuRoP0t99+W2FhYcrJydHff/9ttW769OkqX7685s2bJz8/P0nS7bffrpdfflmbNm1Sq1atJEl79+7Vjz/+qBdeeEFDhw6VJPXo0UPdunXT1KlTNX/+/EL3CQAAAAAAAABwHQ4F6a+99pq2bNmiNm3aqEuXLqpatarc3d2dWtj27du1cuVKLVmyRG+88YbVupSUFP3222969NFHLYG3JD300EOaOHGili9fbgm9V6xYIXd3d/Xr18/SztvbW71799b06dN1+vRpBQYGFqpPAAAAAAAAAIDrcChI37Rpk5o3b66PPvrI2fVIkrKzs/Xf//5XvXv3VlBQUK71hw4dUlZWloKDg62We3l5qX79+oqPj7csi4+PV61atazCcUkKDQ21rA8MDCxUnwAAAAAAAAAA1+FQkO7p6amGDRs6uxaL+fPn69SpU/rss8/yXJ+UlCRJqlq1aq51/v7+2rlzp1Vbf3//PNtJ0tmzZwvdp72ys7MLvc3NynysxXXMt+K5zc7OviWPC7ee4h7vAEoO4x1wDYx1wHUw3gHXwXi3T2HOj0NBenh4uA4ePOjIpgX6+++/9c477+hf//qXKlWqlGeb9PR0Sf/cLX49b29vy3pz2/zaXdtXYfq0V1xcXKG3udkV1zEnJCQUy36KU0JCgtzc3Eq6DMBurniNA1wV4x1wDYx1wHUw3gHXwXh3HoeC9DFjxqh///768ssvFRUV5dSCZs6cqQoVKtjs18fHR5KUkZGRa93Vq1ct681t82t3bV+F6dNeISEhTp87vrTKzs5WXFxcsR1zTk5Oke+juBmNRjVq1KikywAKVNzjHUDJYbwDroGxDrgOxjvgOhjv9jGfJ3s4FKTXqVNHX331lQYOHKh58+YpKChIvr6+udoZDAZNnDjR7n6PHj2qhQsX6sUXX7RMuSL9E2RnZmbqxIkT8vPzyzUty7WSkpKspmfx9/dXYmJinu2k/5vKpTB92svd3d3lXqjFdcy34nl1xdcLbm68ZgHXwXgHXANjHXAdjHfAdTDencehIP348eMaMWKELl26pEuXLumvv/7Ks11hg/TExETl5OTojTfe0BtvvJFrffv27RUdHa2nn35aHh4e2rdvn7p06WJZn5GRofj4eHXu3NmyrF69etq6datSUlKsHji6Z88eSVL9+vUl/XM3sL19AgAAAAAAAABch0NB+htvvKFjx46pf//+6tq1q6pWreqUv2zUrVtX77//fq7lM2fO1JUrV/TSSy/pjjvuULly5dSiRQstW7ZM//rXvywB+dKlS5WamqrIyEjLtpGRkZo7d64WLFigoUOHSvonHF+8eLHCwsIUGBgoSYXqEwAAAAAAAADgOhwK0rdv3662bdvqlVdecWoxlSpVUocOHXIt//zzzyXJat3o0aP1yCOPaNCgQerbt6/OnDmjmJgYtWrVSq1bt7a0CwsLU2RkpKZPn65z587pzjvv1JIlS3Ty5Em9+eabVvuxt08AAAAAAAAAgOtwc2QjLy8v1apVy8mlFE7Dhg0VExMjb29vTZo0SQsXLlTv3r01a9asXG0nT56s6OhoLVu2TG+88YaysrI0e/ZsNW3a1OE+AQAAAAAAAACuwaE70lu2bKnY2Fhn15KvefPm5bk8IiJC8+fPL3B7b29vjR07VmPHji2wrb19AgAAAAAAAABcg0N3pL/wwgtKSkrS22+/ratXrzq7JgAAAAAAAAAASg2H7kh//vnnVa5cOX322WdauHCh7rzzTsvDOa9lMBgs85sDAAAAAAAAAHAzcihI37Ztm+X/r1y5ogMHDuTZzmAwOFYVAAAAAAAAAAClhENB+sGDB51dBwAAAAAAAAAApZJDc6QDAAAAAAAAAOAqCNIBAAAAAAAAALDBoaldzM6cOaMtW7bo7NmzysjIyLXeYDBoxIgRN7ILAAAAAAAAAABKlMNB+ttvv6158+YpOzvbssxkMlkeMGr+f4J0AAAAAAAAAMDNzKGpXRYuXKiYmBg1b95c77zzjkwmk3r06KHp06frkUcekbu7uyIjI/X55587u14AAAAAAAAAAIqVQ3ekL1iwQDVq1NAnn3wiN7d/svgaNWqoS5cu6tKlizp37qwhQ4YoMjLSqcUCAAAAAAAAAFDcHLoj/ciRI7rvvvssIbokqylemjVrpjZt2mju3Lk3XiEAAAAAAAAAACXIoSBdksqXL2/5/zJlyujChQtW62vXrq3ff//d4cIAAAAAAAAAACgNHArSAwICdObMGcvXNWvW1J49e6za/P777ypbtuyNVQcAAAAAAAAAQAlzKEhv0qSJVXDevn17xcfHa8KECVq3bp2mTZumDRs2KCIiwmmFAgAAAAAAAABQEhx62OhDDz2ks2fP6uTJk6pRo4aGDh2qdevWaeHChVq0aJFMJpNq1KihF154wdn1AgAAAAAAAABQrBwK0ps3b67mzZtbvvb19dWCBQu0Zs0aHTt2TDVq1FDbtm2Z2gUAAAAAAAAAcNNzKEjPi6enpyIjI53VHQAAAAAAAAAApYJDc6THxsba1e7rr792pHsAAAAAAAAAAEoNh4L0QYMG6YMPPpDJZMpz/YULF/TUU0/pv//97w0VBwAAAAAAAABASXMoSK9Tp47effddRUdHKzEx0Wrdli1b9NBDD+mXX35Rt27dnFIkAAAAAAAAAAAlxaEgfdGiRRo4cKC2b9+uBx98UCtXrlR2dramTJmiIUOG6MqVK5o8ebKmTJni7HoBAAAAAAAAAChWDj1s1MvLSy+//LLuu+8+jR8/XqNGjVK1atV05swZhYWFacqUKbrjjjucXSsAAAAAAAAAAMXOoTvSzdq0aaPBgwfLZDLp9OnTqlixombNmkWIDgAAAAAAAAC4ZTgcpKekpGjMmDGaMWOGAgIC1LVrV/3999/q1auXNmzY4MwaAQAAAAAAAAAoMQ4F6bGxsXrooYf0448/qkOHDlq2bJmmTZumWbNmKSMjQ8OGDdObb76pjIwMZ9cLAAAAAAAAAECxcihIj4qK0rlz5/Taa6/p3XffVYUKFSRJnTp10v/+9z9FRERo3rx56tOnj1OLBQAAAAAAAACguDkUpNetW1eLFy9Wv379cq0LCAjQF198oaefflqHDx++4QIBAAAAAAAAAChJHo5stHDhQnl5eeW73mAw6F//+pdatmzpcGEAAAAAAAAAAJQGDt2RbitEv1ZYWJgj3QMAAAAAAAAAUGrYHaS/99572r59u9Wyc+fO6eDBg3m2/+mnnzRy5Mgbqw4AAAAAAAAAgBJWqCB969atVsu++eYb9ezZM8/2R44c0Zo1a26sOgAAAAAAAAAASphDU7sAAAAAAAAAAOAqCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGzwK0/j333/XTz/9ZPk6ISFBkrR8+XKZTCartuZ1AAAAAAAAAADczAoVpK9atUqrVq2yfG0Oz5999tlcbU0mkwwGww2WBwAAAAAAAABAybI7SB85cmRR1gEAAAAAAAAAQKlEkA4AAAAAAAAAgA08bBQAAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALDBriB95MiR+umnnyxfb9++XadOnSqyogAAAAAAAAAAKC3sCtJXr16tI0eOWL6Ojo7W4sWLi6woAAAAAAAAAABKC7uC9PLly+vKlSuWr00mU5EVBAAAAAAAAABAaeJhT6M6derohx9+UEhIiPz9/SVJJ0+e1Pbt2wvctmnTpjdWIQAAAAAAAAAAJciuIH3EiBEaMWKExowZY1n2/fff6/vvvy9w2/j4eIeLAwAAAAAAAACgpNkVpLdq1Uo//fSTfvvtNyUmJuq9995T06ZN1axZs6KuDwAAAAAAAACAEmVXkC5JNWrUUJ8+fSRJ7733npo1a6aRI0cWWWEAAAAAAAAAAJQGdgfp11qzZo3Kly/v7FoAAAAAAAAAACh1HArSa9SoYfn/rKws/fnnn0pJSZGfn59q164tDw+HugUAAAAAAAAAoNRxOPG+cOGCpk6dqh9++EFXr161LPfx8VG3bt307LPP6rbbbnNKkQAAAAAAAAAAlBSHgvQLFy6oX79++uuvv1ShQgWFh4eratWqSkpK0r59+7Ro0SJt27ZNCxYsUMWKFZ1cMgAAAAAAAAAAxcehIP2DDz7QX3/9paFDh2rEiBEqW7asZV1aWpo++OADffLJJ5o9e7bGjRvntGIBAAAAAAAAAChuDj9stFmzZnr++edzrStTpozGjBmjPXv26OeffyZIB+wUHx9fpP1XqVJFNWvWLNJ9AAAAAAAAALcih4L0s2fPqlu3bjbbNG7cWLGxsQ4VBbiSzItJksFNUVFRRbofnzJldehgPGE6AAAAAAAAUEgOBenlypXTyZMnbbY5efKkypUr51BRgCvJSrskmXJU+7Gp8gm8u0j2kX76D/0Z85ySk5MJ0gEAAAAAAIBCcihIb9q0qVasWKGHH35Y9957b671mzdv1ooVK9ShQ4dC9/3777/r3Xff1f79+5WcnCwfHx/dfffdGjp0qNq1a2fV9vDhw5o4caJ27dolT09PtWnTRuPHj1elSpWs2uXk5GjOnDn65ptvlJSUpFq1amnYsGF53lVvb5+As/kE3i3fmg1LugwAAAAAAAAA13EoSB85cqTWr1+voUOHqk2bNmratKkqV66sc+fOadu2bdqwYYN8fHw0YsSIQvd96tQpXblyRT179lTVqlWVlpamVatW6amnntLrr7+ufv36SZLOnDmjgQMHqly5cho9erRSU1M1d+5cJSQkaNGiRfLy8rL0OWPGDH388cfq27evQkJCtGbNGo0ZM0YGg0Fdu3a1tCtMnwAAAAAAAAAA1+BQkF63bl19+umnGj9+vNatW6d169bJYDDIZDJJkmrWrKlJkyapbt26he67TZs2atOmjdWyqKgoPfzww4qJibEE6bNnz1ZaWpoWL16s6tWrS5JCQ0P12GOPacmSJZZ2iYmJiomJ0cCBAzVhwgRJUp8+fRQVFaXJkycrMjJS7u7uheoTAAAAAAAAAOA6HArSJSkiIkKrVq3Szp07FR8fr5SUFPn5+al+/foKDw+XwWBwWpHu7u4KDAxUXFycZdmqVat0//33WwJvSbr33ntVq1YtLV++3BJ6r169WpmZmRowYIClncFgUP/+/TVmzBjFxsYqIiKiUH0CAAAAAAAAAFyHw0G69E8gHRERYQminSk1NVXp6elKSUnR2rVrtWHDBnXu3FnSP3eZnzt3TsHBwbm2Cw0N1YYNGyxfx8fHq2zZsqpTp06udub1ERERheoTAAAAAAAAAOA6bihIL0pvvfWWFixYIElyc3PTAw88YJma5ezZs5Ikf3//XNv5+/vrwoULysjIkJeXl5KSklS5cuVcd8ibtzX3VZg+7ZWdnW1325ud+ViL65hd6dw6U3Z2NucON6y4xzuAksN4B1wDYx1wHYx3wHUw3u1TmPNTaoP0Rx99VJGRkTp79qyWL1+unJwcZWZmSpKuXr0qSXmG2t7e3pKk9PR0eXl5Wf611a6wfdrr2qloXEVxHXNCQkKx7OdWk5CQIDc3t5IuA7cIV7zGAa6K8Q64BsY64DoY74DrYLw7T6kN0uvUqWOZjqVHjx4aMmSIhg8frkWLFlmC7YyMjFzbmQNxHx8fy7/2tCtMn/YKCQmxPMj0Vpedna24uLhiO+acnJwi38etyGg0qlGjRiVdBm5yxT3eAZQcxjvgGhjrgOtgvAOug/FuH/N5skepDdKv16lTJ02YMEF//vmnqlatKklKSkrK1S4pKUkVK1a03Dnu7++vrVu3ymQyWU3vYt7W3Fdh+rSXu7u7y71Qi+uYXe28OosrviZRdHg9Aa6D8Q64BsY64DoY74DrYLw7z00zx4N5CpaUlBQFBASoUqVK2rdvX652e/fuVb169Sxf169fX2lpaTp8+LBVuz179ljWSypUnwAAAAAAAAAA11HqgvRz587lWpaZmamlS5fKx8fHMt1Lx44dtW7dOp0+fdrSbvPmzTp69KgiIyMty9q3by9PT099/fXXlmUmk0nz589XQECAGjdubFlub58AAAAAAAAAANfh0NQu9evXV5cuXTRt2jRn16MJEyYoJSVFTZs2VUBAgJKSkvS///1PR44c0bhx4+Tr6ytJGj58uFasWKHo6GhFR0crNTVVc+bMkdFoVK9evSz9VatWTdHR0ZozZ46ysrIUEhKi1atXa8eOHZo6darVRxvs7RMAAAAAAAAA4DocCtL9/PwUGBjo7FokSV26dNG3336rb775RhcuXJCvr68aNmyo5557Tu3bt7e0CwwM1Jdffqm33npL06ZNk6enp9q0aaNx48blmsv8ueeeU4UKFbRgwQItXrxYtWrV0pQpU9S9e3erdoXpEwAAAAAAAADgGhwK0kNDQ3Xw4EFn1yJJ6tq1q7p27WpX27p162rOnDkFtnNzc9OwYcM0bNgwp/UJAAAAAAAAAHANDs2RPnLkSG3ZskXff/+9k8sBAAAAAAAAAKB0ceiO9F9//VXNmzfX+PHjNW/ePIWEhKhKlSq52hkMBo0YMeKGiwQAAAAAAAAAoKQ4FKS/9957lv/fv3+/9u/fn2c7gnQAAAAAAAAAwM3OoSD9iy++cHYdAAAAAAAAAACUSg4F6c2aNXN2HQAAAAAAAAAAlEoOPWwUAAAAAAAAAABX4XCQnpWVpc8++0y9e/dWkyZN1KBBA8u6+Ph4vfrqq/rzzz+dUiQAAAAAAAAAACXFoald0tPTNWTIEMXGxuq2226Tn5+f0tLSLOtvv/12LV68WBUqVNDo0aOdViwAAAAAAAAAAMXNoTvSZ8+erV27dunZZ5/Vr7/+qj59+litL1eunJo2bapNmzY5pUgAAAAAAAAAAEqKQ0H68uXL1bx5cz3xxBMyGAwyGAy52txxxx06ffr0DRcIAAAAAAAAAEBJcihIP3XqlIKDg2228fX11eXLlx0qCgAAAAAAAACA0sKhIN3X11fnz5+32eb48eOqVKmSQ0UBAAAAAAAAAFBaOBSkN2rUSGvXrtWlS5fyXH/69GmtX79eERERN1QcAAAAAAAAAAAlzaEgfejQobp06ZIGDx6snTt3KisrS5KUlpamzZs3a+jQocrOztZjjz3m1GIBAAAAAAAAAChuHo5s1LRpU/3nP//RxIkTFRUVZVnepEkTSZK7u7teeeWVAudRBwAAAAAAAACgtHMoSJekAQMGqHnz5vrmm2+0d+9eXbx4Ub6+vgoLC9OAAQNUt25dZ9YJAAAAAAAAAECJcDhIl6Q6dero5ZdfdlYtAAAAAAAAAACUOg7NkQ4AAAAAAAAAgKu4oTvSf/75Zy1evFjx8fG6fPmyypUrp/r166tXr17q0KGDs2oEAAAAAAAAAKDEOBSkZ2VlacyYMVq1apVMJpM8PDxUsWJFJScn65dfftG6devUsWNHTZs2TR4eN5TVAwAAAAAAAABQohya2uWjjz7SypUrFRERoa+++kp79+7Vpk2btHfvXn355ZcKDw/XqlWr9PHHHzu7XgAAAAAAAAAAipVDQfrixYt11113KSYmRuHh4XJz+6cbNzc3RUREKCYmRrVq1dJ3333n1GIBAAAAAAAAAChuDgXpSUlJatu2bb7Ttnh6eqpt27ZKSkq6oeIAAAAAAAAAAChpDgXpgYGBSk1NtdkmLS1NgYGBDhUFAAAAAAAAAEBp4VCQ3rt3by1fvlxnz57Nc31iYqJ++ukn9enT54aKAwAAAAAAAACgpOU9N8t1Tp06ZfV1586dtWvXLvXs2VOPPvqomjRpoipVqig5OVk7d+7UF198ofDwcEVGRhZJ0QAAAAAAAAAAFBe7gvR27drJYDDkWm4ymTRjxow8l69du1br1q3TgQMHbrxKAAAAAAAAAABKiF1Beo8ePfIM0gEAAAAAAAAAuNXZFaS/9dZbRV0HAAAAAAAAAAClkkMPGwUAAAAAAAAAwFUQpAMAAAAAAAAAYINdU7vkZceOHZo7d64OHjyos2fPKjs7O1cbg8HAw0YBAAAAAAAAADc1h4L077//XuPHj5fJZNIdd9yh0NBQubu7O7s2AAAAAAAAAABKnENB+ocffqjy5cvrk08+UWhoqLNrAgAAAAAAAACg1HBojvTTp0+ra9euhOgAAAAAAAAAgFueQ0F69erVlZmZ6exaAAAAAAAAAAAodRwK0vv27atffvlFFy5ccHI5AAAAAAAAAACULg7NkT5kyBAdP35c/fv311NPPaV69erJz88vz7bVq1e/oQIBAAAAAAAAAChJDgXpktSgQQP98MMPGjt2bL5tDAaDDhw44OguAAAAAAAAAAAocQ4F6fPmzdPEiRPl4eGh5s2by9/fXx4eDmfyAAAAAAAAAACUWg6l35999pkCAgI0f/58VatWzdk1AQAAAAAAAABQajj0sNHk5GR17NiREB0AAAAAAAAAcMtzKEivWbOmLl++7OxaAAAAAAAAAAAodRwK0gcPHqw1a9bo5MmTzq4HAAAAAAAAAIBSxaE50mvWrKmmTZuqV69eevTRR1WvXj35+fnl2bZp06Y3VCAAAAAAAAAAACXJoSB90KBBMhgMMplMmjVrlgwGQ75t4+PjHS4OAAAAAAAAAICS5lCQPmLECJvhOQAAAAAAAAAAtwqHgvR///vfzq4DAAAAAAAAAIBSyaGHjQIAAAAAAAAA4CoI0gEAAAAAAAAAsMGhqV3q1atn1xzpBoNBBw4ccGQXAAAAAAAAAACUCg4F6U2bNs1zeUpKio4ePaq0tDTVq1dP5cqVu6HiAAAAAAAAAAAoaQ4F6fPmzct3XVpamqZNm6aNGzdq7ty5DhcGAAAAAAAAAEBp4PQ50suUKaOXX35Zfn5+mjJlirO7BwAAAAAAAACgWBXZw0YjIiK0bt26ouoeAAAAAAAAAIBiUWRB+vnz55WamlpU3QMAAAAAAAAAUCycHqTn5OTo+++/1/Lly1W/fn1ndw8AAAAAAAAAQLFy6GGj7du3z3N5dna2zp07p6ysLHl4eOjZZ5+9oeIAAAAAAAAAAChpDgXpJpMp7848PFS3bl2FhIQoKipKdevWvaHiAAAAAAAAAAAoaQ4F6WvXrnV2HQAAAAAAAAAAlEpF9rBRAAAAAAAAAABuBQTpAAAAAAAAAADYYPfULuPHjy905waDQRMnTizUNnv37tX333+vrVu36uTJk6pYsaLCwsI0atQo1a5d26rt4cOHNXHiRO3atUuenp5q06aNxo8fr0qVKlm1y8nJ0Zw5c/TNN98oKSlJtWrV0rBhw9StW7dc+7e3TwAAAAAAAACAa7A7SF+yZIndnRoMBplMJoeC9E8//VS7du1SZGSkgoKClJSUpK+++koPP/ywFixYIKPRKEk6c+aMBg4cqHLlymn06NFKTU3V3LlzlZCQoEWLFsnLy8vS54wZM/Txxx+rb9++CgkJ0Zo1azRmzBgZDAZ17drV0q4wfQI3o/j4+CLtv0qVKqpZs2aR7gMAAAAAAAAobnYH6QsWLLCr3V9//aX33ntPx44dc6igwYMHa+rUqVahdZcuXdS9e3d9/PHHmjp1qiRp9uzZSktL0+LFi1W9enVJUmhoqB577DEtWbJE/fr1kyQlJiYqJiZGAwcO1IQJEyRJffr0UVRUlCZPnqzIyEi5u7sXqk/gZpN5MUkyuCkqKqpI9+NTpqwOHYwnTAcAAAAAAMAtxe4gPSwszOb68+fP6/3339fChQuVmZmp8PBwPffcc4UuqEmTJrmW1apVS3Xr1tWRI0csy1atWqX777/fEnhL0r333qtatWpp+fLlltB79erVyszM1IABAyztDAaD+vfvrzFjxig2NlYRERGF6hO42WSlXZJMOar92FT5BN5dJPtIP/2H/ox5TsnJyQTpAAAAAAAAuKXYHaTnJy0tTXPmzFFMTIyuXLmiunXravTo0WrXrp0z6pMkmUwmJScnq27dupL+ucv83LlzCg4OztU2NDRUGzZssHwdHx+vsmXLqk6dOrnamddHREQUqk/gZuUTeLd8azYs6TIAAAAAAACAm4rDQXp2drbmz5+vDz/8UMnJyapWrZpefPFF9ezZU25ubs6sUcuWLVNiYqKefvppSdLZs2clSf7+/rna+vv768KFC8rIyJCXl5eSkpJUuXJlGQyGXO2u7aswfdorOzvb7rY3O/OxFtcxu9K5vdlkZ2fz/bnFFfd4B1ByGO+Aa2CsA66D8Q64Dsa7fQpzfhwK0pcvX66ZM2fq2LFjKleunMaMGaPo6Gh5e3s70p1Nhw8f1uuvv67GjRurZ8+ekqSrV69KUp6htrmG9PR0eXl5Wf611a6wfdorLi7O7ra3iuI65oSEhGLZDwovISHB6X9MQ+nkitc4wFUx3gHXwFgHXAfjHXAdjHfnKVSQvnXrVk2dOlX79u2Tp6enHnvsMQ0fPlzly5cvkuKSkpI0bNgwlStXTrNmzbI8FNQcbGdkZOTaxhyI+/j4WP61p11h+rRXSEiIpeZbXXZ2tuLi4ortmHNycop8H3CM0WhUo0aNSroMFKHiHu8ASg7jHXANjHXAdTDeAdfBeLeP+TzZw+4g/fHHH9evv/4qNzc39ejRQ88884yqVavmcJEFuXz5sp544gldvnxZX331lQICAizrqlatKumfoP16SUlJqlixouXOcX9/f23dulUmk8lqehfztua+CtOnvdzd3V3uhVpcx+xq5/Vm4oqve1fF9xpwHYx3wDUw1gHXwXgHXAfj3XnsDtI3bdokg8GgwMBAJScn6z//+U+B2xgMBn388ceFLurq1asaPny4jh49qpiYGN19991W6wMCAlSpUiXt27cv17Z79+5VvXr1LF/Xr19fixYt0uHDh6362bNnj2V9YfsEAAAAAAAAALiOQk3tYjKZdOLECZ04ccKu9tc/4NMe2dnZGjVqlHbv3q0PPvhAjRs3zrNdx44d9f333+v06dMKDAyUJG3evFlHjx7V4MGDLe3at2+vSZMm6euvv9aECRMsxzF//nwFBARY9W9vnwAAAAAAAAAA12F3kL5mzZqirMPirbfe0tq1a9W2bVtduHBBS5cutVr/0EMPSZKGDx+uFStWKDo6WtHR0UpNTdWcOXNkNBrVq1cvS/tq1aopOjpac+bMUVZWlkJCQrR69Wrt2LFDU6dOtfpog719AgAAAAAAAABch91Beo0aNYqyDouDBw9Kkn755Rf98ssvudabg/TAwEB9+eWXeuuttzRt2jR5enqqTZs2GjduXK65zJ977jlVqFBBCxYs0OLFi1WrVi1NmTJF3bt3t2pXmD4BAAAAAAAAAK6hUFO7FId58+bZ3bZu3bqaM2dOge3c3Nw0bNgwDRs2zGl9AgAAAAAAAABcg1tJFwAAAAAAAAAAQGlGkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADR4lXQCAW0t8fHyR76NKlSqqWbNmke8HAAAAAAAAkAjSUUSOHTum5OTkIuu/OMJaFE7mxSTJ4KaoqKgi35dPmbI6dDCeMB0AAAAAAADFgiAdTnfs2DEF1auv9LTUki4FxSgr7ZJkylHtx6bKJ/DuIttP+uk/9GfMc0pOTiZIBwAAAAAAQLEgSIfTJScnKz0ttUgD1Ytx63TqfzOLpG/cGJ/Au+Vbs2FJlwEAAAAAAAA4DUE6ikxRBqppZw4XSb8AAAAAAAAAcD23ki4AAAAAAAAAAIDSjCAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsMGjpAsAAEfEx8cXaf9VqlRRzZo1i3QfAAAAAAAAuDkQpAO4qWReTJIMboqKiirS/fiUKatDB+MJ0wEAAAAAAECQDuDmkpV2STLlqPZjU+UTeHeR7CP99B/6M+Y5JScnE6QDAAAAAACAIB3Azckn8G751mxY0mUAAAAAAADABfCwUQAAAAAAAAAAbCh1QfqVK1f0zjvvaOjQoWrWrJmCgoK0ePHiPNsePnxYQ4cOVePGjdWsWTM9//zzOn/+fK52OTk5+uSTT9SuXTuFhISoe/fu+uGHH26oTwAAAAAAAACAayh1U7v8/fffev/991W9enUFBQVp27ZtebY7c+aMBg4cqHLlymn06NFKTU3V3LlzlZCQoEWLFsnLy8vSdsaMGfr444/Vt29fhYSEaM2aNRozZowMBoO6du3qUJ8AAAAAAAAAANdQ6oL0qlWratOmTfL391dcXJx69+6dZ7vZs2crLS1NixcvVvXq1SVJoaGheuyxx7RkyRL169dPkpSYmKiYmBgNHDhQEyZMkCT16dNHUVFRmjx5siIjI+Xu7l6oPgEAAAAAAAAArqPUTe3i5eUlf3//AtutWrVK999/vyXwlqR7771XtWrV0vLlyy3LVq9erczMTA0YMMCyzGAwqH///jpz5oxiY2ML3ScAAAAAAAAAwHWUuiDdHomJiTp37pyCg4NzrQsNDVV8fLzl6/j4eJUtW1Z16tTJ1c68vrB9AgAAAAAAAABcR6mb2sUeZ8+elaQ871z39/fXhQsXlJGRIS8vLyUlJaly5coyGAy52l3bV2H6tFd2drbdbW925mPNzs52qePGrY3Xc96uHe8Abm2Md8A1MNYB18F4B1wH490+hTk/N2WQfvXqVUnKM9T29vaWJKWnp8vLy8vyr612he3TXnFxcXa3vVXExcUpISGhpMsAnCIhIUFubjflB3eKhSte4wBXxXgHXANjHXAdjHfAdTDeneemDNLNwXZGRkaudeZA3MfHx/KvPe0K06e9QkJCLA8yvdVlZ2crLi5OISEhysnJKelyAKcwGo1q1KhRSZdR6lw73l3lGge4KsY74BoY64DrYLwDroPxbh/zebLHTRmkV61aVZKUlJSUa11SUpIqVqxouXPc399fW7dulclksprexbytua/C9Gkvd3d3l3uhuuIx49bF69k2zg/gOhjvgGtgrAOug/EOuA7Gu/PclHMWBAQEqFKlStq3b1+udXv37lW9evUsX9evX19paWk6fPiwVbs9e/ZY1he2TwAAAAAAAACA67gpg3RJ6tixo9atW6fTp09blm3evFlHjx5VZGSkZVn79u3l6empr7/+2rLMZDJp/vz5CggIUOPGjQvdJwAAAAAAAADAdZTKqV2+/PJLXbp0SWfPnpUk/fLLLzpz5owkadCgQSpXrpyGDx+uFStWKDo6WtHR0UpNTdWcOXNkNBrVq1cvS1/VqlVTdHS05syZo6ysLIWEhGj16tXasWOHpk6davXRBnv7BAAAAAAAAAC4jlIZpM+dO1cnT560fL1q1SqtWrVKkvTggw+qXLlyCgwM1Jdffqm33npL06ZNk6enp9q0aaNx48blmsv8ueeeU4UKFbRgwQItXrxYtWrV0pQpU9S9e3erdoXpEwAAAAAAAADgGkplkL527Vq72tWtW1dz5swpsJ2bm5uGDRumYcOGOa1PAAAAAAAAAIBruGnnSAcAAAAAAAAAoDgQpAMAAAAAAAAAYANBOgAAAAAAAAAANpTKOdIBoDSIj48v0v6rVKmimjVrFuk+AAAAAAAAcOMI0gHgOpkXkySDm6Kioop0Pz5lyurQwXjCdAAAAAAAgFKOIB0ArpOVdkky5aj2Y1PlE3h3kewj/fQf+jPmOSUnJxOkAwAAAAAAlHIE6QCQD5/Au+Vbs2FJlwEAAAAAAIASxsNGAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABsI0gEAAAAAAAAAsIEgHQAAAAAAAAAAGwjSAQAAAAAAAACwgSAdAAAAAAAAAAAbCNIBAAAAAAAAALCBIB0AAAAAAAAAABs8SroAAHBl8fHxRb6PKlWqqGbNmkW+HwAAAAAAgFsVQToAlIDMi0mSwU1RUVFFvi+fMmV16GA8YToAAAAAAICDCNIBoARkpV2STDmq/dhU+QTeXWT7ST/9h/6MeU7JyckE6QAAAAAAAA4iSAeAEuQTeLd8azYs6TIAAAAAAABgAw8bBQAAAAAAAADABoJ0AAAAAAAAAABsIEgHAAAAAAAAAMAGgnQAAAAAAAAAAGwgSAcAAAAAAAAAwAaCdAAAAAAAAAAAbPAo6QIAAEUvPj7eaX1lZ2crISFBOTk5cnd3lyRVqVJFNWvWdNo+AAAAAAAAShOCdAC4hWVeTJIMboqKiirS/fiUKatDB+MJ0wEAAAAAwC2JIB0AbmFZaZckU45qPzZVPoF3F8k+0k//oT9jnlNycjJBOgAAAAAAuCURpAOAC/AJvFu+NRuWdBkAAAAAAAA3JR42CgAAAAAAAACADQTpAAAAAAAAAADYQJAOAAAAAAAAAIANBOkAAAAAAAAAANhAkA4AAAAAAAAAgA0E6QAAAAAAAAAA2ECQDgAAAAAAAACADR4lXQAA4NYQHx9fpP1XqVJFNWvWLNJ9AAAAAAAA5IUgHQBwQzIvJkkGN0VFRRXpfnzKlNWhg/GE6QAAAAAAoNgRpAMAbkhW2iXJlKPaj02VT+DdRbKP9NN/6M+Y55ScnEyQDgAAAAAAih1BOgDAKXwC75ZvzYYlXQYAAAAAAIDT8bBRAAAAAAAAAABsIEgHAAAAAAAAAMAGgnQAAAAAAAAAAGxgjnQAwE0jPj6+yPdRpUoVHmgKAAAAAACsEKQDAEq9zItJksFNUVFRRb4vnzJldehgPGE6AAAAAACwIEgHAJR6WWmXJFOOaj82VT6BdxfZftJP/6E/Y55TcnIyQToAAAAAALAgSAcA3DR8Au+Wb82GJV0GAAAAAABwMTxsFAAAAAAAAAAAG7gjHQCA6xT1Q015oCkAAAAAADcXgnQAAP6/4nqoKQ80BQAAAADg5kKQDgDA/1ccDzXlgaYAAAAAANx8CNIBALhOcTzUlOljAAAAAAC4eRCkAwBQjJg+BgAAAACAmw9BOgAAxYjpYwAAAAAAuPkQpF8nIyNDs2bN0tKlS3Xp0iUFBQVp1KhRatmyZUmXBgC4hdwK08dI0tWrV+Xt7V2k+2CaGgAAAABASSNIv864ceO0cuVKRUdHq1atWlqyZImefPJJff7554qIiCjp8gAAKFBxTR8jSTK4SaacIt0F09QAAAAAAEoaQfo19u7dqx9//FEvvPCChg4dKknq0aOHunXrpqlTp2r+/PklXCEAAAUrjuljJOli3Dqd+t/MYpmmZuPGjapfv36R7EPirncAAAAAgG0E6ddYsWKF3N3d1a9fP8syb29v9e7dW9OnT9fp06cVGBhYghUCAGC/op4+Ju3M4SLfT3HdXe/t7aPvvvu2yN/nmQoHAAAAAG5OBOnXiI+PV61ateTn52e1PDQ01LKeIB0AgOJTHHfXp/y+Xce/naRu3boVSf9WimEqHGf+USA7O1sJCQnKycmRu7u71bri+KMAf3gonGPHjik5OblI98H5KpziOl83eiy2xrrZrfS9BwAAcARB+jWSkpLk7++fa7l52dmzZ+3qx2QySfrnwaX5/SB6q8nOzpb0zzFnZ2fL19dXhuQ/le1hKJL9uV88c0vso7j2c6vso7j2c6vso7j2c6vso7j2c6vso7j2Y95HGU93eRfRPjJyMuRbtowCOj4ur9uK7g/mqUfjdG7r90W6n7RTvyt500KrT9cVmWL4o0Bx7MPL20dffP6ZAgICinQ/bm5uyskpumNJTExU9KODlXE1vcj2IXG+Cqs4ztetdCxF/X0vzv3cKvsorv3cKvsorv3cyD5ycnJ05MgRZWVlyc3NrUj2URil/XyVpn0U135ulX0U135K8z7sHe9mAQEBqlatmiMl3tTMmaY5z7XFYLKnlYvo0KGDateurU8++cRq+fHjx9WhQweNHz9egwcPLrCfjIwMxcXFFVGVAAAAAAAAAABnCQkJkZeXl8023JF+DR8fH2VkZORafvXqVct6e3h4eCgkJERubm4yGIruTkAAAAAAAAAAgGNMJpNycnLk4VFwTE6Qfg1/f38lJibmWp6UlCRJqlq1ql39uLm5FfgXDAAAAAAAAADAzaHgCXJcSL169XT06FGlpKRYLd+zZ48kqX79+iVRFgAAAAAAAACgBBGkXyMyMlLZ2dlasGCBZVlGRoYWL16ssLAwBQYW3QPIAAAAAAAAAAClE1O7XCMsLEyRkZGaPn26zp07pzvvvFNLlizRyZMn9eabb5Z0eQAAAAAAAACAEmAwmUymki6iNLn6/9q787Aq6/SP4x9kkRBNMaAwl8bkSLKMu5ZpgQqOC2qOW4BNmmOaW1TiVGNZmlNa5jJpAiltkgtjUAxm6ZWiA4mKWpapUJGiuCVbLPL8/uji/DweJBaRovfruriS7/d+7ud7Dt7kc5/nfE9RkZYuXar4+Hj99NNPMplMmjlzpu699976XhoAAAAAAAAAoB7QSAcAAAAAAAAAoBLskQ4AAAAAAAAAQCVopAMAAAAAAAAAUAka6aiV4uJivfLKK+rTp498fX3117/+VcnJyfW9LAAVyM/P17JlyzRx4kT16NFDJpNJmzdvrjD2+PHjmjhxojp37qwePXroySef1Pnz563iysrKtGbNGvn7+8vHx0dDhw5VQkJCrXICqJ2DBw9q/vz5Gjx4sP785z/rvvvu08yZM5WRkWEVS60Dv2/ffvutZsyYoYCAAPn5+alnz5568MEH9dlnn1nFUu9Aw/LGG2/IZDJpyJAhVnP79u3TuHHj5Ofnp3vuuUcvvvii8vPzreKqcz1f1ZwAaiclJUUmk6nCrwMHDljEUus3nl19LwC/bxEREUpKSlJYWJjatWunuLg4TZ48WevWrVO3bt3qe3kArnDhwgWtXLlSHh4eMplMSk1NrTAuOztbDz74oJo2barZs2eroKBA0dHROnr0qDZs2CAHBwdz7GuvvaY333xTo0ePlo+Pjz799FOFh4fLxsZGgwcPrlFOALUTGRmpffv2KSgoSCaTSTk5OXr33Xc1cuRIxcbGytPTUxK1DjQEJ0+eVH5+vkaMGCE3NzcVFhZq69atevTRRzV//nyNGTNGEvUONDTZ2dlavXq1nJycrOaOHDmihx56SO3bt1dERISys7MVHR2tzMxMRUZGWsRW9Xq+OjkBXB+hoaHy8fGxGGvTpo35z9R6PTGAGkpPTzc8PT2NyMhI89jPP/9s9O/f3xgzZkw9rgxARYqKiowzZ84YhmEYBw8eNDw9PY1NmzZZxc2bN8/w9fU1fvzxR/NYcnKy4enpaaxfv948lp2dbXTq1Ml4/vnnzWNlZWXG+PHjjb59+xqlpaXVzgmg9tLS0oyioiKLsYyMDMPb29sIDw83j1HrQMNUWlpqDBs2zAgMDDSPUe9AwzJr1iwjLCzMCAkJMQYPHmwxN2nSJOOee+4xcnNzzWMffPCB4enpaezcudM8Vp3r+armBFB7//vf/wxPT08jMTGx0jhqvX6wtQtq7L///a9sbW3Nd7pIUuPGjTVq1Cjt379fp06dqsfVAbiag4ODXF1dfzVu69atuu++++Th4WEeu/vuu9WuXTslJiaax7Zt26aSkhKNHz/ePGZjY6Nx48YpOztb+/fvr3ZOALXXpUsXqztB27Vrpw4dOujEiRPmMWodaJhsbW112223KTc31zxGvQMNxxdffKGkpCT94x//sJrLy8vT7t27NWzYMDk7O5vHg4OD5eTkZFGbVb2er05OANdXXl6eSktLKxyn1usHjXTU2JEjR9SuXTuLApMkX19f8zyA35fTp0/r3Llz8vb2tprz9fW1qOsjR47IyclJ7du3t4orn69uTgB1wzAMnT17Vi1atJBErQMNTUFBgc6fP6/vv/9ea9eu1eeff65evXpJot6BhuTy5ct64YUXNGrUKJlMJqv5b775RqWlpVa16eDgIC8vL6t6r8r1fHVyArh+5s6dq65du8rX11ehoaE6dOiQeY5arz/skY4ay8nJqfDu1vKxM2fO3OglAail8rq9Vm1fvHhRxcXFcnBwUE5Ojlq2bCkbGxuruCtzVScngLrx4Ycf6vTp05oxY4Ykah1oaBYtWqTY2FhJUqNGjTRgwAD985//lES9Aw3J+vXrdfLkSa1du7bC+ZycHEmSm5ub1Zyrq6vS0tIsYqtyPV+dnABqz97eXoGBgerbt69atGih48ePKyoqSg8++KDWr1+vu+66i1qvRzTSUWM///xzhf84bty4sXkewO9LUVGRJP1qbTs4OFT5d0B1cgK4/o4fP6758+erc+fOGjFihCRqHWhoJkyYoKCgIJ05c0aJiYkqKytTSUmJJOodaCguXLigZcuWaerUqXJxcakwprxGr1WbV16jV7Xeq5MTQO116dJFXbp0MX8fEBCgwMBADRs2TEuWLFFUVBS1Xo/Y2gU15ujoqOLiYqvx8n9YOzo63uglAail8v+ZVqW2q/o7oDo5AVxfOTk5+vvf/66mTZvq9ddfl62trSRqHWho2rdvr7vvvlvDhw/X6tWrVVBQoClTpsgwDOodaCCWLl2qm2++WSEhIdeMKa+7a9XmlXVZ1XqvTk4AdaNt27YKCAhQSkqKLl++TK3XIxrpqDFXV1fzWz+uVNnbQQD8tpXX7bVqu3nz5uZXqF1dXXX27FkZhmEVd2Wu6uQEcP3k5ubqkUceUW5uriIjI+Xu7m6eo9aBhi0wMFCHDh1SRkYG9Q40AJmZmfrggw8UGhqqM2fOKCsrS1lZWSoqKlJJSYmysrJ08eLFSrdZzcnJsbhGr+r1fHVyAqg7t956q0pKSlRYWEit1yMa6aixjh07KjMzU3l5eRbj6enpkiQvL6/6WBaAWnB3d5eLi4sOHz5sNXfw4EF17NjR/L2Xl5cKCwt1/Phxi7irfwdUJyeA66OoqEhTpkxRZmamVq1apTvvvNNinloHGrbyt1/n5eVR70ADcPr0aZWVlenFF19UQECA+Ss9PV2ZmZkKCAjQypUr5enpKTs7O6vaLC4u1pEjRyxqs6rX89XJCaDuZGVlqXHjxnJycqLW6xGNdNRYUFCQLl++bP5gI+mXAtu8ebP8/Px022231ePqANTUwIEDtWPHDp06dco8tmfPHmVmZiooKMg8FhAQIHt7e7333nvmMcMwtH79erm7u6tz587Vzgmg9i5fvqxZs2bpwIEDev311y1q8UrUOvD7d+7cOauxkpISbdmyRY6Ojmrfvr0k6h34vevQoYNWrlxp9dWhQwd5eHho5cqVGjVqlJo2barevXvrww8/tGiabdmyRQUFBRa1WdXr+erkBFB758+ftxr7+uuv9dlnn+mee+5Ro0aNqPV6ZGNc/b49oBpmzpypbdu2acKECWrbtq3i4uJ06NAhrV27Vt27d6/v5QG4yjvvvKNLly7pzJkzev/99zVw4EDzK9ChoaFq2rSpTp06peHDh6tZs2YKCwtTQUGBoqKi5O7urk2bNlm8Vfvll19WVFSUxowZIx8fH23btk07duzQ4sWLNXToUHNcdXICqJ0FCxYoJiZG999/vwYNGmQ1HxwcLKl6dUmtA79N06ZNU15enrp37y53d3fl5OQoPj5eJ06cUEREhP72t79Jot6Bhio0NFQXLlxQQkKCeezLL7/U2LFjdeedd2r06NHKzs7WW2+9pe7duysqKsri+Kpez1cnJ4DaCQsLk6Ojozp37qyWLVvq2LFj+uCDD2RnZ6fY2Fjzi+TUev2gkY5aKSoq0tKlSxUfH6+ffvpJJpNJM2fO1L333lvfSwNQAX9/f/34448Vzn366ae6/fbbJUnffvutFi1apLS0NNnb26tfv36KiIjQLbfcYnFMWVmZ1qxZo9jYWJ05c0bt2rXT5MmTNWzYMKv8Vc0JoHZCQ0OVmpp6zflvvvnG/GdqHfh9++ijj7Rx40YdPXpUFy9eVJMmTdSpUyeFhIQoICDAIpZ6BxqeihrpkrR3714tXrxYX331lZo0aaJBgwbp8ccfl7Ozs0Vcda7nq5oTQO3ExMQoPj5e33//vfLy8tSiRQv17t1bjz32mNq2bWsRS63feDTSAQAAAAAAAACoBHukAwAAAAAAAABQCRrpAAAAAAAAAABUgkY6AAAAAAAAAACVoJEOAAAAAAAAAEAlaKQDAAAAAAAAAFAJGukAAAAAAAAAAFSCRjoAAAAAAAAAAJWgkQ4AAAAAAAAAQCVopAMAAAAAAAAAUAka6QAAAMBvREREhEwmk7Kysup7KdfFrl27NHbsWHXv3l0mk0lTp0694WswmUwKDQ294ecFAABAw2JX3wsAAAAArresrCwFBARIkvr06aOoqCirmAMHDmjMmDEaMWKEFi1adKOX2OBlZWVp6tSpatasmUaOHClnZ2f96U9/qjB28+bNmjt3bpVz8zMDAADAjUYjHQAAAA3arl27tGfPHvXu3bu+l/KHsmfPHhUVFWnOnDkaOnRopbFeXl567LHHLMZ+/PFHxcXFqWPHjurfv79VPAAAAHAj0UgHAABAg9WqVSudOnVKixcv1saNG2VjY1PfS/rDOH36tCTJzc3tV2O9vLysmuMpKSmKi4uTl5eXpk+fXidrBAAAAKqKPdIBAADQYN1xxx0KDg7W4cOHlZiYWKVj/P395e/vX+FcaGioTCaTxdjy5ctlMpmUkpKiTZs2aejQofL19ZW/v79iYmIkSYZhKDo6WoGBgfLx8dHAgQP1n//855prMAxDa9as0cCBA+Xj4yN/f3+tWLFCJSUlFcZ/8cUXmjJlinr27Clvb28NHDhQr732mgoLCy3iUlJSZDKZtHz5cu3bt08PP/ywunXrZvWYruXo0aOaOXOmevfuLW9vb/n7+2vBggW6cOGCOSYrK8t8DkkKCwuTyWQyP0fXQ1pamiZPnqwePXrIx8dHQUFBWrZsmdXjvRbDMLRw4UKZTCaFh4ebn1fDMLRx40aNHTtWXbp0kZ+fn0aOHKmNGzda5bjy5x4fH6/g4GD5+vqqT58+evHFF/Xzzz9bHZOUlKSQkBD17t1bPj4+6tOnjx566CElJSXV7gkBAABAneOOdAAAADRoM2bM0EcffaSlS5dqwIABsre3r5PzrFu3TqmpqQoICFDPnj21detWLViwQDfddJO++uorbd26Vffdd5/s7e318ccfa86cOWrVqpW6d+9ulWvBggXav3+/goKC5OTkpO3bt2v58uU6evSoli1bZhH73nvvaf78+WrWrJnuv/9+ubi46PDhw1q1apVSUlIUExMjBwcHi2P279+v1atXq2fPnho9erROnTr1q49v7969mjRpkkpKShQYGKhWrVrpwIEDiomJ0Y4dOxQbGysXFxc1a9ZMjz32mFJTU5WamqoRI0aoVatWkmT+b20kJiYqPDxcDg4OGjRokFq2bKnk5GStXLlSu3bt0ttvv63GjRtf8/iSkhJFREQoISFBEyZM0Ny5c2VjYyPDMPTEE08oISFB7dq105AhQ+Tg4KDk5GQ9/fTTOn78uObMmWOV791339XOnTvl7++vXr16aefOnXr77bd14cIFLVmyxBz33nvv6fnnn5erq6sGDBig5s2bKycnR4cOHdInn3yiwMDAWj83AAAAqDs00gEAANCgeXh4KCQkRNHR0YqNjVVISEidnCctLU1xcXFq3bq1JGnixIkaMGCA/vWvf6lly5aKj4+Xi4uLpF8+LHP06NGKioqqsJGenp6uLVu26NZbb5UkzZ49Ww8//LCSkpKUlJRkbroeO3ZMCxYskMlk0tq1a9WiRQtzjjfffFNLlizRO++8o4cfftgif3JyshYuXKgHHnigSo+trKxMc+fOVWFhoSIjI3Xvvfea515++WVFRUVp8eLFWrhwoZo1a6bp06dr+fLl5kZ6z549q/FMXlteXp6effZZ2draav369erYsaMk6fHHH1d4eLg+/vhjRUZGatq0aRUen5+frxkzZmjXrl0KDw/X5MmTzXMbNmxQQkKCRo4cqfnz55tfcCkuLtaMGTMUHR2twYMHy9vb2yLn7t27tWnTJvMHqc6ePVvBwcH6+OOP9dRTT8nd3V2StHHjRtnb22vLli1q2bKlRY4r7+gHAADAbxNbuwAAAKDBmzJlipo1a6Z///vfys/Pr5NzhIaGmpvoknTbbbepa9euys3N1aOPPmpuokuSn5+fWrdurW+++abCXGFhYeYmuiQ5ODho1qxZkqS4uDjz+Pr161VaWqpnn33WookuSZMmTZKLi4sSEhKs8nfq1KnKTXRJ2rdvn77//nv17dvXookuSdOmTVPz5s2VkJCg4uLiKuesiW3btik3N1cPPPCAuYkuSY0aNdKTTz4pOzs7i+fnSufPn9eECRO0Z88eLVy40KKJLknvvPOOnJycNG/ePIt3LTg4OGj27NmSpI8++sgqb1hYmLmJLkmOjo4aMmSIysrK9OWXX1rE2tvby87O+l6mq392AAAA+O3hjnQAAAA0eDfffLMeeeQRLVmyRNHR0XXy4ZVXf1imJLm6ukqSRdP3yrmDBw9WmKtbt25WY507d5adnZ2++uor81h6erokaefOndqzZ4/VMXZ2dsrIyLAav/qu6l9Tfs4ePXpYzTVp0kTe3t7atWuXMjIyqrzfek0cOXLkmuvw8PDQ7bffrszMTOXl5cnZ2dk8d/bsWY0bN07Z2dlasWKF1R74hYWFOnr0qNzc3LRmzRqr3KWlpZKkEydOWM116tTJaqz8RZBLly6Zx/7yl7/olVde0ZAhQzRkyBD16tVLXbt2tVgnAAAAfrtopAMAAOAPISwsTO+++66io6M1fvz4656/ooZo+d3H15orb9Be7eqtPyTJ1tZWzZs3V25urnnsp59+kiStWrWqWmu95ZZbqhWfl5dX6XHlLxiUx9WVX1uHm5ubMjMzlZ+fb/Gc5+TkKC8vT23btpWfn5/VcZcuXZJhGDp9+rRWrFhxzfMXFBRYjVX0s7W1tZX0y5Y45SZOnKjmzZvr/fff11tvvaXo6GjZ2dmpX79+mjt3rsW7GQAAAPDbQyMdAAAAfwiOjo6aPn26nn76aa1YsULBwcEVxtnY2KikpKTCuSub2HXp3LlzFtuFSNLly5d18eJFiyZ7eRM3LS2tWnc229jYVGs95bnPnj1b4XxOTo5FXF2p6jqaNGliMe7l5aXhw4frmWeeUVhYmNatW2fRjC+P79SpkzZv3lwXS5eNjY1GjRqlUaNG6cKFC0pLS1NCQoISExP13Xff6cMPPzQ34AEAAPDbwx7pAAAA+MMYMWKEOnTooA0bNui7776rMObmm2/W+fPnre4WLygouOYx19vevXutxvbv36/S0lLddddd5jFfX19J/7/FS10pP2dqaqrVXEFBgQ4fPixHR0fdcccddbqO8u1zKlrHqVOn9MMPP6h169YVNvQfeOABvfTSSzpx4oTCwsIsmvHOzs5q3769Tpw4YbEdS11p0aKF+vfvr6VLl6pXr146duzYDfu7BQAAgJqhkQ4AAIA/DFtbW82ePVslJSXX3MLD29tbJSUlio+PN48ZhqFXX321wq096kJMTIyys7PN3xcXF2vp0qWSfnkxoNz48eNlZ2enF154QSdPnrTKc+nSJYs91WuqS5cuatOmjT7//HPt3r3bYu6NN97QxYsXNXjwYDk4ONT6XJXp37+/mjZtqs2bN+vbb781jxuGocWLF6u0tNTi+bna8OHD9dJLLykjI0OhoaHmO9ilXz4strCwUM8880yFP+cffvhBWVlZNV57SkqKDMOwGCspKTFvz9O4ceMa5wYAAEDdY2sXAAAA/KEEBASoa9euSktLq3A+JCREmzdv1jPPPKPk5GS5uLho7969ys3NVceOHfX111/X+Rr9/PwUHBysQYMG6aabbtL27duVkZGhgQMHKjAw0Bzn6empefPm6bnnnlNQUJD69eun1q1bKz8/X1lZWUpNTdWIESM0f/78Wq2nUaNGeumllzRp0iRNnjxZgYGBatWqlfbv36/U1FS1adNGTzzxRG0f9q9ydnbWCy+8oPDwcI0ePVqDBg2Si4uLdu/erS+//FK+vr6aNGlSpTmGDx+uRo0aKSIiQqGhoYqJiZGbm5vGjh2r9PR0xcXFad++fbr77rvl5uamc+fO6cSJE0pPT9eSJUt0++2312jt06ZNk7Ozs/z8/OTh4aHS0lLt3r1bx44dMz+fAAAA+O2ikQ4AAIA/nCeeeELjxo2rcM7T01ORkZF69dVXlZSUJCcnJ/Xr109z5szRrFmzbsj6nn76aSUmJmrjxo06efKk3NzcNH36dE2ePNkqdvTo0erYsaPWrl2rL774Qtu3b5ezs7M8PDz00EMPafjw4ddlTd26dVNsbKxWrlyp5ORk5eXlyc3NTWFhYXr00Ufl4uJyXc7zawYNGiRXV1etXr1an3zyiQoLC9WqVStNnTpVjzzySJXu7B42bJgaNWqkp556yrxnuru7uxYtWqS+fftqw4YN2rFjhwoKCuTi4qK2bdtqzpw56t27d43X/fjjj2vnzp06dOiQtm/frptuuklt2rTRc889p1GjRtU4LwAAAG4MG+Pq9xcCAAAAAAAAAAAz9kgHAAAAAAAAAKASNNIBAAAAAAAAAKgEjXQAAAAAAAAAACpBIx0AAAAAAAAAgErQSAcAAAAAAAAAoBI00gEAAAAAAAAAqASNdAAAAAAAAAAAKkEjHQAAAAAAAACAStBIBwAAAAAAAACgEjTSAQAAAAAAAACoBI10AAAAAAAAAAAqQSMdAAAAAAAAAIBK0EgHAAAAAAAAAKAS/werf95lFuiRMwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ], "source": [ "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "# Define a function to plot the distribution of token counts.\n", "def plot_distribution(tokens_count, title):\n", " # Set the style of the plot.\n", " sns.set_style(\"whitegrid\")\n", "\n", " # Create a new figure with a specified size.\n", " plt.figure(figsize=(15, 6))\n", "\n", " # Create a histogram of token counts with specified bins, color, and edge color.\n", " plt.hist(tokens_count, bins=50, color='#3498db', edgecolor='black')\n", "\n", " # Set the title of the plot.\n", " plt.title(title, fontsize=16)\n", "\n", " # Set labels for the x and y axes.\n", " plt.xlabel(\"Number of Tokens\", fontsize=14)\n", " plt.ylabel(\"Number of Examples\", fontsize=14)\n", "\n", " # Set the font size for x and y tick labels.\n", " plt.xticks(fontsize=12)\n", " plt.yticks(fontsize=12)\n", "\n", " # Adjust layout to prevent clipping of titles and labels.\n", " plt.tight_layout()\n", "\n", " # Display the plot.\n", " plt.show()\n", "\n", "# Plot the distribution of token counts for the instruction column.\n", "plot_distribution(instruction_tokens_count, \"Distribution of the tokens count for Instruction Column\")\n", "\n", "# Plot the distribution of token counts for the output column.\n", "plot_distribution(output_tokens_count, \"Distribution of the tokens count for Output Column\")\n", "\n", "# Plot the distribution of token counts for the combined instruction + output column.\n", "plot_distribution(combine_tokens_count, \"Distribution of the tokens count for combined Instruction + Output Column\")\n", "\n", "# The mean is around 500 tokens, but there is a long tail distribution which goes up to 5000 tokens.\n" ] }, { "cell_type": "markdown", "source": [ "**Remove rows where the combined token count (from both the Instruction and Output columns) exceeds 2048 tokens.**" ], "metadata": { "id": "exTuZBdKeLWR" } }, { "cell_type": "markdown", "source": [ "The default maximum context size for the Llama 2 model is 4096 tokens" ], "metadata": { "id": "T8x_8yMJeQN4" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 487 }, "id": "DlSEzB7FaWxd", "outputId": "d39b2a2b-0686-4984-915a-b9c2e1888dbb" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Number of Valid Rows: 24895\n", "Removing: 31 rows....\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAJOCAYAAACz9fURAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYs0lEQVR4nOzdeXyM5/7/8fdkE0tQEoQ2okhsiSWI6qJFNbVUUVVEih6Hc6orbTnt0eW0qLWqdXQJ7bFVnQY9bamiqCJ2ohJp02pULQkNIols8/vDb+ZrmhjJZLYkr+fj4UHu+7qv+3PPXJmJd665boPRaDQKAAAAAAAAAAAUy8PVBQAAAAAAAAAA4M4I0gEAAAAAAAAAsIIgHQAAAAAAAAAAKwjSAQAAAAAAAACwgiAdAAAAAAAAAAArCNIBAAAAAAAAALCCIB0AAAAAAAAAACsI0gEAAAAAAAAAsIIgHQAAAAAAAAAAKwjSAaAS6d69u0JDQxUaGqr169dft93IkSMVGhqquLg4J1bnWHFxcQoNDdWkSZMstsfHxys0NFQjRoxwUWWWykudkvTbb78pNDRU3bt3d3UpDnHx4kW9+uqruueee9SmTRubHv8//vhD7733nkaMGKHbb79dbdq0UYcOHdS3b1+99NJL2rlzp4Oqt48RI0YoNDRU8fHxpTpu/vz5Cg0N1fz58x1Ume1MtZX2T2kfA0e53mtESRmNRq1fv17PPvusunfvrnbt2iksLEzdunXT2LFjtXLlSmVmZtq56vLlzJkzat++vcaNG2ex3fSaFxoaqt9++81F1VU8tr7OVGRGo1FfffWVxo8fr27duiksLEydOnVS//79NWPGDP3++++uLrHccdb7sTv+vOZKL774olq1aqVjx465uhQAsAuCdACopObOnav8/HxXl1FhlDXcckemX7xU1sDon//8p5YvXy6DwaB7771XAwYM0J133lni49esWaPu3btrzpw5OnjwoIKDg9WrVy916dJF+fn5WrVqlUaOHKmnnnrKgVeBP2vZsqUGDBhQ5I+/v78kqUWLFlb3l5Q7hoMnTpzQwIED9dRTT+nLL7+Ur6+vbr/9dvXs2VONGjXS999/rylTpqhnz546efKkq8sttUmTJtnll8AzZsxQTk6OnnnmGTtVZj/l7XXZnX+p5q7OnDmjhx9+WM8884w2btwof39/9ezZUxERETpz5oxiY2N13333admyZXY9rzsGwPaqifdj13niiSfk5eWl119/3dWlAIBdeLm6AACA81WtWlXHjx/XqlWrNHToUFeX41Lh4eH66quvVLVqVVeXIkm699571bZtW/n5+bm6lBuqX7++vvrqK3l7e7u6FLvLy8vTxo0bVaVKFX3++eeqUaNGqY5fsWKFXnnlFRkMBo0ZM0bjxo0r0sdPP/2k+fPn69dff7Vn6W5h+PDh6t27t2666SZXl1JEz5491bNnzyLbR4wYofT0dPXs2VNPPPGECypzrN9//11DhgzRuXPn1L59e73yyitq0aKFRZvMzEytWLFCCxcu1MWLF9WoUSMXVes6hw8f1hdffKGoqCiFhoa6upxK4c0331R2drYaNmzo6lJc7sKFCxo+fLhOnDihVq1aacaMGWrevLl5f35+vv7zn/9o1qxZeu2111RQUKCYmBgXVuz+Kvv7sas1aNBAgwcP1tKlS7Vp0yb16NHD1SUBQJkwIx0AKiHTf7reffddZWdnu7ga16pataqaNm3qNv+B9/PzU9OmTVWvXj1Xl3JD3t7eatq0qYKCglxdit2lpaUpPz9f/v7+pQ7RU1JS9MYbb0i6OkN24sSJxfbRrFkzzZs3Ty+++KJdanYnderUUdOmTVWnTh1Xl4L/77nnntO5c+cUHh6ujz/+uEiILkk1atTQmDFjFBcXp7p167qgStf7+OOPJUkPPfSQiyupPBo2bKimTZu6zS+0S8P0aTR7zbh/7bXXdOLECd188836+OOPLUJ0SfLy8tLo0aPN7xszZsxQSkqKXc5dEfF+7B5Mr6em11cAKM8I0gGgErrrrrvUuXNnpaWl6aOPPir18UeOHNGECRN09913q02bNurcubMee+wxbd26tUjbAQMGKDQ0VD/88IPF9nPnzqlFixYKDQ3VjBkzihwXExOj0NDQUq1ZmZ+fr48++kj9+vVTWFiYunTpoieeeMLquozWPjZ85MgRPf3007rrrrvMa2n26NFDTzzxhDZu3Ghu1717d02ePFmStHr1aot1la/t99qlHvbu3atx48apS5cuatGihXkpgpIsEZOdna05c+bo3nvvVVhYmO644w794x//0JkzZ0p1fSamWk1MNZiWdujRo0exa0XfaI3006dP61//+pd69eqlsLAwRURE6JFHHtEnn3yigoKCIu2vvfasrCzNnj1b9957r9q0aaPbb79dL7zwQrHXWBIpKSmaPHmyeb3zzp0769FHH9VXX31V7ONxzz33SJJOnjxZ6nWyP/zwQ+Xl5alFixZ69NFHb9i+U6dORbaV5bG7dOmSpk2bpu7duyssLEy9evXS+++/r8LCQklXlw2YMmWKunXrpjZt2ui+++7TkiVLbljn7t27NXr0aHXu3Flt27bVQw89pDVr1hTb9nrLOZT1OT5z5oymTZum+++/X23btlX79u01aNAgLV261OFLVX355Zd69NFH1blzZ7Vp00b33HOPJk+erF9++cWinel7bvfu3ZL+77XM9OfaZUd27Nihf/3rX+rfv78iIyPVpk0b3XXXXXr66ad1+PBhu9W+e/du7d27V5L06quvqkqVKlbbN27cuMgv8/Lz87VixQo98sgjioiIMI+t119/vdjnrCT3ULjeMiXXbt+1a5dGjx6tTp06KTw8XAMGDCgy7kznWr16tSRp8uTJFo95SUPO9PR0ff3116pXr55uv/32Eh1jcu3re2JiosaPH29+Tnv37q1FixbJaDQWOS43N1cffvihBg4cqPbt25u/FwYNGqQZM2YoIyNDUslfl699zc/Ozta8efPM3y+m56Isz410dSz897//1ciRIy3G7ciRIy1eS0JDQ/XOO+9Ikt555x2Leq99j7O2DFJpx53pvKb3tK+//lpDhw5Vhw4d1K5dOz3yyCPF/qziDk6cOGF+T3rhhRdUs2bN67YdNmyYWrRooby8PH344YcW+260xFFxP2eMGDHCPMli9+7dFs/VtePk2r6TkpI0fvx4denSReHh4erXr58+/vjjYt+jHFmTNa54P74eW34eK2772rVr9dBDD6l9+/bq0qWLnn32WfOa+UajUUuXLlX//v3Vrl07RUZGatKkSTp37lyRPsvyfrxjxw6NGzdOXbt2VevWrdWpUyf16tVLEydO1J49e4q0b9mypVq0aKH4+Hh+8QOg3GNpFwCopCZOnKiHH35YH374oR555JESL8Hw8ccfa/r06SosLFTLli0VHh6u9PR0xcfHa/v27XriiSc0fvx4c/vbbrtNR48e1Y4dO9S6dWvz9h07dphDhT+H5Tk5OTpw4IB8fX0VERFRoroKCwv11FNPaePGjfL29lZkZKRq1qypQ4cOafDgwRo0aFCJ+jHZuXOnxowZY/4PWLt27VRYWKgzZ85oy5YtKigoMC8Pcd999+ngwYPav3+/goKCLGq+9dZbi/S9fv16ffLJJ7r11lvVtWtXXbhwQT4+PiWqKy8vTyNHjtSxY8fUuXNntWrVSvv27dNnn32mbdu2aenSpQoODi7Vtf5ZUFCQBgwYoK+//lpZWVm67777VK1aNfP+kqwVffjwYY0ZM0YZGRlq2LChevbsqUuXLmn37t06cOCAvvnmG/373/8u9rovXbqkRx55RKdOnVJERISaN2+ugwcPas2aNdqzZ4/Wrl1bqqVvtmzZoieffFJXrlxRkyZN1KtXL507d0579uzRrl27tH37dk2dOtXcfsCAAcrKytLXX3+tatWq6b777ivxtRuNRm3evFmS9OCDD8pgMJS4TpOyPHYXL17UkCFDlJGRoY4dO+ry5cvau3evZs+erTNnzujRRx/VsGHD5OXlpfbt2+v8+fPau3evXn/9dWVnZ+uvf/1rsTV98803WrZsmW699VbdcccdOnv2rPbt26cXXnhBSUlJpb43gC3P8Z49e/T444/rwoULatSokbp27arc3FwlJCToX//6l7799lstXLjQ7ksNGY1GTZo0SWvWrJGXl5c6duyounXr6ocfflBcXJzWrVunt99+W3fddZekq2NkwIAB+u6775Senq477rhDAQEB5v6u/QTHyy+/rFOnTql58+bq0KGDvLy89PPPP2vdunX65ptvNGfOHIvxZ6tNmzZJkkJCQtSqVatSH5+bm6uxY8dqx44dqlKliiIjI1WjRg0dOHBAS5Ys0RdffKHY2FiL13h7+Oyzz/Tvf/9brVq10p133qmTJ0/q4MGDeuGFF5SRkaGRI0dKkqpVq6YBAwZo3759Sk1NVYcOHdS4cWNzPy1btizR+bZu3aq8vDx16dJFHh62zTfavn27Fi9erKCgIN1+++1KS0vTvn379Oabb+rUqVMWM14LCwv117/+VTt37lSNGjXUsWNH1axZU+fPn9evv/6q2NhY9evXT7Vr1y716/KVK1c0YsQIpaSkqGPHjmrRooU5lC+LS5cuaezYsdq3b5+8vb3Vvn171atXT2lpaTp27Jh27txpDgoHDBigxMREJSUlqUWLFhbPQ0ne28s67t5++20tWLBA7du3V7du3fTzzz/rwIEDGjt2rObPn6977723zI+HPW3evFmFhYWqWbPmDYNig8Gg/v37KykpSZs3b5bRaLTp/cbkzjvvlI+Pj7Zv3y5/f3+L+4EU9/Ph4cOH9corr8jf31+33XabLl68qPj4eE2dOlX79u3TvHnzylSPLTX9mavfjx1h9uzZWrRokTp27Kg777xTCQkJ+vLLL7V//36tXbtWL7/8sjZv3qzOnTvrlltu0f79+7V69WodPXpU//3vf+3yM9fq1avNk0fCw8MVGRmpnJwcnTlzRl999ZVuuummYn8h0bVrVyUlJWnjxo1q2rSp4x4kAHA0IwCg0rjnnnuMISEhxj179hiNRqNx/PjxxpCQEOPUqVMt2j366KPGkJAQ42effWaxfdu2bcbQ0FBjZGSkcffu3Rb7kpKSjHfddZcxJCTEGB8fb97+3XffGUNCQoyjRo2yaD9p0iRjSEiIsV+/fsbQ0FDjuXPnbniMNUuXLjWGhIQYu3btavzpp5/M2/Py8owvv/yyMSQkxBgSEmJ84YUXLI7btWuXMSQkxBgdHW2xfcSIEcaQkBDj2rVri5zr4sWLxgMHDlhs++yzz4rt/1rR0dHmOpYuXVpsm+v1Y6ozJCTEeO+99xpPnjxp3peTk2N84oknjCEhIcaHH364RNd3LVO/f2YaLydOnCj2uBMnThhDQkKM99xzj8X2K1eumI+dMmWKMTc317wvNTXVvG/OnDnFXntISIhx9OjRxkuXLpn3ZWRkGPv3728MCQkxLly48LrX8mdpaWnGiIgIY0hIiHHBggXGwsJC877Dhw8bO3XqZAwJCTGuXLmyRNd2I6mpqeZrMH2flYY9HruxY8cas7KyzPuOHDlibNWqlbFFixbG3r17G6dMmWLMy8sz7//mm2+MISEhxg4dOlgcZzRajtk/P+7x8fHG8PBwY0hIiHHbtm0W+95++21jSEiI8e23375unaV5js+ePWvs3LmzMTQ01Lhs2TJjQUGBed/58+eNMTExxpCQEOP8+fOtPr7WmK71zzUvX77cGBISYoyMjDQePXrUvL2wsNB8nR07drR4Dbu2v127dl33nN98840xIyOj2O2tWrUydu7c2ZidnW2xrySvNX82bNgwY0hIiHHy5MklPuZaM2fONIaEhBh79uxp8XqQm5tr/Mc//mEMCQkxdu/e3XjlyhXzvpJ8D13vNca0vXXr1sbNmzdb7DNdf0RERJHH5oUXXij2vaukJk6caPX12XRNxdV87ffKihUrLPbt2LHDGBoaamzZsqXx1KlT5u27d+82hoSEGB988EGL7wWTw4cPG8+fP2+x7Uavy9e+V/Tr18949uzZ616HLc+N6eeGBx98sMi+vLw84zfffGOx7XqvBde63veKLePOaPy/97SOHTsaDx48WGw9vXr1um49pWEaj9aur6See+45Y0hIiHHEiBElam8aPyEhIcbU1FTz9ht9H9zo5wxrPy+Y+g4JCTG+8sorFu8lycnJxi5duhT7PeDImq7HVe/H16u5LD+PmbZ37tzZmJiYaN6enZ1tHDp0qDEkJMTYt29fY8+ePY2//fabef+5c+eM9957b7E/z9r6fty9e/frPqbp6enGH374odhr27BhgzEkJMT46KOPXvf6AaA8YGkXAKjEnnnmGXl5eWn58uXmj4tbM3/+fBmNRr366qtFZptc+5HcpUuXmrd37NhRPj4+2rdvn3Jzc83bd+3apUaNGmnIkCEyGo3atWuXed+OHTskXZ3NXlKmdRfHjx9vMdPFy8tLkydPtpgRWhKmj8F269atyD4/Pz+1a9euVP1dq0uXLho+fLjNxz///PMWa7pXqVJFL7/8sqpWrWqeGe9K69at08mTJ1WvXj29+OKLFjOEb7nlFr3wwguSpCVLlujKlStFjq9WrZqmTZtmsY5prVq1zLOlTeOjJD799FNdunRJrVu31t/+9jeLGWlhYWEaN26cJCk2NrZ0F3kd58+fN//blvXB7fHYvfHGGxZrDbdu3Vp33XWXCgsLlZWVpX/84x/y8vq/DyX27NlTISEhyszM1JEjR4qtq1WrVho7dqzFts6dO2vYsGGSpMWLF5fqOkv7HH/88cfKyMjQ8OHDNWzYMIvZwjfddJNmzJghb29vLVu2rNjlM8pi0aJFkqTHH3/cYkatwWDQ+PHjFRoaqosXL+rTTz8tdd89e/ZUrVq1it0eFRWljIyMEi0ndCOmcWnLuudXrlzRsmXLJF1dMuXmm2827/P29tZLL70kf39//fbbb/r666/LXOu1oqOjzcssmQwcOFC33nqrLl26dN3xaqvExERJKtNsyV69eumRRx6x2HbbbbfpjjvuUEFBgcV7XXp6uqSrs7OLW7c5LCysTDfsnTJlSqnf+6xJSkrShg0bVKVKFS1cuNBiLEhX32+Lu5GvLewx7p588km1bdvWYtvYsWPl5+en48eP69SpU3ap1V5M36cl+dSXZPn9/McffzikpusJCAjQpEmTLN5Lmjdvrscff1xS6d8THMHV78eO8OSTT1rc38LX11ejRo2SJCUnJ+ull16yuEl0nTp1NHToUElFP/1pUtr343PnzsnPz08dO3Ys0lfdunWv+6mnZs2aSZKOHj16w+sEAHdGkA4Alditt96qQYMGKTc3V/PmzbPa9vz58zp8+LB8fX2LBBsmkZGRkmQR5Pr6+qp9+/bKycnRvn37JEm//PKLfv/9d3Xt2lVdu3aVZPmDuumHfdO+Gzlz5ox+/fVXSdIDDzxQZH+VKlUUFRVVor5MwsPDJV1dAmfv3r12XX+5LEs11KxZUz169CiyvW7duuaPPZvWZnYV0/n79OlT7MeIe/XqpVq1auny5cvFBmFt2rQp9marpmVySrNOuqmWAQMGFLvfdAOs48eP27z+uj3Z47ErLiw1LfcTGRlZ7PrYpv1nz54ttq7+/fsXu/3BBx+UJO3bt69Ua8WW9jk2rWl8//33F9tf/fr11bhxY50/f17Hjx8vcR03cvr0aaWmpkoqfgwZDAYNHDhQkmwOvM+cOaNPP/1U06dP14svvqhJkyZp0qRJ+vHHHyWpyBrszpaQkKCsrCzVrl272OUmqlatqt69e0uy/TG4nuu915iCbnt/z5qC7dq1a9vcx41qvvZ7rHXr1vL09NRnn32mZcuWXff7zxZ169YtNugqi23btkmS7r77btWvX9+uff+ZPcZdcc+Fj4+PbrnlFkmlGz979+41f29e+2fVqlWSpI0bNxa7/9r7qdibvX9pWBr3339/se8lpvcEd3lPLYuyvh87QnGTO0zLWHl5eRV7bwfT/uu9vpT2/TgsLEyXLl3S888/ryNHjpjvv3IjptfVCxcuWEysAYDyhjXSAaCSGz9+vD7//HP973//0+jRoy1mulzrt99+k9FoVE5OjsLCwqz2+eeZUV27dlV8fLx27Nih2267zRyad+3aVU2aNFFgYKB52x9//KHExETVrl27xGv5nj59WtLVmanVq1cvts2fZ87dyLPPPqtjx45p27Zt2rZtm3x9fdWqVSt17txZDzzwQJlmLF47W8iWY6+3zqfpGk2Ph6uY/tN1vcfcYDDo5ptv1oULF4r9j3ZgYGCxx5lmS5XmP2A3qqVmzZqqXbu2MjIydObMmTKHQ9fOejt//nyxa+Rb46jHzrSW8vX2m75vrjer7nr1mLbn5OQoIyOjxDOeS/scnzhxQpJK9EmO8+fPq0mTJiWq40ZMj3Ht2rWLnTEs/d+a57aERu+8844WLlyovLy867bJzMwsdb9/VqdOHf3888/F3nDuRkzhi7XXrbI8BtZc+8mba5meC3vPAjU91td7rkviRmP72pqDgoI0efJkzZgxQ6+99ppee+01NWrUSO3atdPdd9+tqKgom9deLsv7zPWYbmhor+8va+wx7uw5flJTU803sy1OUlKSkpKSimxv1KhRiWfpmz59YPqFzo1cO+O6LJ9csMX13hNq1Khh1/fUsnD1+7EjFDemTe/vAQEBFp8QMDG9v1/vZ6fSvh+/8sorGjt2rNauXau1a9eqevXqCgsLU5cuXdS/f/8bft9JV9dlt+UTUgDgDgjSAaCSq1evnmJiYvTee+9pzpw5ev/994ttZ5r59OebL5ZE165dNXfuXH3//feaMGGCdu7cKQ8PD/PSLbfddpvi4uL066+/6ocffpDRaFSXLl3KfKOqsggICNBnn32m3bt3a8eOHdq/f78OHz6s/fv367333tOzzz573Rsz3oivr6+dq7VUmllqJZ1J5Ey23uTPHTRq1MgcIiQkJNh9RuiN3Oixc+RjW5pxV9o6TOP0zzdYLE5ZZhM704YNGzR//nxVq1ZN//znP9WlSxfVq1dPvr6+MhgMmjNnjt577z27zDpt3bq19u7dq4SEBDtUbj83ev1x9nuAn5+fzp8/X6ZfXpR2bI8YMUL333+/Nm/erH379mnfvn368ssv9eWXX2r+/PlatmxZsbNFb6Ss7zPu+N5QWvZ8vRs4cKD50yfXiouL0+TJkzV+/Hg98cQTZTpH69at9fnnn+vo0aPKz88vNhS91uHDhyVdfc0rzWQBZz23rv5ZxNXvx6VVksfA2pi2dbyX9rimTZtq/fr1+v7777Vr1y4dOHBA+/bt065du/Tuu+/qjTfeKPZTbJcuXTL/u2bNmjbVCgDugCAdAKAxY8Zo5cqV2rp1q/bs2VNsmwYNGki6GmxMnTq1VD94t2nTRjVr1lRiYqLOnz+v+Ph4tWzZ0jyDqmvXroqLi9OOHTvMayeWdFkXSeYZT3/88YcuX75c7Kz0kqwB/2cGg0GRkZHmJWuuXLmiuLg4vfbaa5o7d66ioqLMM+Kcxdp1mPaZnitJ5jU9L1++XOr+bGV6PkyziIvz22+/WbR1lPr16+vnn3++bi2XLl1SRkaG3Wrx8PDQPffco9WrV2vNmjXmtUtLyp0eu+LO+Wem8VOlShWHBtiBgYE6fvy4xowZc8NPxNiT6THOyMhQZmZmsTOVTc9VaZ+PdevWSbp6r4ohQ4YU2W/PJWp69Oihjz/+WMnJyTp69GiJP+0jyRziWnutKO4xuNFrT15entLS0kpchzPUrVtX58+fN78mOIu/v78efvhhPfzww5KklJQUvfjiizpw4IBmz56tN998067ns/W5Mc00dcZyQ7aOu/Kse/fuevPNN3Xp0iVt2rTJ6qQFo9GotWvXSrq6hM21v3S60fNr+mRBWVzvPSEzM9P8/VOan0XsUdOfudv7sSt+HnMULy8vdevWzbzUTGZmphYvXqx33nlHL7/8su69994iv/Q2jYtatWpZrDcPAOVN+Z3yBQCwGz8/P/NNF2fOnFlsm/r16ys0NFSXL1/Wd999V6r+PTw8FBkZqcLCQn3wwQe6ePGiRVB+2223yWAwaMeOHRbLvpRUgwYNzGuefvHFF0X25+bmav369aWquThVqlTR0KFDFRoaqsLCQh07dsy8z/SfAnuupV6cixcvavPmzUW2nz9/3vy8dO7c2bz92v8IFvexXtPa08UxXVNp1r6+9vxfffVVsR+d/+abb3ThwgVVr15dbdq0KVXfpWWqZc2aNcXu/+yzzyRdXSPcXmHMmDFj5O3traSkJH300Uc3bL93717zv93psbvW559/Xux20+MaERFxw9mTZWFa/98UPjtLgwYNzL8si4uLK7LfaDSal3sw/cLN5EbfPxcuXJBU/Ef1z507V6qb6t5IZGSkOnToIOnqx/JvtDxSamqqeWmNsLAwVatWTRkZGdq0aVORtjk5Ofrqq6/M5zGpU6eOvL29lZGRUeySMtu3b7f766Wtr1kmpl8wpKSk2K0mWzRt2lR/+ctfJP3fDVBNynqNku3Pjen7cOvWrSVeysLW90Zbx115FhQUZL4PxIwZM3Tx4sXrtl2+fLmOHTsmLy8vPfbYYxb7TO9lxY1jo9FoXuv+z0rzXK1fv77Y1xFTuN+4cWOL91Rn1FQcd3o/LsvPY+6uRo0aeuKJJ1SzZk1lZ2cX+4tg030/Wrdu7eTqAMC+CNIBAJKurj3csGFDHTp0SAcPHiy2zdNPPy1Jmjx5crFhrtFo1KFDh7R9+/Yi+0zLuCxbtkySLG6I5O/vr+bNm2vr1q367bffdPPNN5uD8ZJ69NFHJUnz58+3+I9aQUGB3nzzzVLfxC02NrbYGVIpKSnmG5teG4CZZl45I4B58803LdZBz83N1auvvqqsrCyFh4crIiLCvK9Ro0YKDg7WxYsX9cEHH1j0Ex8fr7fffvu65zH9p8/0n5+Suv/++9WwYUOdPXtW06ZNs/gP8IkTJzR9+nRJV5c0KO5mZfb08MMPq0aNGvrhhx+0cOFCi4+aHz16VP/+978lqUgQURZNmzbVpEmTJEnTp0/XnDlzil0q4pdfftGzzz6r119/3bzNnR67a/3www9Fxs/evXu1fPlySdLIkSMdev6//OUvqlmzpj766CMtWrSo2BDixIkT5hDHnkaPHi1JWrBggcUayEajUQsWLFBiYqJq1qxpnk1scqPvH9N6vZ9++qnF9Vy6dEkvvPCCxcfg7WHmzJm66aabdOjQIcXExFj8ItAkKytLixcv1sCBA80Ba5UqVcxr07/55psWsybz8vL0xhtvKC0tTTfffLPFDFpvb2916tRJkvTWW29ZLFuQlJSkf/3rX3a9Psn21ywTUyB74MABu9Vkzc6dO7V169Yia+QbjUZt2bJFUtFftJT1GiXbn5uWLVuqR48eysnJ0d///vci75H5+flFQm/Te+NPP/1UqhptHXfl3ZQpU9SoUSP99ttvevTRR4s8z/n5+Vq8eLHeeOMNSVdviN68eXOLNqaft9auXWvxuOfl5WnmzJnXXeLJ9Fz9+uuvVu/bIF1dw/7NN9+0+IVOSkqKFixYIOn/fiZzZk3Fcaf347L8POYusrOztXjxYov1+U327t2rixcvytPT0+LTCCam19UuXbo4vE4AcCSWdgEASJJ8fHz05JNPatKkScrOzi62Tffu3fXiiy/qzTff1N/+9jc1btxYTZo0UY0aNfTHH38oKSlJ586d05gxY3THHXdYHGuaYX7lyhX5+vpahL2m/cnJyRZtS2P48OH6/vvv9e2336p///6KjIxUrVq1dOjQIaWlpWno0KFasWJFifv797//rRkzZujWW29V06ZNVaVKFZ09e1b79+9Xfn6+HnzwQYtZNW3btlW9evV09OhRDRgwQCEhIfLy8lKTJk3MMwvtoX379iosLFRUVJS6dOkiX19f7du3T2fPnlXdunWLXQJgwoQJevLJJ/X222/rm2++UePGjXXixAkdPXpUf//73/Xuu+8We6777rtP8fHxeu6553THHXeY17R87LHHrN60y8fHR/PmzdOYMWO0YsUKbdu2TW3bttXly5e1a9cuXblyRXfccYcef/xx+zwoVvj7+2vWrFl66qmnNHfuXK1du1atWrXSuXPntGfPHuXn52vgwIFFQtCyio6OVtWqVfX666/rvffe00cffaTw8HDVr19fV65c0c8//2z+pUufPn3Mx7nTY3etESNGaM6cOVq7dq1CQ0N19uxZ7d27V4WFhYqJiTF/vNtRGjRooAULFuiJJ57Qm2++qQ8//FDNmzdXQECAMjMzlZKSotTUVLVt27bYtVnL4pFHHtGBAwe0du1aDRo0SJ06dVLdunX1ww8/6JdffpGvr69mzZplcWM76er3T1xcnGbOnKmdO3eqTp06MhgMGjRokDp06KBHH31Ua9eu1datW9WzZ0+1a9dOeXl52rNnj3x9fTVo0CDzJybs4eabb9bKlSv1xBNP6MCBA3rggQfUrFkz3XrrrfL29taZM2d0+PBh5ebmyt/fX7Vq1TIf++STT+rIkSPauXOnevfurcjISFWvXl0HDx7U77//rtq1a2vevHlFboz59NNPa8+ePfr000+1e/du89g5cuSI+vbtq927d9t1OYOePXvq3Xff1ZIlS/Tjjz+qQYMG8vDwUPfu3dWjR48bHt+tWzd5e3tr165dKigokKenp91qK86xY8c0bdo01ahRQ61atVK9evV05coVHT16VCdPnpSfn5+eeuopi2NsfV3+M1ufm2nTpumvf/2rDh48qF69eql9+/aqV6+e0tPTlZycrPPnz1v8kuaOO+5QtWrVtHHjRg0dOlTBwcHy8PBQhw4dNGjQIKs12jruyrPatWtrxYoV+vvf/64jR46oX79+atOmjYKCgpSdna2DBw/q/Pnz8vb21gsvvFAksJaufkKoR48e2rRpkwYNGqSIiAhVqVJFR48eVWZmpmJiYvSf//ynyHENGzZUmzZtLM5bpUoV3XTTTZo4caJF20ceeUSrVq3Sli1b1LZtW124cEHx8fHKy8vTvffeq2HDhjm9putxp/djW38ecxd5eXmaPn26ZsyYoZCQEDVu3Fje3t46efKkeRLOuHHjirwfSjJ/yqokr8UA4M4I0gEAZv3799eiRYvMgXZxYmJi1KVLFy1dulTx8fHmG4f6+/urZcuWuvvuu9WrV68ixzVp0kSBgYE6deqUIiIiivzHt2vXruaP3ZpmLpWGh4eH3nnnHS1ZskT//e9/tXv3blWrVk0RERF69913dfTo0VIF6VOmTNHOnTt15MgR7dmzR1lZWQoICFDXrl01ZMiQIv8R8PHxUWxsrObOnauDBw8qKSlJhYWF6ty5s12DdG9vb7333nt655139PXXX+vMmTOqVauWBg4cqCeffFKBgYFFjunVq5fee+89LVy4UImJifr1118VEhKiOXPmqHfv3tf9j9vQoUN1+fJlff7559q6dav5o80PPPDADQOb8PBwrVmzRh988IG2bdumb775Rj4+PmrVqpX69++vwYMHO3QpkGuZ1kj94IMPtHPnTn399deqWrWqIiIi9Mgjj6h3794OOe+gQYN0zz33aOXKldq+fbtSUlJ04MAB+fj46Oabb9aQIUPUr18/88xQE3d67Ezuvfde9ejRQ++99555Bm2rVq0UHR2tAQMGOKWGTp066csvv9TSpUu1detWJSQkKDc3V3Xr1lVgYKAeeOCBYl97yspgMGjGjBm66667tHLlSv3www/Kzs6Wv7+/Bg4cqDFjxhT7/XD33Xfr9ddf14oVK7Rr1y7zLygjIiLUoUMH3XLLLVq9erXeeust7du3T99++60CAgLUp08fPfHEE6V6vSqpxo0ba82aNVq/fr02bNigw4cPa9u2bSosLFSdOnV0++23q0ePHurbt6+qVq1qPs7Hx0cffvihPv30U61du1Z79+5Vbm6uAgMDNWLECI0ZM6bYpZHatm2rpUuXav78+Tp48KBOnz6t4OBg/eMf/9DQoUPtHqi0aNFC8+fPV2xsrA4dOqSdO3fKaDSqQYMGJTqXv7+/7rvvPn3xxRfavn27w39B1L17d2VmZmrv3r369ddfdejQIfn6+qpBgwb661//quHDhxeZ2VmW1+Vr2frc1KpVS0uWLNFnn32mL774QklJSTpw4IDq1q1rnrF+LX9/f33wwQd699139cMPP+jgwYMqLCxUQUHBDYN0W8ddeVe/fn2tWrVK69at05dffqmEhAQlJSWpSpUqatiwoR588EENHz7c6g1G33rrLS1YsEBffPGFdu/erZo1a+q2227TU089ZbF8yZ/Nnz9fs2fPVnx8vNatW6f8/Hw1atSoSGjdtm1bDRkyRG+//ba+//57ZWVlKTg4WA899JCio6OLvVGwo2uyxl3ej239ecxdVKtWTa+++qr27Nmjo0ePaseOHcrLy1O9evXUq1cvDR06tNif4Y8ePapjx44pMjJSzZo1c0HlAGA/BmNpbqcNAAAAABXU4cOHNXjwYPXq1Uvz5893dTmAW5k0aZJWr16tadOmaeDAga4uB+XEv/71Ly1dulQLFixgRjqAco810gEAAABAV2eg9u3bV998843FmvgAgNI7deqUVq1apc6dOxOiA6gQCNIBAAAA4P97/vnnVbVqVc2dO9fVpQBAufbOO+8oPz9fL774oqtLAQC7YI10AAAAAPj/6tevrwMHDri6DAAo99544w298cYbri4DAOyGNdIBAAAAAAAAALCCpV0AAAAAAAAAALCCIB0AAAAAAAAAACtYI90BCgsLlZ+fLw8PDxkMBleXAwAAAAAAAAD4E6PRqMLCQnl5ecnDw/qcc4J0B8jPz1dCQoKrywAAAAAAAAAA3EBYWJh8fHystiFIdwDTby/CwsLk6enp4moco6CgQAkJCRX6GuE+GG9wJsYbnIWxBmdivMGZGG9wJsYbnInxBmdivDmH6XG+0Wx0iSDdIUzLuXh6elb4gV4ZrhHug/EGZ2K8wVkYa3AmxhucifEGZ2K8wZkYb3AmxptzlGR5bm42CgAAAAAAAACAFQTpAAAAAAAAAABYQZAOAAAAAAAAAIAVBOkAAAAAAAAAAFhBkA4AAAAAAAAAgBUE6QAAAAAAAAAAWEGQDgAAAAAAAACAFQTpAAAAAAAAAABYQZAOAAAAAAAAAIAVBOkAAAAAAAAAAFhBkA4AAAAAAAAAgBUE6QAAAAAAAAAAWEGQDgAAAAAAAACAFQTpAAAAAAAAAABYQZAOAAAAAAAAAIAVBOkAAAAAAAAAAFhBkA4AAAAAAAAAgBUE6QAAAAAAAAAAWEGQDgAAAAAAAACAFQTpAAAAAAAAAABY4eXqAgA4R2pqqtLT0x16Dn9/fwUFBTn0HAAAAAAAAICzEaQDlUBqaqpCW7RUTnaWQ8/jW7WajiUlEqYDAAAAAACgQiFIByqB9PR05WRnqcmoWfINbOaQc+Sc+km/LJ6o7777Ti1btrRr3wUFBUpOTlZhYaE8PT2Z+Q4AAAAAAACnIkgHKhHfwGaqHtTaIX3nXUiTDB6Kjo52SP/XYuY7AAAAAAAAnIkgHYBd5GdflIyFDp31Lv3fzPf09HSCdAAAAAAAADgFQToAu3LkrHcAAAAAAADAFTxcXQAAAAAAAAAAAO6MIB0AAAAAAAAAACsI0gEAAAAAAAAAsIIgHQAAAAAAAAAAKwjSAQAAAAAAAACwgiAdAAAAAAAAAAArCNIBAAAAAAAAALCCIB0AAAAAAAAAACsI0gEAAAAAAAAAsIIgHQAAAAAAAAAAK9wuSP/xxx/15JNPqkePHmrbtq0iIyM1fPhwbd68uUjblJQUPfbYY2rfvr06d+6s5557TufPny/SrrCwUB988IG6d++usLAw9evXT1988UWx5y9pnwAAAAAAAACAysHL1QX82e+//67Lly9rwIABqlevnrKzs7Vhwwb97W9/02uvvaYhQ4ZIkk6fPq3hw4fLz89PzzzzjLKysrRo0SIlJydr1apV8vHxMfc5d+5cvf/++3r44YcVFhamTZs2acKECTIYDOrTp4+5XWn6BAAAAAAAAABUDm4XpHfr1k3dunWz2BYdHa2BAwdq8eLF5iB94cKFys7OVlxcnBo2bChJCg8P16hRo7R69WpzuzNnzmjx4sUaPny4pkyZIkkaPHiwoqOjNWPGDEVFRcnT07NUfQIAAAAAAAAAKg+3W9qlOJ6engoMDNSlS5fM2zZs2KC7777bHHhLUteuXRUcHKx169aZt23cuFF5eXkaNmyYeZvBYNDQoUN1+vRpHThwoNR9AgAAAAAAAAAqD7cN0rOysnT+/Hmlpqbqo48+0rZt29SlSxdJV2eZnzt3Tm3atClyXHh4uBITE81fJyYmqlq1amratGmRdqb9pe0TAAAAAAAAAFB5uN3SLibTp0/XypUrJUkeHh669957zUuznD17VpIUEBBQ5LiAgABlZGQoNzdXPj4+SktLU926dWUwGIq0u7av0vRZUgUFBSVuW96Yrq0iX2NFUhGfp4KCggp5XXA9Xt/gLIw1OBPjDc7EeIMzMd7gTIw3OBPjzTlK8/i6bZD+6KOPKioqSmfPntW6detUWFiovLw8SdKVK1ckqdhQu0qVKpKknJwc+fj4mP+21q60fZZUQkJCiduWV5XhGiuC5ORkV5dgd8nJyfLwcNsP1aAC4PUNzsJYgzMx3uBMjDc4E+MNzsR4gzMx3tyH2wbpTZs2NS/H8uCDD2r06NEaN26cVq1aZQ62c3NzixxnCsR9fX3Nf5ekXWn6LKmwsDDzjUwrmoKCAiUkJFToa6xICgsLXV2C3YWEhKhdu3auLgMVEK9vcBbGGpyJ8QZnYrzBmRhvcCbGG5yJ8eYcpse5JNw2SP+z++67T1OmTNEvv/yievXqSZLS0tKKtEtLS1Pt2rXNM8cDAgIUHx8vo9FosbyL6VhTX6Xps6Q8PT0r/ECvDNdYEVTE54ixB0djjMFZGGtwJsYbnInxBmdivMGZGG9wJsab+yg36yKYlmDJzMxU/fr1VadOHR05cqRIu8OHD6tFixbmr1u2bKns7GylpKRYtDt06JB5v6RS9QkAAAAAAAAAqDzcLkg/d+5ckW15eXlau3atfH19zcu99OrVS1u2bNGpU6fM7Xbu3Knjx48rKirKvK1Hjx7y9vbW8uXLzduMRqM++eQT1a9fX+3btzdvL2mfAAAAAAAAAIDKw+2WdpkyZYoyMzPVqVMn1a9fX2lpafrf//6nn3/+WZMmTVL16tUlSePGjdP69esVExOjmJgYZWVlKTY2ViEhIRo0aJC5vwYNGigmJkaxsbHKz89XWFiYNm7cqL1792rWrFkWH40oaZ8AAAAAAAAAgMrD7YL03r1767///a9WrFihjIwMVa9eXa1bt9bEiRPVo0cPc7vAwEAtXbpU06dP1+zZs+Xt7a1u3bpp0qRJRdYynzhxomrVqqWVK1cqLi5OwcHBmjlzpvr162fRrjR9AgAAAAAAAAAqB7cL0vv06aM+ffqUqG3z5s0VGxt7w3YeHh4aO3asxo4da7c+AQAAAAAAAACVg9utkQ4AAAAAAAAAgDshSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKzwcnUBf3b48GGtWbNG8fHxOnnypGrXrq22bdvq6aefVpMmTcztJk2apNWrVxc5vkmTJlq/fr3FtsLCQsXGxmrFihVKS0tTcHCwxo4dq759+xY5PiUlRVOnTtX+/fvl7e2tbt26afLkyapTp479LxYAAAAAAAAA4PbcLkj/8MMPtX//fkVFRSk0NFRpaWlatmyZBg4cqJUrVyokJMTc1sfHR6+//rrF8X5+fkX6nDt3rt5//309/PDDCgsL06ZNmzRhwgQZDAb16dPH3O706dMaPny4/Pz89MwzzygrK0uLFi1ScnKyVq1aJR8fH8ddOAAAAAAAAADALbldkD5y5EjNmjXLIrTu3bu3+vXrp/fff1+zZs0yb/fy8lL//v2t9nfmzBktXrxYw4cP15QpUyRJgwcPVnR0tGbMmKGoqCh5enpKkhYuXKjs7GzFxcWpYcOGkqTw8HCNGjVKq1ev1pAhQ+x9uQAAAAAAAAAAN+d2a6R36NChyMzv4OBgNW/eXD///HOR9gUFBcrMzLxufxs3blReXp6GDRtm3mYwGDR06FCdPn1aBw4cMG/fsGGD7r77bnOILkldu3ZVcHCw1q1bV5bLAgAAAAAAAACUU24XpBfHaDQqPT1dN910k8X27OxsRUREKCIiQp07d9arr76qy5cvW7RJTExUtWrV1LRpU4vt4eHh5v3S1Znr586dU5s2bYqcPzw83NwOAAAAAAAAAFC5uN3SLsX5/PPPdebMGT355JPmbQEBAfrLX/6iVq1ayWg06rvvvtPy5cuVlJSkJUuWyMvr6qWlpaWpbt26MhgMFn0GBARIks6ePWvxt2n7n9tmZGQoNze3VOukFxQUlO5CyxHTtVXka6xIKuLzVFBQUCGvC67H6xuchbEGZ2K8wZkYb3AmxhucifEGZ2K8OUdpHl+3D9JTUlL02muvqX379howYIB5+4QJEyza9enTR8HBwZo7d66+/vpr801Ec3Jyig2/q1SpYt4vSVeuXJGkG7YtTZCekJBQ4rblVWW4xoogOTnZ1SXYXXJysjw8ysWHalBO8foGZ2GswZkYb3AmxhucifEGZ2K8wZkYb+7DrYP0tLQ0jR07Vn5+fpo3b575pqDXM3LkSM2bN087duwwB+m+vr7Kzc0t0tYUnPv6+kr6v7C8JG1LKiws7IY1l1cFBQVKSEio0NdYkRQWFrq6BLsLCQlRu3btXF0GKiBe3+AsjDU4E+MNzsR4gzMx3uBMjDc4E+PNOUyPc0m4bZB+6dIljRkzRpcuXdKyZctUv379Gx7j6+ur2rVr68KFC+ZtAQEBio+Pl9FotFjeJS0tTZJUr149i79N26+Vlpam2rVrl2o2uiR5enpW+IFeGa6xIqiIzxFjD47GGIOzMNbgTIw3OBPjDc7EeIMzMd7gTIw39+GW6yJcuXJF48aN0/Hjx7Vw4UI1a9asRMdlZmbqjz/+UJ06dczbWrZsqezsbKWkpFi0PXTokHm/JNWvX1916tTRkSNHivR7+PBhtWjRwtbLAQAAAAAAAACUY24XpBcUFOjpp5/WwYMHNW/ePLVv375ImytXrigzM7PI9gULFshoNOrOO+80b+vRo4e8vb21fPly8zaj0ahPPvlE9evXt+i/V69e2rJli06dOmXetnPnTh0/flxRUVH2ukQAAAAAAAAAQDnidku7TJ8+XZs3b9Y999yjjIwMrV271mJ///79lZaWpgEDBqhPnz669dZbJUnbt2/X1q1bdeedd6pHjx7m9g0aNFBMTIxiY2OVn5+vsLAwbdy4UXv37tWsWbMsPhoxbtw4rV+/XjExMYqJiVFWVpZiY2MVEhKiQYMGOecBAAAAAAAAAAC4FbcL0pOSkiRJ3377rb799tsi+/v376+aNWvq7rvv1o4dO7RmzRoVFBSocePGevbZZzV69Gh5eFhOtJ84caJq1aqllStXKi4uTsHBwZo5c6b69etn0S4wMFBLly7V9OnTNXv2bHl7e6tbt26aNGlSqddHBwAAAAAAAABUDG4XpC9ZsuSGbWrWrKmZM2eWuE8PDw+NHTtWY8eOvWHb5s2bKzY2tsR9AwAAAAAAAAAqNrdbIx0AAAAAAAAAAHfidjPSgcooNTVV6enpDus/MTHRYX0DAAAAAAAAFR1BOuBiqampCm3RUjnZWa4uBQAAAAAAAEAxCNIBF0tPT1dOdpaajJol38BmDjnHhYQt+v1/bzmkbwAAAAAAAKCiI0gH3IRvYDNVD2rtkL6zT6c4pF8AAAAAAACgMuBmowAAAAAAAAAAWEGQDgAAAAAAAACAFQTpAAAAAAAAAABYQZAOAAAAAAAAAIAVBOkAAAAAAAAAAFhBkA4AAAAAAAAAgBUE6QAAAAAAAAAAWEGQDgAAAAAAAACAFQTpAAAAAAAAAABYQZAOAAAAAAAAAIAVBOkAAAAAAAAAAFhBkA4AAAAAAAAAgBUE6QAAAAAAAAAAWGHXIN1oNOr48eM6deqUPbsFAAAAAAAAAMBlbArSN2zYoOeff14XLlwwb/vtt9/0wAMP6P7771f37t31zDPPqKCgwG6FAgAAAAAAAADgCjYF6StWrFBiYqJq1apl3jZt2jT9+OOPioyMVGhoqNavX6/PPvvMboUCAAAAAAAAAOAKNgXpP/30k8LDw81fZ2ZmauvWrerdu7c++ugjrVq1Sk2bNiVIBwAAAAAAAACUezYF6RcuXJC/v7/563379ik/P199+vSRJHl7e6tr165KTU21T5UAAAAAAAAAALiITUF6jRo1lJGRYf46Pj5eHh4e6tixo3mbl5eXsrOzy1wgAAAAAAAAAACuZFOQfuutt+rbb7/VH3/8oYsXL+qLL75Q69atLdZM//3331W3bl27FQoAAAAAAAAAgCvYFKSPGDFCZ8+eVbdu3XT33XcrLS1NQ4cOtWhz6NAhtWjRwi5FAgAAAAAAAADgKl62HHTfffdpypQp+u9//ytJ6tOnjwYOHGjev3v3bmVmZurOO++0T5UAAAAAAAAAALiITUG6JA0bNkzDhg0rdl/nzp21Z88em4sCAAAAAAAAAMBd2LS0CwAAAAAAAAAAlYXNQXp+fr4++ugjPfTQQ+rQoYNatWpl3peYmKhXXnlFv/zyi12KBAAAAAAAAADAVWxa2iUnJ0ejR4/WgQMHdNNNN6lGjRrKzs4277/55psVFxenWrVq6ZlnnrFbsQAAAAAAAAAAOJtNM9IXLlyo/fv369lnn9X333+vwYMHW+z38/NTp06dtH37drsUCQAAAAAAAACAq9gUpK9bt06RkZEaM2aMDAaDDAZDkTa33HKLTp06VeYCAQAAAAAAAABwJZuC9N9//11t2rSx2qZ69eq6dOmSTUUBAAAAAAAAAOAubArSq1evrvPnz1ttc+LECdWpU8emogAAAAAAAAAAcBc2Bent2rXT5s2bdfHixWL3nzp1Slu3blXHjh3LVBwAAAAAAAAAAK5mU5D+2GOP6eLFixo5cqT27dun/Px8SVJ2drZ27typxx57TAUFBRo1apRdiwUAAAAAAAAAwNm8bDmoU6dO+uc//6mpU6cqOjravL1Dhw6SJE9PT7388ss3XEcdAAAAAAAAAAB3Z1OQLknDhg1TZGSkVqxYocOHD+vChQuqXr262rZtq2HDhql58+b2rBMAAAAAAAAAAJewOUiXpKZNm+qll16yVy0AAAAAAAAAALidMgXpAOAqiYmJDu3f399fQUFBDj0HAAAAAAAAyocSBem///67zSdo2LChzccCwJ/lXUiTDB4W92dwBN+q1XQsKZEwHQAAAAAAACUL0rt37y6DwVDqzg0Gg44ePVrq4wDgevKzL0rGQjUZNUu+gc0cco6cUz/pl8UTlZ6eTpAOAAAAAACAkgXpDz74oE1BOgA4im9gM1UPau3qMgAAAAAAAFAJlChInz59uqPrAAAAAAAAAADALXm4ugAAAAAAAAAAANxZiWakW3P06FEdPXpUmZmZqlGjhlq1aqVWrVrZozYAAAAAAAAAAFzO5iD98OHD+uc//6nk5GRJktFoNK+jHhISotdff11hYWH2qRIAAAAAAAAAABexKUj/4Ycf9Oijjyo7O1u33XabIiIi5O/vr/T0dO3du1e7du1STEyMli9frpYtW9q7ZgAAAAAAAAAAnMamIH3OnDnKy8tTbGysbr/99iL7v/vuO/3tb3/TrFmzFBsbW+YiAQAAAAAAAABwFZtuNrp//35FRUUVG6JL0p133qn77rtPBw4cKFNxAAAAAAAAAAC4mk1BupeXlxo1amS1zc033yxPT0+bigIAAAAAAAAAwF3YFKS3b99ehw4dstrm4MGDioiIsKkoAAAAAAAAAADchU1B+vPPP68ffvhBc+fOVXZ2tsW+7OxszZkzR4mJiXruuefsUiQAAAAAAAAAAK5i081GY2NjFRoaqvfff1+ffPKJWrZsqbp16+rcuXNKTEzUxYsX1bFjR3344YcWxxkMBk2dOtUuhQMAAAAAAAAA4Aw2BemrV682//vChQvatWtXkTZ79uzRnj17LLYRpAMAAAAAAAAAyhubgvRNmzbZuw4AAAAAAAAAANySTUF6o0aN7F0HAAAAAAAAAABuyaabjQIAAAAAAAAAUFnYNCPdJDExUUlJSTp79qzy8vKK7DcYDHr88cfLcgoAAAAAAAAAAFzKpiD93LlzmjBhguLj4yVJRqOx2HYE6QAAAAAAAACA8s6mIP3VV1/Vrl271K1bN/Xu3Vv16tWTp6enXQo6fPiw1qxZo/j4eJ08eVK1a9dW27Zt9fTTT6tJkyYWbVNSUjR16lTt379f3t7e6tatmyZPnqw6depYtCssLFRsbKxWrFihtLQ0BQcHa+zYserbt2+R85e0TwAAAAAAAABA5WBTkL59+3ZFRkbqvffes3c9+vDDD7V//35FRUUpNDRUaWlpWrZsmQYOHKiVK1cqJCREknT69GkNHz5cfn5+euaZZ5SVlaVFixYpOTlZq1atko+Pj7nPuXPn6v3339fDDz+ssLAwbdq0SRMmTJDBYFCfPn3M7UrTJwAAAAAAAACgcrApSPf29lbr1q3tXYskaeTIkZo1a5ZFaN27d2/169dP77//vmbNmiVJWrhwobKzsxUXF6eGDRtKksLDwzVq1CitXr1aQ4YMkSSdOXNGixcv1vDhwzVlyhRJ0uDBgxUdHa0ZM2YoKirKPJu+pH0CAAAAAAAAACoPD1sOioiIUFJSkr1rkSR16NChyMzv4OBgNW/eXD///LN524YNG3T33XebA29J6tq1q4KDg7Vu3Trzto0bNyovL0/Dhg0zbzMYDBo6dKhOnz6tAwcOlLpPAAAAAAAAAEDlYVOQPmHCBB05ckRLly61dz3FMhqNSk9P10033STp6izzc+fOqU2bNkXahoeHKzEx0fx1YmKiqlWrpqZNmxZpZ9pf2j4BAAAAAAAAAJWHTUu7NG3aVMuWLdPw4cO1ZMkShYaGqnr16kXaGQwGTZ06tcxFfv755zpz5oyefPJJSdLZs2clSQEBAUXaBgQEKCMjQ7m5ufLx8VFaWprq1q0rg8FQpN21fZWmz5IqKCgocdvyxnRtFfkanYXH0H0VFBTw/FRCvL7BWRhrcCbGG5yJ8QZnYrzBmRhvcCbGm3OU5vG1KUg/ceKEHn/8cV28eFEXL17Ur7/+Wmw7ewTpKSkpeu2119S+fXsNGDBAknTlyhVJKjbUrlKliiQpJydHPj4+5r+ttSttnyWVkJBQ4rblVWW4RkdLTk52dQm4juTkZHl42PTBHVQAvL7BWRhrcCbGG5yJ8QZnYrzBmRhvcCbGm/uwKUh//fXXlZqaqqFDh6pPnz6qV6+e+Yad9pSWlqaxY8fKz89P8+bNM5/DFGzn5uYWOcYUiPv6+pr/Lkm70vRZUmFhYQ55XNxBQUGBEhISKvQ1OkthYaGrS8B1hISEqF27dq4uA07G6xuchbEGZ2K8wZkYb3AmxhucifEGZ2K8OYfpcS4Jm4L0PXv26J577tHLL79sy+ElcunSJY0ZM0aXLl3SsmXLVL9+ffO+evXqSboatP9ZWlqaateubZ45HhAQoPj4eBmNRovlXUzHmvoqTZ8l5enpWeEHemW4Rkfj8XNfjO/KjecfzsJYgzMx3uBMjDc4E+MNzsR4gzMx3tyHTWsW+Pj4KDg42M6l/J8rV65o3LhxOn78uBYuXKhmzZpZ7K9fv77q1KmjI0eOFDn28OHDatGihfnrli1bKjs7WykpKRbtDh06ZN5f2j4BAAAAAAAAAJWHTUH67bffrgMHDti7FklXp9M//fTTOnjwoObNm6f27dsX265Xr17asmWLTp06Zd62c+dOHT9+XFFRUeZtPXr0kLe3t5YvX27eZjQa9cknn6h+/foW/Ze0TwAAAAAAAABA5WHT0i7PP/+8hg0bpjfffFNPP/20eX1xe5g+fbo2b96se+65RxkZGVq7dq3F/v79+0uSxo0bp/Xr1ysmJkYxMTHKyspSbGysQkJCNGjQIHP7Bg0aKCYmRrGxscrPz1dYWJg2btyovXv3atasWRYfjShpnwAAAAAAAACAysOmIP25556Tn5+fPvroI3366adq3LixatSoUaSdwWDQxx9/XKq+k5KSJEnffvutvv322yL7TUF6YGCgli5dqunTp2v27Nny9vZWt27dNGnSpCJrmU+cOFG1atXSypUrFRcXp+DgYM2cOVP9+vWzaFeaPgEAAAAAAAAAlYNNQfru3bvN/758+bKOHj1abLtrb+5ZUkuWLClx2+bNmys2NvaG7Tw8PDR27FiNHTvWbn0CAAAAAAAAACoHm4J006xxAAAAAAAAAAAqOptuNgoAAAAAAAAAQGVBkA4AAAAAAAAAgBU2Le1icvr0ae3atUtnz55Vbm5ukf0Gg0GPP/54WU4BAAAAAAAAAIBL2Rykv/nmm1qyZIkKCgrM24xGo/kGo6Z/E6QDAAAAAAAAAMozm5Z2+fTTT7V48WJFRkbq7bffltFo1IMPPqg5c+bokUcekaenp6KiovTxxx/bu14AAAAAAAAAAJzKphnpK1euVKNGjfTBBx/Iw+NqFt+oUSP17t1bvXv31v3336/Ro0crKirKrsUCAAAAAAAAAOBsNs1I//nnn3XnnXeaQ3RJFku8dO7cWd26ddOiRYvKXiEAAAAAAAAAAC5kU5AuSTVr1jT/u2rVqsrIyLDY36RJE/344482FwYAAAAAAAAAgDuwKUivX7++Tp8+bf46KChIhw4dsmjz448/qlq1amWrDgAAAAAAAAAAF7MpSO/QoYNFcN6jRw8lJiZqypQp2rJli2bPnq1t27apY8eOdisUAAAAAAAAAABXsOlmo/3799fZs2d18uRJNWrUSI899pi2bNmiTz/9VKtWrZLRaFSjRo30/PPP27teAAAAAAAAAACcyqYgPTIyUpGRkeavq1evrpUrV2rTpk1KTU1Vo0aNdM8997C0CwAAAAAAAACg3LMpSC+Ot7e3oqKi7NUdAAAAAAAAAABuwaY10g8cOFCidsuXL7elewAAAAAAAAAA3IZNQfqIESO0YMECGY3GYvdnZGTob3/7m/71r3+VqTgAAAAAAAAAAFzNpiC9adOmmj9/vmJiYnTmzBmLfbt27VL//v317bffqm/fvnYpEgAAAAAAAAAAV7EpSF+1apWGDx+uPXv26IEHHtDXX3+tgoICzZw5U6NHj9bly5c1Y8YMzZw50971AgAAAAAAAADgVDbdbNTHx0cvvfSS7rzzTk2ePFlPP/20GjRooNOnT6tt27aaOXOmbrnlFnvXCgAAAAAAAACA09k0I92kW7duGjlypIxGo06dOqXatWtr3rx5hOgAAAAAAAAAgArD5iA9MzNTEyZM0Ny5c1W/fn316dNHf/zxhwYNGqRt27bZs0YAAAAAAAAAAFzGpiD9wIED6t+/v7788kv17NlTn3/+uWbPnq158+YpNzdXY8eO1RtvvKHc3Fx71wsAAAAAAAAAgFPZFKRHR0fr3LlzevXVVzV//nzVqlVLknTffffpf//7nzp27KglS5Zo8ODBdi0WAAAAAAAAAABnsylIb968ueLi4jRkyJAi++rXr6///Oc/evLJJ5WSklLmAgEAAAAAAAAAcCUvWw769NNP5ePjc939BoNBf//733X77bfbXBgAAAAAAAAAAO7Aphnp1kL0a7Vt29aW7gEAAAAAAAAAcBslDtLfeecd7dmzx2LbuXPnlJSUVGz7r776SuPHjy9bdQAAAAAAAAAAuFipgvT4+HiLbStWrNCAAQOKbf/zzz9r06ZNZasOAAAAAAAAAAAXs2lpFwAAAAAAAAAAKguCdAAAAAAAAAAArCBIBwAAAAAAAADACoJ0AAAAAAAAAACsIEgHAAAAAAAAAMAKr9I0/vHHH/XVV1+Zv05OTpYkrVu3Tkaj0aKtaR8AAAAAAAAAAOVZqYL0DRs2aMOGDeavTeH5s88+W6St0WiUwWAoY3kAAAAAAAAAALhWiYP08ePHO7IOAAAAAAAAAADcEkE6AAAAAAAAAABWcLNRAAAAAAAAAACsIEgHAAAAAAAAAMAKgnQAAAAAAAAAAKwgSAcAAAAAAAAAwAqCdAAAAAAAAAAArCBIBwAAAAAAAADAihIF6ePHj9dXX31l/nrPnj36/fffHVYUAAAAAAAAAADuokRB+saNG/Xzzz+bv46JiVFcXJzDigIAAAAAAAAAwF2UKEivWbOmLl++bP7aaDQ6rCAAAAAAAAAAANyJV0kaNW3aVF988YXCwsIUEBAgSTp58qT27Nlzw2M7depUtgoBAAAAAAAAAHChEgXpjz/+uB5//HFNmDDBvG3NmjVas2bNDY9NTEy0uTgAAAAAAAAAAFytREH6HXfcoa+++ko7duzQmTNn9M4776hTp07q3Lmzo+sDAAAAAAAAAMClShSkS1KjRo00ePBgSdI777yjzp07a/z48Q4rDAAAAAAAAAAAd1DiIP1amzZtUs2aNe1dCwAAAAAAAAAAbsemIL1Ro0bmf+fn5+uXX35RZmamatSooSZNmsjLy6ZuAQAAAAAAAABwOzYn3hkZGZo1a5a++OILXblyxbzd19dXffv21bPPPqubbrrJLkUCAAAAAAAAAOAqNgXpGRkZGjJkiH799VfVqlVLERERqlevntLS0nTkyBGtWrVKu3fv1sqVK1W7dm07lwwAAAAAAAAAgPPYFKQvWLBAv/76qx577DE9/vjjqlatmnlfdna2FixYoA8++EALFy7UpEmT7FYsADhTYmKiQ/v39/dXUFCQQ88BAAAAAACAsrP5ZqOdO3fWc889V2Rf1apVNWHCBB06dEjffPMNQTqAcifvQppk8FB0dLRDz+NbtZqOJSUSpgMAAAAAALg5m4L0s2fPqm/fvlbbtG/fXgcOHLCpKABwpfzsi5KxUE1GzZJvYDOHnCPn1E/6ZfFEpaenE6QDAAAAAAC4OZuCdD8/P508edJqm5MnT8rPz8+mogDAHfgGNlP1oNauLgMAAAAAAAAu5mHLQZ06ddL69eu1Y8eOYvfv3LlT69evV+fOnctUHAAAAAAAAAAArmbTjPTx48dr69ateuyxx9StWzd16tRJdevW1blz57R7925t27ZNvr6+evzxx+1dLwAAAAAAAAAATmVTkN68eXN9+OGHmjx5srZs2aItW7bIYDDIaDRKkoKCgjRt2jQ1b9681H1fvnxZsbGxOnTokBISEnThwgVNmzZNAwcOtGg3adIkrV69usjxTZo00fr16y22FRYWKjY2VitWrFBaWpqCg4M1duzYYtd5T0lJ0dSpU7V//355e3urW7dumjx5surUqVPqawEAAAAAAAAAlH82BemS1LFjR23YsEH79u1TYmKiMjMzVaNGDbVs2VIREREyGAw29fvHH3/o3XffVcOGDRUaGqrdu3dft62Pj49ef/11i23Frcs+d+5cvf/++3r44YcVFhamTZs2acKECTIYDOrTp4+53enTpzV8+HD5+fnpmWeeUVZWlhYtWqTk5GStWrVKPj4+Nl0TAAAAAAAAAKD8sjlIlySDwaCOHTuqY8eO9qpH9erV0/bt2xUQEKCEhAQ99NBD123r5eWl/v37W+3vzJkzWrx4sYYPH64pU6ZIkgYPHqzo6GjNmDFDUVFR8vT0lCQtXLhQ2dnZiouLU8OGDSVJ4eHhGjVqlFavXq0hQ4bY6SoBAAAAAAAAAOWFTTcbdSQfHx8FBASUuH1BQYEyMzOvu3/jxo3Ky8vTsGHDzNsMBoOGDh2q06dP68CBA+btGzZs0N13320O0SWpa9euCg4O1rp160p5JQAAAAAAAACAisDtgvTSyM7OVkREhCIiItS5c2e9+uqrunz5skWbxMREVatWTU2bNrXYHh4ebt4vXZ25fu7cObVp06bIecLDw83tAAAAAAAAAACVS5mWdnGlgIAA/eUvf1GrVq1kNBr13Xffafny5UpKStKSJUvk5XX10tLS0lS3bt0ia7abZr2fPXvW4u/iZsMHBAQoIyNDubm5pVonvaCgwKZrKw9M11aRr9FZeAwrt4KCAsaAm+H1Dc7CWIMzMd7gTIw3OBPjDc7EeIMzMd6cozSPb7kN0idMmGDxdZ8+fRQcHKy5c+fq66+/Nt9ENCcnp9jwu0qVKub9knTlyhVJumHb0gTpCQkJJW5bXlWGa3S05ORkV5cAF0pOTpaHR7n+cFCFxesbnIWxBmdivMGZGG9wJsYbnInxBmdivLmPchukF2fkyJGaN2+eduzYYQ7SfX19lZubW6StKTj39fWV9H9heUnallRYWJj5RqYVTUFBgRISEir0NTpLYWGhq0uAC4WEhKhdu3auLgPX4PUNzsJYgzMx3uBMjDc4E+MNzsR4gzMx3pzD9DiXRIUK0n19fVW7dm1duHDBvC0gIEDx8fEyGo0Wy7ukpaVJkurVq2fxt2n7tdLS0lS7du1SzUaXJE9Pzwo/0CvDNToaj1/lxveQ++K5gbMw1uBMjDc4E+MNzsR4gzMx3uBMjDf3YdN6Ai1btiyytIo7yMzM1B9//KE6deqYt7Vs2VLZ2dlKSUmxaHvo0CHzfkmqX7++6tSpoyNHjhTp9/Dhw2rRooUDKwcAAAAAAAAAuCubgvQaNWooMDDQ3rWU2JUrV5SZmVlk+4IFC2Q0GnXnnXeat/Xo0UPe3t5avny5eZvRaNQnn3yi+vXrq3379ubtvXr10pYtW3Tq1Cnztp07d+r48eOKiopy0NUAAAAAAAAAANyZTUu7hIeHKykpyd61mC1dulQXL17U2bNnJUnffvutTp8+LUkaMWKELly4oAEDBqhPnz669dZbJUnbt2/X1q1bdeedd6pHjx7mvho0aKCYmBjFxsYqPz9fYWFh2rhxo/bu3atZs2ZZfDRi3LhxWr9+vWJiYhQTE6OsrCzFxsYqJCREgwYNctj1wn2lpqYqPT3doedITEx0aP8AAAAAAAAAysamIH38+PEaMWKE1qxZowcffNDOJUmLFi3SyZMnzV9v2LBBGzZskCQ98MADqlmzpu6++27t2LFDa9asUUFBgRo3bqxnn31Wo0ePloeH5UT7iRMnqlatWlq5cqXi4uIUHBysmTNnql+/fhbtAgMDtXTpUk2fPl2zZ8+Wt7e3unXrpkmTJpV6fXSUf6mpqQpt0VI52VmuLgUAAAAAAACAC9kUpH///feKjIzU5MmTtWTJEoWFhcnf379IO4PBoMcff7zU/W/evPmGbWbOnFni/jw8PDR27FiNHTv2hm2bN2+u2NjYEveNiis9PV052VlqMmqWfAObOew8FxK26Pf/veWw/gEAAAAAAACUjU1B+jvvvGP+9w8//KAffvih2Ha2BumAO/ENbKbqQa0d1n/26ZQbNwIAAAAAAADgMjYF6f/5z3/sXQcAAAAAAAAAAG7JpiC9c+fO9q4DAAAAAAAAAAC35HHjJgAAAAAAAAAAVF42B+n5+fn66KOP9NBDD6lDhw5q1aqVeV9iYqJeeeUV/fLLL3YpEgAAAAAAAAAAV7FpaZecnByNHj1aBw4c0E033aQaNWooOzvbvP/mm29WXFycatWqpWeeecZuxQIAAAAAAAAA4Gw2zUhfuHCh9u/fr2effVbff/+9Bg8ebLHfz89PnTp10vbt2+1SJAAAAAAAAAAArmJTkL5u3TpFRkZqzJgxMhgMMhgMRdrccsstOnXqVJkLBAAAAAAAAADAlWwK0n///Xe1adPGapvq1avr0qVLNhUFAAAAAAAAAIC7sClIr169us6fP2+1zYkTJ1SnTh2bigIAAAAAAAAAwF3YFKS3a9dOmzdv1sWLF4vdf+rUKW3dulUdO3YsU3EAAAAAAAAAALiaTUH6Y489posXL2rkyJHat2+f8vPzJUnZ2dnauXOnHnvsMRUUFGjUqFF2LRYAAAAAAAAAAGfzsuWgTp066Z///KemTp2q6Oho8/YOHTpIkjw9PfXyyy/fcB11AAAAAAAAAADcnU1BuiQNGzZMkZGRWrFihQ4fPqwLFy6oevXqatu2rYYNG6bmzZvbs04AAAAAAAAAAFzC5iBdkpo2baqXXnrJXrUAAAAAAAAAAOB2bFojHQAAAAAAAACAyqJMM9K/+eYbxcXFKTExUZcuXZKfn59atmypQYMGqWfPnvaqEQAAAAAAAAAAl7EpSM/Pz9eECRO0YcMGGY1GeXl5qXbt2kpPT9e3336rLVu2qFevXpo9e7a8vMqU1QMAAAAAAAAA4FI2Le3y3nvv6euvv1bHjh21bNkyHT58WNu3b9fhw4e1dOlSRUREaMOGDXr//fftXS8AAAAAAAAAAE5lU5AeFxenW2+9VYsXL1ZERIQ8PK524+HhoY4dO2rx4sUKDg7WZ599ZtdiAQAAAAAAAABwNpuC9LS0NN1zzz3XXbbF29tb99xzj9LS0spUHAAAAAAAAAAArmZTkB4YGKisrCyrbbKzsxUYGGhTUQAAAAAAAAAAuAubgvSHHnpI69at09mzZ4vdf+bMGX311VcaPHhwmYoDAAAAAAAAAMDVil+b5U9+//13i6/vv/9+7d+/XwMGDNCjjz6qDh06yN/fX+np6dq3b5/+85//KCIiQlFRUQ4pGgAAAAAAAAAAZylRkN69e3cZDIYi241Go+bOnVvs9s2bN2vLli06evRo2asEAAAAAAAAAMBFShSkP/jgg8UG6QAAAAAAAAAAVHQlCtKnT5/u6DoAoFJKTEx0+Dn8/f0VFBTk8PMAAAAAAABUVCUK0gEA9pV3IU0yeCg6Otrh5/KtWk3HkhIJ0wEAAAAAAGxEkA4ALpCffVEyFqrJqFnyDWzmsPPknPpJvyyeqPT0dIJ0AAAAAAAAG9kcpO/du1eLFi1SUlKSzp49q4KCgiJtDAYDNxsFACt8A5upelBrV5cBAAAAAAAAK2wK0tesWaPJkyfLaDTqlltuUXh4uDw9Pe1dGwAAAAAAAAAALmdTkP7vf/9bNWvW1AcffKDw8HB71wQAAAAAAAAAgNvwsOWgU6dOqU+fPoToAAAAAAAAAIAKz6YgvWHDhsrLy7N3LQAAAAAAAAAAuB2bgvSHH35Y3377rTIyMuxcDgAAAAAAAAAA7sWmNdJHjx6tEydOaOjQofrb3/6mFi1aqEaNGsW2bdiwYZkKBAAAAAAAAADAlWwK0iWpVatW+uKLL/TCCy9ct43BYNDRo0dtPQUAAAAAAAAAAC5nU5C+ZMkSTZ06VV5eXoqMjFRAQIC8vGzO5AEAAAAAAAAAcFs2pd8fffSR6tevr08++UQNGjSwd00AAAAAAAAAALgNm242mp6erl69ehGiAwAAAAAAAAAqPJuC9KCgIF26dMnetQAAAAAAAAAA4HZsCtJHjhypTZs26eTJk/auBwAAAAAAAAAAt2LTGulBQUHq1KmTBg0apEcffVQtWrRQjRo1im3bqVOnMhUIAAAAAAAAAIAr2RSkjxgxQgaDQUajUfPmzZPBYLhu28TERJuLAwAAAAAAAADA1WwK0h9//HGr4TkAAAAAAAAAABWFTUH6E088Ye86AAAAAAAAAABwSzbdbBQAAAAAAAAAgMqCIB0AAAAAAAAAACtsWtqlRYsWJVoj3WAw6OjRo7acAgAAAAAAAAAAt2BTkN6pU6dit2dmZur48ePKzs5WixYt5OfnV6biAAAAAAAAAABwNZuC9CVLllx3X3Z2tmbPnq3vvvtOixYtsrkwAAAAAAAAAADcgd3XSK9atapeeukl1ahRQzNnzrR39wAAAAAAAAAAOJXDbjbasWNHbdmyxVHdAwAAAAAAAADgFA4L0s+fP6+srCxHdQ8AAAAAAAAAgFPYPUgvLCzUmjVrtG7dOrVs2dLe3QMAAAAAAAAA4FQ23Wy0R48exW4vKCjQuXPnlJ+fLy8vLz377LNlKg4AAAAAAAAAAFezKUg3Go3Fd+blpebNmyssLEzR0dFq3rx5mYoDANhHYmKiQ/v39/dXUFCQQ88BAAAAAADgKjYF6Zs3b7Z3HQAAB8i7kCYZPBQdHe3Q8/hWraZjSYmE6QAAAAAAoEKyKUgHAJQP+dkXJWOhmoyaJd/AZg45R86pn/TL4olKT08nSAcAAAAAABUSQToAVAK+gc1UPai1q8sAAAAAAAAol0ocpE+ePLnUnRsMBk2dOrXUxwEAAAAAAAAA4C5KHKSvXr26xJ0aDAYZjUabgvTLly8rNjZWhw4dUkJCgi5cuKBp06Zp4MCBRdqmpKRo6tSp2r9/v7y9vdWtWzdNnjxZderUsWhXWFio2NhYrVixQmlpaQoODtbYsWPVt29fm/sEAAAAAAAAAFQOJQ7SV65cWaJ2v/76q9555x2lpqbaVNAff/yhd999Vw0bNlRoaKh2795dbLvTp09r+PDh8vPz0zPPPKOsrCwtWrRIycnJWrVqlXx8fMxt586dq/fff18PP/ywwsLCtGnTJk2YMEEGg0F9+vSxqU8AAAAAAAAAQOVQ4iC9bdu2VvefP39e7777rj799FPl5eUpIiJCEydOLHVB9erV0/bt2xUQEKCEhAQ99NBDxbZbuHChsrOzFRcXp4YNG0qSwsPDNWrUKK1evVpDhgyRJJ05c0aLFy/W8OHDNWXKFEnS4MGDFR0drRkzZigqKkqenp6l6hMAAAAAAAAAUHl4lLWD7OxsvfPOO7r33nu1bNkyBQcHa8GCBVq2bJnat29f6v58fHwUEBBww3YbNmzQ3XffbQ68Jalr164KDg7WunXrzNs2btyovLw8DRs2zLzNYDBo6NChOn36tA4cOFDqPgEAAAAAAAAAlUeJZ6T/WUFBgT755BP9+9//Vnp6uho0aKB//OMfGjBggDw8ypzPW3XmzBmdO3dObdq0KbIvPDxc27ZtM3+dmJioatWqqWnTpkXamfZ37NixVH0CAAAAAAAAACoPm4L0devW6a233lJqaqr8/Pw0YcIExcTEqEqVKvaur1hnz56VpGJnrgcEBCgjI0O5ubny8fFRWlqa6tatK4PBUKTdtX2Vps+SKigoKHHb8sZ0bZXhGgGUTEFBQYX4vqkMr29wD4w1OBPjDc7EeIMzMd7gTIw3OBPjzTlK8/iWKkiPj4/XrFmzdOTIEXl7e2vUqFEaN26catasWeoiy+LKlSuSVGyobQrzc3Jy5OPjY/7bWrvS9llSCQkJJW5bXlXka0xOTnZ1CUC5kpyc7PBPJDlTRX59g3thrMGZGG9wJsYbnInxBmdivMGZGG/uo8RB+l/+8hd9//338vDw0IMPPqinnnpKDRo0cGRt12UKtnNzc4vsMwXivr6+5r9L0q40fZZUWFiY+UamFU1BQYESEhIq9DUWFha6ugSgXAkJCVG7du1cXUaZVYbXN7gHxhqcifEGZ2K8wZkYb3AmxhucifHmHKbHuSRKHKRv375dBoNBgYGBSk9P1z//+c8bHmMwGPT++++X9BQlVq9ePUlSWlpakX1paWmqXbu2eeZ4QECA4uPjZTQaLZZ3MR1r6qs0fZaUp6dnhR/oFfkaK+p1AY5S0V4PKtr1wH0x1uBMjDc4E+MNzsR4gzMx3uBMjDf3UaqlXYxGo3777Tf99ttvJWr/53XJ7aV+/fqqU6eOjhw5UmTf4cOH1aJFC/PXLVu21KpVq5SSkqJmzZqZtx86dMi8v7R9AgAAAAAAAAAqjxIH6Zs2bXJkHaXWq1cvrVmzRqdOnVJgYKAkaefOnTp+/LhGjhxpbtejRw9NmzZNy5cv15QpUyRd/YXAJ598ovr166t9+/al7hMAAAAAAAAAUHmUOEhv1KiRI+uwsHTpUl28eFFnz56VJH377bc6ffq0JGnEiBHy8/PTuHHjtH79esXExCgmJkZZWVmKjY1VSEiIBg0aZO6rQYMGiomJUWxsrPLz8xUWFqaNGzdq7969mjVrlsVHI0raJwAAAAAAAACg8ijV0i7OsmjRIp08edL89YYNG7RhwwZJ0gMPPCA/Pz8FBgZq6dKlmj59umbPni1vb29169ZNkyZNKrKW+cSJE1WrVi2tXLlScXFxCg4O1syZM9WvXz+LdqXpEwAAAAAAAABQObhlkL558+YStWvevLliY2Nv2M7Dw0Njx47V2LFj7dYnAAAAAAAAAKBy8HB1AQAAAAAAAAAAuDOCdAAAAAAAAAAArHDLpV0AAOVPYmKiQ/v39/dXUFCQQ88BAAAAAABQHIJ0AECZ5F1Ikwweio6Oduh5fKtW07GkRMJ0AAAAAADgdATpAIAyyc++KBkL1WTULPkGNnPIOXJO/aRfFk9Ueno6QToAAAAAAHA6gnQAgF34BjZT9aDWri4DAAAAAADA7rjZKAAAAAAAAAAAVhCkAwAAAAAAAABgBUE6AAAAAAAAAABWEKQDAAAAAAAAAGAFQToAAAAAAAAAAFYQpAMAAAAAAAAAYAVBOgAAAAAAAAAAVhCkAwAAAAAAAABgBUE6AAAAAAAAAABWEKQDAAAAAAAAAGAFQToAAAAAAAAAAFYQpAMAAAAAAAAAYAVBOgAAAAAAAAAAVhCkAwAAAAAAAABghZerCwBslZqaqvT0dIf1n5iY6LC+AQAAAAAAAJQfBOkol1JTUxXaoqVysrNcXQoAAAAAAACACo4gHeVSenq6crKz1GTULPkGNnPIOS4kbNHv/3vLIX0DAAAAAAAAKD8I0lGu+QY2U/Wg1g7pO/t0ikP6BQAAAAAAAFC+cLNRAAAAAAAAAACsIEgHAAAAAAAAAMAKlnYBAOAaqampSkpKUmFhoTw9PR1yDn9/fwUFBTmkbwAAAAAAYH8E6QAA/H+pqalq1bqNcrKzHHoe36rVdCwpkTAdAAAAAIBygiAdAID/Lz09XTnZWWoyapZ8A5s55Bw5p37SL4snKj09nSAdAAAAAIBygiAdAIA/8Q1spupBrV1dBgAAAAAAcBPcbBQAAAAAAAAAACsI0gEAAAAAAAAAsIIgHQAAAAAAAAAAKwjSAQAAAAAAAACwgpuNAgDKjcTExHLdPwAAAAAAKJ8I0gEAbi/vQppk8FB0dLSrSwEAAAAAAJUQQToAwO3lZ1+UjIVqMmqWfAObOew8FxK26Pf/veWw/gEAAAAAQPlEkA4AKDd8A5upelBrh/WffTrFYX0DAAAAAIDyi5uNAgAAAAAAAABgBUE6AAAAAAAAAABWEKQDAAAAAAAAAGAFQToAAAAAAAAAAFZws1EAAFwgMTHRof37+/srKCjIoecAAAAAAKCyIEgHAMCJ8i6kSQYPRUdHO/Q8vlWr6VhSImE6AAAAAAB2QJAOAIAT5WdflIyFajJqlnwDmznkHDmnftIviycqPT2dIB0AAAAAADsgSAcAwAV8A5upelBrV5cBAAAAAABKgJuNAgAAAAAAAABgBUE6AAAAAAAAAABWEKQDAAAAAAAAAGAFQToAAAAAAAAAAFZws1EAACqoxMREh5/D399fQUFBDj8PAAAAAACuRJAOAEAFk3chTTJ4KDo62uHn8q1aTceSEgnTAQAAAAAVGkE6AAAVTH72RclYqCajZsk3sJnDzpNz6if9snii0tPTCdIBAAAAABUaQToAABWUb2AzVQ9q7eoyAAAAAAAo97jZKAAAAAAAAAAAVhCkAwAAAAAAAABgBUE6AAAAAAAAAABWEKQDAAAAAAAAAGAFQToAAAAAAAAAAFYQpAMAAAAAAAAAYAVBOgAAAAAAAAAAVpTbID0+Pl6hoaHF/jl48KBF2/3792vo0KFq27atbr/9dr3++uu6fPlykT5zc3M1c+ZM3XHHHQoPD9fgwYP1/fffO+mKAAAAAAAAAADuyMvVBZTViBEjFBYWZrEtKCjI/O/ExESNHDlSTZs21aRJk3T69GktWrRIx48f14cffmhx3KRJk/T1118rJiZGwcHBWr16tf7617/q448/VseOHZ1yPQAAAAAAAAAA91Lug/SOHTsqKirquvvnzJmjmjVrasmSJapRo4Yk6eabb9ZLL72k7du364477pAkHT58WF9++aWef/55PfbYY5KkBx98UH379tWsWbP0ySefOP5iAAAAAAAAAABup9wu7XKtzMxM5efnF7t9x44deuCBB8whuiT1799f1apV07p168zb1q9fL09PTw0ZMsS8rUqVKnrooYd04MABnTp1yrEXAQAAAAAAAABwS+U+SJ88ebIiIiIUHh6uESNGKCEhwbzv2LFjys/PV5s2bSyO8fHxUcuWLZWYmGjelpiYqODgYIvAXZLCw8PN+wEAAAAAAAAAlU+5XdrF29tb9913n+666y7ddNNNSklJUWxsrIYPH65PPvlErVq1UlpamiSpXr16RY4PCAjQvn37zF+npaUpICCg2HaSdPbs2VLXWFBQUOpjygvTtbnqGivyYwsA5U1BQQGvyzZw9XspKhfGG5yJ8QZnYrzBmRhvcCbGm3OU5vEtt0F6hw4d1KFDB/PXPXr00H333acHHnhAs2fPVmxsrHJyciRdnYH+Z1WqVDHvl6ScnJzrtjPtL61rZ8dXVK66xuTkZJecFwBQVHJysjw8yv2H3FymMvy8APfBeIMzMd7gTIw3OBPjDc7EeHMf5TZIL07jxo3Vo0cPbdiwQQUFBfL19ZUk5ebmFml75coV835J8vX1vW470/7SCgsLk6enZ6mPKw8KCgqUkJDgsmssLCx0+jkBAMUrLCx06Ouyv7+/goKCHNa/q7j6vRSVC+MNzsR4gzMx3uBMjDc4E+PNOUyPc0lUqCBdkho0aKC8vDxlZ2dbXZYlLS3NYsmXgIAAnTlzpth2UvHLw9yIp6dnhR/orrrGiv64AkB5kHchTTJ4KCYmxqHn8a1aTceSEitkmC5Vjp8X4D4Yb3AmxhucifEGZ2K8wZkYb+6jwgXpv/32m6pUqaJq1aopJCREXl5eOnLkiHr37m1uk5ubq8TERN1///3mbS1atFB8fLwyMzMtbjh66NAhSVLLli2ddxEAAJQD+dkXJWOhmoyaJd/AZg45R86pn/TL4olKT0+vsEE6AAAAAMD9ldsg/fz586pTp47FtqSkJG3evFl33nmnPDw85Ofnp9tuu02ff/65/v73v5sD8rVr1yorK0tRUVHmY6OiorRo0SKtXLlSjz32mKSrgXtcXJzatm2rwMBA510cAADliG9gM1UPau3qMgAAAAAAcJhyG6Q//fTT8vX1Vfv27VW3bl399NNP+vTTT+Xr66uJEyea2z3zzDN65JFHNGLECD388MM6ffq0Fi9erDvuuEN33XWXuV3btm0VFRWlOXPm6Ny5c2rcuLFWr16tkydP6o033nDFJQIAAAAAAAAA3EC5DdJ79uyp//3vf/roo4+UmZmpm266Sffee6/Gjx+vxo0bm9u1bt1aixcv1qxZszRt2jRVr15dDz30kJ599tkifc6YMUNvvfWWPv/8c124cEGhoaFauHChOnXq5MxLAwAAAAAAAAC4kXIbpMfExJT45mYdO3bUJ598csN2VapU0QsvvKAXXnihrOUBAAA7SkxMdGj//v7+rMEOAAAAALiuchukAwCAii/vQppk8FB0dLRDz+NbtZqOJSUSpgMAAAAAikWQDgAA3FZ+9kXJWKgmo2bJN7CZQ86Rc+on/bJ4otLT0wnSAQAAAADFIkgHAABuzzewmaoHtXZ1GQAAAACASsrD1QUAAAAAAAAAAODOCNIBAAAAAAAAALCCIB0AAAAAAAAAACsI0gEAAAAAAAAAsIIgHQAAAAAAAAAAK7xcXQAAAIA7SExMdPg5/P39FRQU5PDzAAAAAADsiyAdAABUankX0iSDh6Kjox1+Lt+q1XQsKZEwHQAAAADKGYJ0AABQqeVnX5SMhWoyapZ8A5s57Dw5p37SL4snKj09nSAdAAAAAMoZgnQAAABJvoHNVD2otavLAAAAAAC4IYJ0AAAAJzKtxV5QUKDk5GQVFhbK09PTbv2zDjsAAAAA2B9BOgAAgBM4ay121mEHAAAAAPsjSAcAAHACZ6zFzjrsAAAAAOAYBOkAAABOxFrsAAAAAFD+eLi6AAAAAAAAAAAA3BlBOgAAAAAAAAAAVhCkAwAAAAAAAABgBUE6AAAAAAAAAABWEKQDAAAAAAAAAGAFQToAAAAAAAAAAFYQpAMAAAAAAAAAYIWXqwsAAACAfSUmJjr8HP7+/goKCnL4eQAAAADAHRCkAwAAVBB5F9Ikg4eio6Mdfi7fqtV0LCmRMB0AAABApUCQDgAAUEHkZ1+UjIVqMmqWfAObOew8Oad+0i+LJyo9PZ0gHQAAAEClQJAOAABQwfgGNlP1oNauLgMAAAAAKgyCdAAAANjE0Wuxsw47AAAAAHdBkA4AAIBScdZa7KzDDgAAAMBdEKQDAACgVJyxFjvrsAMAAABwJwTpAAAAsAlrsQMAAACoLDxcXQAAAAAAAAAAAO6MGelwiNTUVKWnpzusf0ff3AwAAAAAAAAATAjSYXepqakKbdFSOdlZri4FAACUc47+5bm/vz9rsAMAAAC4IYJ02F16erpysrMcegOyCwlb9Pv/3nJI3wAAwPXyLqRJBg9FR0c79Dy+VavpWFIiYToAAAAAqwjS4TCOvAFZ9ukUh/QLAADcQ372RclY6NBfzOec+km/LJ6o9PR0gnQAAAAAVhGkAwAAwG058hfzAAAAAFBSHq4uAAAAAAAAAAAAd8aMdAAAAFRqjr6hqcRNTQEAAIDyjiAdAAAAlZKzbmgqSVWq+Oqzz/6rwMBAh52DsB4AAABwHIJ0AAAAVErOuKGpJGX+uEcn/jtNffv2ddg5JMm3ajUdS0okTAcAAAAcgCAdAAAAlZqjb2iafTrF4YF9zqmf9MviiUpPTydIBwAAAByAIB0AAABwAkcH9tL113svKChQcnKyCgsL5enpaXP/LB8DAACAyoogHQAAACjnnLXeO8vHAAAAoLIiSAcAAADKOWes987yMQAAAKjMCNIBAACACsIZy8cAAAAAlRFBOgAAAIASu9467PbEWuwAAABwNwTpAAAAAG7IWeuwS1KVKr767LP/KjAw0GHnIKwHAABAaRCkAwAAALghZ6zDLkmZP+7Rif9OU9++fR12DokbpwIAAKB0CNIBAAAAlJij12HPPp3CjVMBAADgdgjSAQAAALgdbpwKAAAAd+Lh6gIAAAAAAAAAAHBnzEgHAAAAUCklJiY6tH9n3dA0NTVV6enpDj0HN2cFAACVHUE6AAAAgEol70KaZPBQdHS0Q8/jjBuapqamKrRFS+VkZznsHBI3ZwUAACBIBwAAAFCp5GdfdNoNTb/77ju1bNnSIeeQrs6qz8nO4uasAAAADkaQDgAAAKBScuQNTZ01692Em7MCAAA4FkE6AAAAANiZM2a9S9KFhC36/X9vOax/AAAAXEWQDgAAAAAO4uiZ4tmnUxzW95/9v/buPC6qsv0f+IdtQARDDDBwwXyaEWVxKyJxAxUIFLefmAmZC1qpqfhVyHqZluhTLpiWlkJKaZALKqRilpaggaIhJmkuJBgIuLDLer5/+ON8Pc4Ag8kgw+f9z/Nwnfvc9z3j1T0z1zlzj7o/zlpdXY3Lly+jpqYGenp6avfPHzQlIiKipxkL6URERERERFQnbfpxViIiIqLHxUI6ERERERER1UmbfpwVAMrLy2FoaNjix+Ad/ERERJrFQjoRERERERE1SGt+nFVHFxBqWvwYvIOfiIhIs1hIf0RFRQXWr1+P/fv3o7CwEAqFAvPmzcOAAQOae2pERERERERaSdM/ztqU42hiDG27g5931xMRUUvAQvojgoODER8fj4CAANja2iImJgaBgYHYvn07+vfv39zTIyIiIiIi0lqa+nHWphxHE2No2x38hoZG2LNnN5577rlGn6vuj9tq4oKApsbhhQcioubBQvpDzp8/jx9++AGLFi3CtGnTAACjR4+Gj48PVq9ejaioqGaeIREREREREbV22nQHf/Ffp5G5eyV8fHyapH+RJrb00dA4/+bCg7o0Vay/ceMG8vPzm3QMXnggoieFhfSHHD58GHp6evDz8xNjhoaGGD9+PNauXYvs7OwmfaEiIiIiIiIiUpfW3MHfxBcFNHFBQFPjaOrCgyaK9dnZ2Rg3/v+h/H5Zk40BPNnHUtc3ILTpGw/aMoamxuGFmtaFhfSHpKenw9bWFiYmJpK4o6OjeJyFdCIiIiIiIqInq6Vvt6OpcTRx4UFj3xL4/7TisWjRNx60ZgwNjdOUF51qL9yUlZXB2Nj4iff/KF4UaBgL6Q/Jy8uDhYWFUrw2lpubq1Y/giAAePDDpfXt0daSVVdXA1D9GKurq9G2bVvo5F9Htb5Ok4yvV5CjFWNoahxtGUNT42jLGJoaR1vG0NQ42jKGpsbRljE0NQ4fy9M3hqbG0ZYxNDWOtoyhqXG0ZQxNjaMtY2hqHG0ZQ1Pj1I7RxkAPhk00RkVNBdoat4HViOmQtW+6mwlLM9JwO2lfi38stY9DU89XS38s2vR8lf3zF/ITvpfsbNEkNHThwdCoDU4nJ6FTp05NPtbTpLbGWVvPrY+OoE6rVmLYsGHo1q0btmzZIolnZmZi2LBhCAkJwZQpUxrsp6KiAmlpaU00SyIiIiIiIiIiIiJ6UhwcHCCTyeptwzvSH2JkZISKigqleHl5uXhcHfr6+nBwcICuri50dJruajcRERERERERERERPR5BEFBTUwN9/YbL5CykP8TCwgK3bt1Siufl5QEALC0t1epHV1e3wSsYRERERERERERERNQy6Db3BJ4mPXr0QEZGBoqLiyXx1NRUAICdnV1zTIuIiIiIiIiIiIiImhEL6Q/x9PREdXU1oqOjxVhFRQX27t0LJyenJvkFXiIiIiIiIiIiIiJ6unFrl4c4OTnB09MTa9euxe3bt9G1a1fExMTg5s2bWLFiRXNPj4iIiIiIiIiIiIiagY4gCEJzT+JpUl5ejrCwMMTGxqKgoAAKhQLvvvsuBg4c2NxTIyIiIiIiIiIiIqJmwEI6EREREREREREREVE9uEc6EREREREREREREVE9WEgnIiIiIiIiIiIiIqoHf2yUGqWiogLr16/H/v37UVhYCIVCgXnz5mHAgAHNPTVqAc6fP499+/YhKSkJN2/ehJmZGZycnDBv3jx069ZNbBccHIyYmBil87t164bDhw9LYjU1NQgPD8d3332HvLw82NraYubMmfDx8Wnyx0NPt6SkJAQEBKg8Fh0djd69e4t/nz17Fp9++ikuXrwIExMTeHl5Yf78+Wjbtq3kPK6BVJe61q1av/76K6ysrODv74/k5GSl466urggPD5fEmG8EACUlJQgPD0dqairS0tJQUFCAlStXYuzYsUptr169itDQUJw9exYGBgYYPHgwQkJCYG5uLmnXmNdOdfsk7aBOvtXU1GDfvn04cuQI0tPTUVBQgE6dOuHVV1/FtGnTYGhoKOlToVCoHCsoKAiBgYGS2K1btxAaGorExETU1NTA2dkZ7733Hjp37vzkHyw1O3XXt6b6bMD1rXVRN9/qWrMA4JVXXsHXX38NAMjKyoK7u7vKdmvXroW3t7ckxnxrPdStewB879YSsZBOjRIcHIz4+HgEBATA1tYWMTExCAwMxPbt29G/f//mnh495bZu3YqzZ8/C09MTCoUCeXl52LFjB8aOHYvo6GjI5XKxrUwmw8cffyw539TUVKnPdevW4auvvsKECRPg4OCAn376CUFBQdDR0VF680Ktk7+/PxwcHCSxLl26iP8/PT0dU6ZMQffu3REcHIycnBxEREQgIyMDW7dulZzHNZDq4ufnBxcXF0lMEAR8+OGHsLGxgZWVlRjv2LEjFixYIGlraWmp1CfzjQDg7t27+Pzzz2FtbQ2FQqHyQgwA5OTk4PXXX4epqSnmz5+P0tJSRERE4PLly9i1axdkMpnYVt3Xzsb0SdpBnXwrKytDSEgIevfujYkTJ6JDhw44d+4cNmzYgFOnTiEyMhI6OjqScwYMGABfX19JrGfPnpK/S0pKEBAQgKKiIsycORMGBgbYtm0bJk+ejH379qF9+/ZP/gFTs1J3fQOe/GcDrm+tj7r59sknnyjFLly4gMjISJU3M/j4+GDQoEGS2MM37ADMt9ZG3boH37u1UAKRmlJTUwW5XC5s3bpVjN2/f18YNmyY4Ofn14wzo5YiJSVFKC8vl8SuX78u2NvbC0FBQWJs8eLFQu/evRvsLycnR+jVq5ewbNkyMVZTUyNMmjRJGDRokFBVVfXkJk8tzm+//SbI5XLh0KFD9babPn26MGDAAKGoqEiMff/994JcLhdOnDghxrgGUmOdPn1akMvlwqZNm8TY5MmTBW9v7wbPZb5RrfLyciE3N1cQBEE4f/68IJfLhT179ii1W7p0qeDo6CjcvHlTjCUmJgpyuVyIiooSY4157VS3T9Ie6uRbeXm5kJKSonTuhg0bBLlcLiQmJkricrlckm91+eqrrwS5XC6kpqaKsStXrgh2dnbCmjVrHufh0FNO3fWtKT4bcH1rfdTNN1Xee+89QaFQCNnZ2WIsMzNT6b1aXZhvrYu6dQ++d2uZuEc6qe3w4cPQ09ODn5+fGDM0NMT48eNx7tw5ZGdnN+PsqCXo27ev0hVQW1tbvPDCC7h27ZpS++rqahQXF9fZ39GjR1FZWYlJkyaJMR0dHbz22mvIycnBuXPnntzkqUUrLi5GVVWVyvjJkycxatQomJiYiHFfX18YGxvj0KFDYoxrIDVWXFwcdHR0VH7lsqqqCiUlJXWey3yjWjKZDBYWFg22O3LkCIYMGQJra2sx9sorr8DW1layljXmtVPdPkl7qJNvMpkMffv2VYoPHz4cwIOvlKty//59lJeX19lvfHw8HBwc4OjoKMa6d+8OFxcX5puWUnd9q/UkPxtwfWt9GptvtSoqKnDkyBG8+OKL6Nixo8o2paWlqKioqLMP5lvrom7dg+/dWiYW0klt6enpsLW1lRSbAIhvdtPT05tjWtTCCYKA/Px8pa/rlpWVoV+/fujXrx9eeuklLFu2TKnolJ6eDmNjY3Tv3l0SZ07Sw0JCQtCvXz84OjrC398faWlp4rFLly6hqqoK9vb2knNkMhns7OwkOcQ1kBqjsrIShw4dQp8+fdCpUyfJsYyMDPTu3Rt9+/bFgAEDEBYWhsrKSkkb5hs1xq1bt3D79m2ltQx4kDOPrmXqvHY2pk8iAMjPzwcAlVuwxMTEoHfv3nB0dMSrr76K2NhYyfGamhpcunRJZb45ODjgxo0b9RZQSfs9yc8GXN+oMX755RcUFhZi1KhRKo9v3LgRffr0gaOjI8aNG4eEhATJceYbAcp1D753a7m4RzqpLS8vT+UV3NpYbm6upqdEWuDAgQO4desW5s6dK8YsLCwwffp09OzZE4Ig4MSJE9i5cyf+/PNPfPPNN9DXf7B05eXloUOHDkr7cDInCQAMDAzg4eGBQYMGoX379rh69SrCw8Px+uuvIyoqCj179kReXh4A1ftTW1hYICUlRfybayA1RkJCAu7du4eRI0dK4p07d4azszPkcjlKS0sRHx+PTZs2ISMjA2FhYWI75hs1Rm0+1JUz9+7dQ0VFBWQymdqvnY3pkwh4sCesiYmJ0l7Bffr0gZeXFzp16oTc3Fzs3LkTCxcuRFFRkXh3XW0+NbTuPXpxkVqHJ/3ZgOsbNUZsbCxkMhk8PDwkcV1dXbi6umLYsGGwsrJCZmYmtm3bhhkzZmDTpk0YMmQIAOYbPfBo3YPv3VouFtJJbffv31f5H5yhoaF4nKgxrl69iuXLl6NPnz4YM2aMGA8KCpK08/b2hq2tLdatW4f4+HjxxzSYk1Sfvn37Sr567u7uDg8PD4waNQpr1qxBeHi4mCN15dHDOcR8o8aIi4uDgYEBvLy8JPHQ0FDJ36NHj8YHH3yA77//HlOmTBF/nIr5Ro1Ru11GQzkjk8nUzq3G9Em0efNmnDx5EkuXLkW7du0kx6KioiR/jxs3DuPGjcO6deswduxYGBkZqZVv9W0LQ9rtSX824PpG6iouLsbx48cxePBgpbXN2toa4eHhkpivry+8vb2xatUqsZDOfCNVdQ++d2u5uLULqc3IyEjlvl+1/7EaGRlpekrUguXl5WHmzJkwNTXF+vXroaenV2/7KVOmQFdXFydPnhRjzElqrK5du8Ld3R1JSUmorq4Wc6SuPHo4h5hvpK6SkhL89NNPcHV1VbnFwaPefPNNAOD6Ro+t9sOROjmjbm41pk9q3Q4ePIiwsDCMHz9esn9rXWQyGV5//XUUFhbiwoULANTLt9o2RMC/+2zA9Y3UFR8fj/LycqVvGNbFzMwMY8eOxfXr15GTkwOA+dba1VX34Hu3louFdFKbhYWFuA3Cw+rbGoFIlaKiIsyYMQNFRUXYunUrrKysGjzHyMgIZmZmKCgoEGMWFhbIz8+HIAiStsxJqk/Hjh1RWVmJsrKyerfJyMvLk+QQ10BS19GjR1FWVqb2h67nnnsOAJTWN+Ybqas2H+rKGTMzM/HuI3VfOxvTJ7VeiYmJWLRoEYYMGYJly5apfd6j615tPnHdI3X9m88GXN9IXbGxsTA1NcXQoUPVPqf2B0nv3bsHgPnWmtVX9+B7t5aLhXRSW48ePZCRkaH0Qz+pqakAADs7u+aYFrUw5eXlmDVrFjIyMrB582b85z//Ueu84uJi3L17F+bm5mLMzs4OZWVluHr1qqQtc5Lqk5WVBUNDQxgbG0Mul0NfX1+8I65WRUUF0tPT0aNHDzHGNZDUFRsbC2NjY7i5uanVPjMzEwAk6xvzjRrDysoK5ubmSmsZAJw/f16ylqn72tmYPql1Sk1NxezZs2Fvb4+wsDBxn2p1PLru6erqQi6X15lvnTt35v7oJPFvPhtwfSN15ObmIikpCSNGjGhU8TErKwvA/61vzLfWqaG6B9+7tVwspJPaPD09UV1djejoaDFWUVGBvXv3wsnJSbyzhKgu1dXVmDdvHn7//XesX78effr0UWpTXl6uVDgCgC+++AKCIGDgwIFizN3dHQYGBti5c6cYEwQBUVFRsLKyUtk/tR537txRiv3555/4+eefMWDAAOjq6sLU1BQuLi44cOCAJO/279+P0tJSeHp6ijGugaSOO3fu4NSpUxg+fDjatGkjOVZcXKz0VUtBELBp0yYAgKurqxhnvlFjjRgxAsePH0d2drYYO3XqFDIyMiRrWWNeO9Xtk1qfq1evIjAwEDY2Nvjyyy/r/Kq4qtfi4uJibN++He3bt0evXr3EuIeHB9LS0pCWlibGrl27ht9++4351oo11WcDrm/UkIMHD6KmpqbObxiqWt9u3bqFPXv2QKFQSL5Fw3xrXdSpewB879ZS8cdGSW1OTk7w9PTE2rVrcfv2bXTt2hUxMTG4efMmVqxY0dzToxZg1apV+PnnnzF06FDcu3cP+/fvlxz39fVFXl4exowZA29vbzz//PMAgISEBPzyyy8YOHAg3N3dxfYdO3ZEQEAAwsPDUVVVBQcHBxw9ehRnzpzB6tWrG9x3nbTbvHnzYGRkhD59+qBDhw64cuUKvv/+exgZGWHhwoViu/nz52PixInw9/fHhAkTkJOTg6+//hqurq4YNGiQ2I5rIKnj4MGDqKqqUvmh648//kBQUBC8vb3RpUsXlJeX48cff8TZs2fh5+cnKSgx3+hh3377LQoLC8VtqI4dOybuverv7w9TU1PMmjULhw8fRkBAAAICAlBaWorw8HDI5XKMGzdO7Ksxr53q9knapaF809HRwbRp01BYWIhp06bh+PHjkvO7dOkifqjfsWMHjh49iqFDh8La2hq5ubnYu3cv/vnnH3zyySeSuzwnTZqEXbt2YebMmZg6dSr09fWxbds2dOjQAVOnTtXMgyeNayjfCgoKmuSzAde31kmd19NaBw4cgKWlJZydnVX29emnn+LGjRtwcXGBpaUlbt68iaioKJSWlmLJkiWStsy31kWdugegfl5wbXu66AiPbrJDVI/y8nKEhYUhNjYWBQUFUCgUePfddyV3AhDVxd/fH8nJyXUev3TpEgoLC/HRRx8hNTUVubm5qK6uRteuXTFy5EhMnToVBgYGknNqamqwZcsWREdHIzc3F7a2tggMDMSoUaOa+uHQUy4yMhKxsbG4ceMGiouL0b59e7i4uGD27Nno2rWrpG3tm5CLFy+ibdu28PLywoIFC5S+Rs41kBri5+eHzMxMnDhxQuliXmZmJlavXo20tDTk5+dDV1cXzz//PCZMmAA/Pz/o6OhI2jPfqJabmxtu3ryp8thPP/2ETp06AQD++usvrFq1CikpKTAwMMDgwYMRHByMZ599VnJOY1471e2TtEdD+QZAUrx81JgxY7Bq1SoAD/ZQDw8Px+XLl3Hv3j20adMGjo6OmD59OlxcXJTOzcnJQWhoKBITE1FTUwNnZ2eEhIQovW6T9mgo39q1a9dknw24vrU+6r6eXrt2DV5eXnjzzTcRHByssn1cXByioqJw9epVFBYWwtTUFP3798dbb70luTmiFvOt9VCn7lGL791aHhbSiYiIiIiIiIiIiIjqwT3SiYiIiIiIiIiIiIjqwUI6EREREREREREREVE9WEgnIiIiIiIiIiIiIqoHC+lERERERERERERERPVgIZ2IiIiIiIiIiIiIqB4spBMRERERERERERER1YOFdCIiIiIiIiIiIiKierCQTkRERERERERERERUDxbSiYiIiIiIiIiIiIjqwUI6EREREdFTIjg4GAqFAllZWc09lSciISEBEydOxIsvvgiFQoG3335b43NQKBTw9/fX+LhEREREpF30m3sCRERERERPWlZWFtzd3QEArq6uCA8PV2rz+++/w8/PD2PGjMGqVas0PUWtl5WVhbfffhvt2rXD2LFjYWJigueff15l27179yIkJETtvvlvRkRERESaxkI6EREREWm1hIQEnDp1Ci4uLs09lVbl1KlTKC8vx+LFizFy5Mh629rZ2WH27NmS2M2bNxETE4MePXpg2LBhSu2JiIiIiDSJhXQiIiIi0lo2NjbIzs7G6tWrsXv3bujo6DT3lFqNW7duAQAsLS0bbGtnZ6dUHE9KSkJMTAzs7OwwZ86cJpkjEREREZG6uEc6EREREWmtbt26wdfXFxcuXMChQ4fUOsfNzQ1ubm4qj/n7+0OhUEhiGzZsgEKhQFJSEvbs2YORI0fC0dERbm5uiIyMBAAIgoCIiAh4eHjAwcEBI0aMwL59++qcgyAI2LJlC0aMGAEHBwe4ublh48aNqKysVNn+9OnTmDVrFpydnWFvb48RI0Zg3bp1KCsrk7RLSkqCQqHAhg0bcPbsWUydOhX9+/dXekx1uXz5Mt599124uLjA3t4ebm5uWLFiBe7evSu2ycrKEscAgICAACgUCvE5ehJSUlIQGBiIl156CQ4ODvD09MRnn32m9HjrIggCQkNDoVAoEBQUJD6vgiBg9+7dmDhxIvr27QsnJyeMHTsWu3fvVurj4X/32NhY+Pr6wtHREa6urvj4449x//59pXPi4+MxefJkuLi4wMHBAa6urpgyZQri4+P/3RNCRERERE2Od6QTERERkVabO3cufvjhB4SFhWH48OEwMDBoknG2b9+O5ORkuLu7w9nZGUeOHMGKFSvQpk0bXLx4EUeOHMGQIUNgYGCAgwcPYvHixbCxscGLL76o1NeKFStw7tw5eHp6wtjYGMeOHcOGDRtw+fJlfPbZZ5K2O3fuxPLly9GuXTsMHToU5ubmuHDhAjZv3oykpCRERkZCJpNJzjl37hy+/PJLODs7Y8KECcjOzm7w8Z05cwbTp09HZWUlPDw8YGNjg99//x2RkZE4fvw4oqOjYW5ujnbt2mH27NlITk5GcnIyxowZAxsbGwAQ//ffOHToEIKCgiCTyeDl5YUOHTogMTERn3/+ORISEvDNN9/A0NCwzvMrKysRHByMuLg4vPHGGwgJCYGOjg4EQcDChQsRFxcHW1tb+Pj4QCaTITExEUuWLMHVq1exePFipf527NiBEydOwM3NDS+//DJOnDiBb775Bnfv3sWaNWvEdjt37sSyZctgYWGB4cOHw8zMDHl5eUhLS8OPP/4IDw+Pf/3cEBEREVHTYSGdiIiIiLSatbU1Jk+ejIiICERHR2Py5MlNMk5KSgpiYmLQuXNnAMC0adMwfPhw/Pe//0WHDh0QGxsLc3NzAA9+LHPChAkIDw9XWUhPTU3F/v370bFjRwDA/PnzMXXqVMTHxyM+Pl4sul65cgUrVqyAQqHAtm3b0L59e7GPr776CmvWrMG3336LqVOnSvpPTExEaGgoxo0bp9Zjq6mpQUhICMrKyrB161YMHDhQPPbJJ58gPDwcq1evRmhoKNq1a4c5c+Zgw4YNYiHd2dm5Ec9k3YqLi/HBBx9AT08PUVFR6NGjBwBgwYIFCAoKwsGDB7F161a88847Ks8vKSnB3LlzkZCQgKCgIAQGBorHdu3ahbi4OIwdOxbLly8XL7hUVFRg7ty5iIiIgLe3N+zt7SV9njx5Env27BF/SHX+/Pnw9fXFwYMHsWjRIlhZWQEAdu/eDQMDA+zfvx8dOnSQ9PHwHf1ERERE9HTi1i5EREREpPVmzZqFdu3a4YsvvkBJSUmTjOHv7y8W0QHgueeeQ79+/VBUVIS33npLLKIDgJOTEzp37oxLly6p7CsgIEAsogOATCbDvHnzAAAxMTFiPCoqClVVVfjggw8kRXQAmD59OszNzREXF6fUf69evdQuogPA2bNncePGDQwaNEhSRAeAd955B2ZmZoiLi0NFRYXafT6Oo0ePoqioCOPGjROL6ACgq6uL//mf/4G+vr7k+XnYnTt38MYbb+DUqVMIDQ2VFNEB4Ntvv4WxsTGWLl0q+daCTCbD/PnzAQA//PCDUr8BAQFiER0AjIyM4OPjg5qaGvzxxx+StgYGBtDXV76X6dF/OyIiIiJ6+vCOdCIiIiLSes888wxmzJiBNWvWICIiokl+vPLRH8sEAAsLCwCQFH0fPnb+/HmVffXv318p1qdPH+jr6+PixYtiLDU1FQBw4sQJnDp1SukcfX19XL9+XSn+6F3VDakd86WXXlI61rZtW9jb2yMhIQHXr19Xe7/1x5Genl7nPKytrdGpUydkZGSguLgYJiYm4rH8/Hy89tpryMnJwcaNG5X2wC8rK8Ply5dhaWmJLVu2KPVdVVUFALh27ZrSsV69einFai+CFBYWirFXX30Vn376KXx8fODj44OXX34Z/fr1k8yTiIiIiJ5eLKQTERERUasQEBCAHTt2ICIiApMmTXri/asqiNbefVzXsdoC7aMe3foDAPT09GBmZoaioiIxVlBQAADYvHlzo+b67LPPNqp9cXFxvefVXjCobddUGpqHpaUlMjIyUFJSInnO8/LyUFxcjK5du8LJyUnpvMLCQgiCgFu3bmHjxo11jl9aWqoUU/Vvq6enB+DBlji1pk2bBjMzM3z33Xf4+uuvERERAX19fQwePBghISGSbzMQERER0dOHhXQiIiIiahWMjIwwZ84cLFmyBBs3boSvr6/Kdjo6OqisrFR57OEidlO6ffu2ZLsQAKiursa9e/ckRfbaIm5KSkqj7mzW0dFp1Hxq+87Pz1d5PC8vT9Kuqag7j7Zt20ridnZ2GD16NN5//30EBARg+/btkmJ8bftevXph7969TTF16OjoYPz48Rg/fjzu3r2LlJQUxMXF4dChQ/j7779x4MABsQBPRERERE8f7pFORERERK3GmDFj8MILL2DXrl34+++/VbZ55plncOfOHaW7xUtLS+s850k7c+aMUuzcuXOoqqpCz549xZijoyOA/9vipanUjpmcnKx0rLS0FBcuXICRkRG6devWpPOo3T5H1Tyys7ORmZmJzp07qyzojxs3DitXrsS1a9cQEBAgKcabmJige/fuuHbtmmQ7lqbSvn17DBs2DGFhYXj55Zdx5coVjeUWERERET0eFtKJiIiIqNXQ09PD/PnzUVlZWecWHvb29qisrERsbKwYEwQBa9euVbm1R1OIjIxETk6O+HdFRQXCwsIAPLgYUGvSpEnQ19fHRx99hH/++Uepn8LCQsme6o+rb9++6NKlC3799VecPHlScmzTpk24d+8evL29IZPJ/vVY9Rk2bBhMTU2xd+9e/PXXX2JcEASsXr0aVVVVkufnUaNHj8bKlStx/fp1+Pv7i3ewAw9+LLasrAzvv/++yn/nzMxMZGVlPfbck5KSIAiCJFZZWSluz2NoaPjYfRMRERFR0+PWLkRERETUqri7u6Nfv35ISUlReXzy5MnYu3cv3n//fSQmJsLc3BxnzpxBUVERevTogT///LPJ5+jk5ARfX194eXmhTZs2OHbsGK5fv44RI0bAw8NDbCeXy7F06VJ8+OGH8PT0xODBg9G5c2eUlJQgKysLycnJGDNmDJYvX/6v5qOrq4uVK1di+vTpCAwMhIeHB2xsbHDu3DkkJyejS5cuWLhw4b992A0yMTHBRx99hKCgIEyYMAFeXl4wNzfHyZMn8ccff8DR0RHTp0+vt4/Ro0dDV1cXwcHB8Pf3R2RkJCwtLTFx4kSkpqYiJiYGZ8+exSuvvAJLS0vcvn0b165dQ2pqKtasWYNOnTo91tzfeecdmJiYwMnJCdbW1qiqqsLJkydx5coV8fkkIiIioqcXC+lERERE1OosXLgQr732mspjcrkcW7duxdq1axEfHw9jY2MMHjwYixcvxrx58zQyvyVLluDQoUPYvXs3/vnnH1haWmLOnDkIDAxUajthwgT06NED27Ztw+nTp3Hs2DGYmJjA2toaU6ZMwejRo5/InPr374/o6Gh8/vnnSExMRHFxMSwtLREQEIC33noL5ubmT2Schnh5ecHCwgJffvklfvzxR5SVlcHGxgZvv/02ZsyYodad3aNGjYKuri4WLVok7pluZWWFVatWYdCgQdi1axeOHz+O0tJSmJubo2vXrli8eDFcXFwee94LFizAiRMnkJaWhmPHjqFNmzbo0qULPvzwQ4wfP/6x+yUiIiIizdARHv1+IRERERERERERERERibhHOhERERERERERERFRPVhIJyIiIiIiIiIiIiKqBwvpRERERERERERERET1YCGdiIiIiIiIiIiIiKgeLKQTEREREREREREREdWDhXQiIiIiIiIiIiIionqwkE5EREREREREREREVA8W0omIiIiIiIiIiIiI6sFCOhERERERERERERFRPVhIJyIiIiIiIiIiIiKqBwvpRERERERERERERET1YCGdiIiIiIiIiIiIiKgeLKQTEREREREREREREdXjfwGSeL2KWgx4KgAAAABJRU5ErkJggg==\n" }, "metadata": {} } ], "source": [ "# Define the maximum token count threshold.\n", "max_token_threshold = 2048\n", "\n", "# Filter rows with less than or equal to 2048 tokens.\n", "valid_indices = [i for i, count in enumerate(combine_tokens_count) if count <= max_token_threshold]\n", "\n", "# Print the number of valid rows.\n", "print(f\"Number of Valid Rows: {len(valid_indices)}\")\n", "\n", "# Calculate the number of rows to remove.\n", "rows_to_remove = len(dataset['train']) - len(valid_indices)\n", "\n", "# Print the number of rows to be removed.\n", "print(f\"Removing: {rows_to_remove} rows....\")\n", "\n", "# Extract valid rows based on indices.\n", "dataset['train'] = dataset['train'].select(valid_indices)\n", "\n", "# Get token counts for valid rows.\n", "token_counts = [combine_tokens_count[i] for i in valid_indices]\n", "\n", "# Plot the new distribution of combined token counts for the remaining valid rows.\n", "plot_distribution(token_counts, \"New distribution of Combine Total Count (Instruction + Output Columns)\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "o8Orx5FDacwO", "outputId": "a537712e-8d4d-47a6-c3d4-4f55ad8bca0b" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "DatasetDict({\n", " train: Dataset({\n", " features: ['input', 'output', 'instruction', 'data_source'],\n", " num_rows: 24895\n", " })\n", "})" ] }, "metadata": {}, "execution_count": 12 } ], "source": [ "dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "xEF601Lpafwh", "outputId": "7855e72d-f728-495e-83d7-c4451c316cd8" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " input output \\\n", "0 To find the probability of the spinner landing... \n", "1 I need to choose 6 people out of 14, and the o... \n", "2 First we count the number of all 4-letter word... \n", "3 She can do this if and only if at least one of... \n", "4 Think of the problem as a sequence of H's and ... \n", "... ... ... \n", "24890 There are several formulas that generate all p... \n", "24891 Sure, here are some of the best universities:\\... \n", "24892 [Enter stage left]\\n\\nFirst Citizen: Good morr... \n", "24893 That's a very thoughtful idea! Here are some s... \n", "24894 Certainly! Here's an implementation of the Tim... \n", "\n", " instruction data_source \n", "0 A board game spinner is divided into three par... MATH/PRM-800K \n", "1 My school's math club has 6 boys and 8 girls. ... MATH/PRM-800K \n", "2 How many 4-letter words with at least one cons... MATH/PRM-800K \n", "3 Melinda will roll two standard six-sided dice ... MATH/PRM-800K \n", "4 Let $p$ be the probability that, in the proces... MATH/PRM-800K \n", "... ... ... \n", "24890 Can we find a formula to generate all prime nu... guanaco \n", "24891 What are some of the best university's for stu... guanaco \n", "24892 Write me a SPL (Shakespeare Programming Langua... guanaco \n", "24893 Hi. I want to make an embossed picture for my ... guanaco \n", "24894 Please implement the Timsort algorithm on Lean... guanaco \n", "\n", "[24895 rows x 4 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
inputoutputinstructiondata_source
0To find the probability of the spinner landing...A board game spinner is divided into three par...MATH/PRM-800K
1I need to choose 6 people out of 14, and the o...My school's math club has 6 boys and 8 girls. ...MATH/PRM-800K
2First we count the number of all 4-letter word...How many 4-letter words with at least one cons...MATH/PRM-800K
3She can do this if and only if at least one of...Melinda will roll two standard six-sided dice ...MATH/PRM-800K
4Think of the problem as a sequence of H's and ...Let $p$ be the probability that, in the proces...MATH/PRM-800K
...............
24890There are several formulas that generate all p...Can we find a formula to generate all prime nu...guanaco
24891Sure, here are some of the best universities:\\...What are some of the best university's for stu...guanaco
24892[Enter stage left]\\n\\nFirst Citizen: Good morr...Write me a SPL (Shakespeare Programming Langua...guanaco
24893That's a very thoughtful idea! Here are some s...Hi. I want to make an embossed picture for my ...guanaco
24894Certainly! Here's an implementation of the Tim...Please implement the Timsort algorithm on Lean...guanaco
\n", "

24895 rows × 4 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"dataset[\\\"train\\\"]\",\n \"rows\": 24895,\n \"fields\": [\n {\n \"column\": \"input\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"\",\n \"Choose A, B, C or D as your solution.\",\n \"When you review a fellow student's writing, try to make your feedback clear and specific. You can use questions such as the following to guide your feedback:\\nIdeas and development: Does the writer express a clear main idea and develop it with evidence, examples, and analysis?\\nOrganization: Does the writer order ideas in a clear, logical way so that the ideas build on one another and are easy to follow?\\nSentence fluency: Do the writer's sentences vary in structure and length, or does the writing sound choppy, rambling, or repetitive?\\nWord choice: Does the writer use words accurately and precisely, avoiding excessive repetition or inappropriate language to create clear, effective, and engaging writing?\\nGrammar and mechanics: Does the writer use accurate spelling, punctuation, and grammar to create writing that is correct and easy to read?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"output\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 19499,\n \"samples\": [\n \"Mark: \\\"Hey guys, I was just going through my photos from our last trip to Iceland, and it reminded me how incredible the natural world can be.\\\"\\n\\nOlivia: \\\"Oh, absolutely! I still can't get over those stunning waterfalls and volcanic landscapes we saw.\\\"\\n\\nDavid: \\\"It's amazing how such beautiful places have been shaped by millions of years of geological processes.\\\"\\n\\nSarah: \\\"And don't forget the diverse ecosystems that exist within these environments. It's truly fascinating!\\\"\\n\\nUSER: Speaking of breathtaking wonders, what other places would you all like to visit or explore?\\nASSISTANT: Mark: \\\"I've always wanted to see the Great Barrier Reef in Australia. The underwater life there must be mind-blowing.\\\"\\n\\nOlivia: \\\"For me, it's definitely the Amazon Rainforest. With its rich biodiversity and unique species, it's a treasure trove for any nature lover.\\\"\\n\\nDavid: \\\"I'd love to go to Machu Picchu in Peru. Not only does it offer stunning views, but it also has a rich historical background.\\\"\\n\\nSarah: \\\"The Gal\\u00e1pagos Islands have been on my bucket list for ages. The unique wildlife found there played a huge role in shaping our understanding of evolution.\\\"\\n\\n*Emily nods in agreement*\\n\\nUSER: Those all sound amazing. What do you think makes these places so special and awe-inspiring?\\nASSISTANT: Olivia: \\\"I think one factor is their sheer beauty. These places have landscapes and features that are unlike anything else on Earth.\\\"\\n\\nMark: \\\"And they often showcase the incredible power of nature, like massive waterfalls or active volcanoes.\\\"\\n\\nDavid: \\\"The historical significance of some locations also adds to their allure. It's fascinating to think about how ancient civilizations interacted with these natural wonders.\\\"\\n\\nSarah: \\\"For me, it's the unique ecosystems and biodiversity found in these places. They're home to species that can't be found anywhere else in the world.\\\"\\n\\n*Emily smiles*\\n\\nUSER: I completely agree with all of you. How do you think we can help preserve these wonders for future generations?\\nASSISTANT: Sarah: \\\"One important way is through education and raising awareness about the threats facing these environments, such as climate change, pollution, and habitat destruction.\\\"\\n\\nOlivia: \\\"Supporting conservation efforts and organizations working to protect these areas is also crucial.\\\"\\n\\nMark: \\\"When visiting these places, we should practice responsible tourism by minimizing our impact on the environment and respecting local cultures.\\\"\\n\\nDavid: \\\"We can also advocate for policies and regulations that prioritize environmental protection and sustainable development.\\\"\\n\\n*Emily nods thoughtfully*\\n\\nUSER: Great points! Let's make sure we do our part in preserving these amazing places. What other breathtaking wonders would you recommend people visit at least once in their lifetime?\\nASSISTANT: Mark: \\\"I'd say the Northern Lights, or Aurora Borealis. Seeing those colorful lights dancing across the sky is a truly magical experience.\\\"\\n\\nOlivia: \\\"The Grand Canyon in Arizona is another must-see. The sheer size and beauty of it will leave you speechless.\\\"\\n\\nDavid: \\\"I'd recommend visiting Angkor Wat in Cambodia. The intricate architecture combined with its stunning location makes it an unforgettable experience.\\\"\\n\\nSarah: \\\"Definitely the Great Blue Hole in Belize. As a marine biologist, I find this underwater sinkhole absolutely fascinating.\\\"\\n\\n*Emily smiles*\\n\\nUSER: Thank you all for sharing your recommendations. I can't wait to plan our next adventure together!\\nASSISTANT: Sarah: \\\"Me too! It's always such a pleasure exploring these wonders with friends who share the same passion for nature and discovery.\\\"\\n\\nMark: \\\"Absolutely, it makes the experience even more memorable and enjoyable.\\\"\\n\\nOlivia: \\\"I'm already looking forward to our next trip. Let's start brainstorming ideas soon!\\\"\\n\\nDavid: \\\"Agreed! There's so much of this beautiful planet left to explore, and I can't think of better people to do it with.\\\"\\n\\n*Everyone shares a group hug and continues discussing their travel plans*\",\n \"The center of the image circle is simply the center of the original circle reflected over the line $y=x$. When reflecting over this line, we swap the $x$ and $y$ coordinates. Thus, the image center is the point $(-5, 6)$.\",\n \"A redwood tree is a plant. It has small leaves.\\nRedwood trees have fuzzy reddish-brown bark. Their bark helps protect redwood trees from fires.\\nA bald eagle is an animal. It walks and flies.\\nBald eagles live in trees near water. They eat mostly fish.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 24895,\n \"samples\": [\n \"Simplify\\n\\\\[4 \\\\sin x \\\\sin (60^\\\\circ - x) \\\\sin (60^\\\\circ + x).\\\\]The answer will be a trigonometric function of some simple function of $x,$ like \\\"$\\\\cos (2x)$\\\" or \\\"$\\\\sin (x^3)$\\\".\",\n \"What is the probability of spinning the spinner pictured and getting a prime number? Express your answer as a common fraction. [asy]\\nimport olympiad; defaultpen(linewidth(0.8)); size(100); dotfactor=4;\\ndraw(Circle((0,0),1));\\nstring[] labels = {\\\"3\\\",\\\"6\\\",\\\"1\\\",\\\"4\\\",\\\"5\\\",\\\"2\\\"};\\nfor(int i = 0; i < 6; ++i){\\n\\nlabel(labels[i],0.7*dir(60*i));\\n\\ndraw((0,0)--dir(60*i - 30));\\n}\\ndraw((0,0)--0.7*dir(130),linewidth(2.0),EndArrow(size=6));\\n[/asy]\",\n \"Five points $A$, $B$, $C$, $D$, and $O$ lie on a flat field. $A$ is directly north of $O$, $B$ is directly west of $O$, $C$ is directly south of $O$, and $D$ is directly east of $O$. The distance between $C$ and $D$ is 140 m. A hot-air balloon is positioned in the air at $H$ directly above $O$. The balloon is held in place by four ropes $HA$, $HB$, $HC$, and $HD$. Rope $HC$ has length 150 m and rope $HD$ has length 130 m. How high is the balloon above the field (that is, the length of $OH$)? [asy]\\nsize(200);\\npair A, B, C, D, O, H, W, X, Y, Z;\\nO=(0,0);\\nA=(1,1);\\nD=(1.5,-.3);\\nB=(-1.5,.3);\\nC=(-1,-1);\\nH=(0,2.5);\\nW=(5/3)*(A+D);\\nX=(5/3)*(A+B);\\nY=(-1)*(W);\\nZ=(-1)*(X);\\ndraw(W--X--Y--Z--W);\\ndraw(A--C);\\ndraw(B--D);\\ndraw(O--H, linewidth(1));\\ndraw(A--H, dashed);\\ndraw(B--H, dashed);\\ndraw(C--H, dashed);\\ndraw(D--H, dashed);\\ndot(A);\\ndot(B);\\ndot(C);\\ndot(D);\\ndot(O);\\ndot(H);\\nlabel(\\\"A\\\", A, NE);\\nlabel(\\\"B\\\", B, SW);\\nlabel(\\\"C\\\", C, SE);\\nlabel(\\\"D\\\", D, NE);\\nlabel(\\\"O\\\", O, SE);\\nlabel(\\\"H\\\", H, NW);\\n[/asy]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"data_source\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 10,\n \"samples\": [\n \"airoboros\",\n \"ARB\",\n \"reclor\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 13 } ], "source": [ "dataset[\"train\"].to_pandas()" ] }, { "cell_type": "markdown", "source": [ "**For near-deduplication using embeddings, consider utilizing models available on the MTEB (Model Text Embedding Benchmarks) leaderboard on Hugging Face. These models offer advanced capabilities for embedding text data, which can be leveraged to identify and remove near-duplicate instances within a dataset.**" ], "metadata": { "id": "9ET9-8aKeq5u" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 977, "referenced_widgets": [ "37a2288558034a31849e9297f2376697", "cef5aea9607c4b5189ce9efe795868b4", "b7693b7f630f4013b8f4eb7b03bf83e3", "653220da2f2c4b5e8d3d6fe84c009da7", "6cb5e259ac44414fb0240589d0eae76f", "45a1bedb60a84eee87d96f02d39d52e2", "b935d18252a441178671cef5ffd28243", "6d1cbe88529648ae9148906d783b37ca", "1f732938b58944ac85327b8811cd388f", "e03417aa8e244dc18983ffcc05990299", "0a753136e94940ebbee41d9b4c0abc59", "1c5aee57c55545ebbfa4a88c587e940c", "3b2d922618794ceca78612402114f035", "2a79cd9c7b5b49428bf7e34a5a5086fc", "03571920358c4bc988227f4f079355c6", "947fe4f75bef49568ae4dd94edd261cc", "78e2e41ce7034062ba91c56b1561388b", "92efae47e919492db18f6c7ce666d425", "2fda7091c111452bbfd6a2d3604aca63", "c70c1ddc63764d36b7aebe8335305c93", "b8bdeec1035240138d629eb30dc5fdff", "f76771814bda4defb8c695540ba4e365", "0c9a99c2b26542a085ddb041a0772dad", "692aeb50f8c1471fadcbeb0e60ce6ad0", "0a30b07be74e4872bcbdf84bd209cf5b", "b2172351d2004bb89d6b83369faf5fa6", "c4cf8370741447c3b323a1b8ceeedd7c", "f17a325bdd4b42faba609ae85e76e78d", "fdd5d791617049dcb1625a011cbd03af", "9fe1ca9669f74f0e9545d9a5af8c1d90", "bc8b2a3503534882b3a279a792097269", "da39c3d1102948d4bdadf5a37bb720c0", "49f18b518fd1463ca7dbf93a78564f38", "cd4702ff4ea34096ae6a989762e402b9", "dff4dce910f04d5781e14dff259034ad", "dd74b735e52742f398e4c43a7a684088", "4ff46961a19046ebbf5089cb3e8c5768", "4ac7cefb74594788b98a8e087ca2fd8c", "bb8cfdd3f93c413094ef5f8bf9d2da09", "4800d65e0dd74adcafad4fc7a5521582", "9913bcff5c4648d1b8a83ec7e5d30e35", "b37f280d48e04f17875c8b61e3d58dd3", "6416fd9c82af4a128254649cfe7db853", "0bd90960953b4794a19c73271de4499c", "9c9f4360603d46ae8c09e3d485251ee2", "424ffc1b61904620ba6baa2362a0fbc1", "7b65dc5643004630ac44dfba55846ec9", "00a7a4008c374a8ab4ebcb31cf2c77e9", "9eaf608a797c4b2e8920153b631c2300", "5b9b927df09a4175ab2d037df0dac992", "426c765d5cdc4fc1b7f09c58ec3729e9", "7db3970eb5b649948b11deb8a074a2fe", "e2f1f68e5a114d998dd43be62f3ce408", "305173f52ded49d1b2b784a8afc0c498", "86b5a3a9272e4031a439c3154d5057e0", "11aa8875e7174553b77e8c7637b45da5", "bfae4daece69464081e869aef0ef2b64", "813ecffc2e7d487ab6cb52a50133dfd0", "f3507d3c51814c3182814f286c2441bb", "fd5830e7d21343bd844fe34beb22d1d0", "1c1f044578194e95a4607305aa1d8bc6", "c613775854704b51b250e13f47262e37", "042edd9a97274c62be6a1fc06fccaa0f", "30be978471d341d394d61c41d54d2622", "9c0decec01f247d2aba2c83d99d51842", "7c6d4602fd654e748029ee40ee8d095a", "7a667d09a651449ca2fe4fa842bd9486", "cd5a220fee0c49ef9ef71f5db8df2072", "8de4c91d24f84b9aafa1e57ef5b5782f", "d6212986b585407fbdbed3fe0dca5bed", "03cdefb7ce774d6f8dd6642730574327", "f2ea7e43ec88470098a9ea8cebdbc2e3", "deb39a20fde3412bb62de3b05a85d9e5", "549c34b849664421932e278c64c1a975", "713847499d594a0bb211277aa29396a3", "11713f77c10a4f0cbf55dc94e81d193f", "2358775608ba408c90b6de262a0f736c", "906a7d854c7742b3be67ce294ba684d1", "cdd6f2a365c5419bbafd4c2e880ad38e", "b1cd772ccb784789a749790e9b14437b", "178b9ba67be9400ebe7d8e32fd26a7e7", "0ef475a9527a4585a66a0fc147f90e33", "7623f57b3d0740c0a18956d816430b67", "65f2f97a1be04281bd38e6aca6916b37", "f4c833de742c425e8fac8908364a6ec5", "ce7a1703f7fa40028e80986bb8514f1a", "b346d2a8a1474626b0f0a0e097ab028b", "5b25dbfaa71c4202baf21b3bcb086eeb", "92502279cc2d493daae59ee522e652a5", "084ed9e813cc4d41b82cda3d7249c8c3", "fff1dab416cc4028a0bad2d66da57fef", "23060af2afd249ea8e2c6689d58f752d", "dea18ee09b76490b8ffc940df5edb6f0", "2b9ad86ad2264043a19244195cec9215", "a7cfd59ed7004f42b99cdc53707570c5", "f3eefc5502fe4bc1800b107eae62f94f", "3b2b4a80d360484faae5e3997be6f988", "e3df5f7740c54e109a37d70a290ee3db", "fdad943a83f5412ab22584741c30f37e", "cdd2cddca6da4cda9ad29c80652f9a85", "3ca30c6f749f4425b40dd2c8fa44127e", "5ea408eb8db84cb885c28110fb996489", "63f1b39ff206404daf1da69b6921fe82", "4401c06cb5f6454b848e8bba98522a98", "35fe058c40df48aabca401c43684c645", "f9240b0561f44956acd10969a09c0fbf", "2325b832424947cfa42f293dff8d8338", "3c5cb3fee32244e5be418a5ba1471c05", "641e41c8e3844b949d4ce02bc3410e75", "7cf7ef55eae14f85bab2dfc52ba6b7f6", "dac3759260444afca4218092e8b1eddb", "54b9be8b356f47bcaa75b0e255ed3d1c", "4ad335219a124c59b3106ce6052073c5", "52ec77c38b1849a097facbf671b8e9bf", "8e854bec0ba349cdbdf4ef90128918a0", "f700fcc700ec4c77a8f2ae6a014d3120", "db135ac5ca8a41efb7b5583c47ee0b80", "0d626c66d561490b82e787ff7a5e02ec", "1dd98cfe289045c0bf4b9e0a483f1669", "cd78d4d7c9de45079188314aa7262a5e", "818a7b49f69741a2abd043263bf6d58f", "f7267a7ec29c4ab2a84fbe45993c4105", "b7aca9a3b4294a97aa45862b4df87f7a", "29617e36ee4541f4b334e1c189eaa269", "4c5617bf41d64420a5b4b2b6dc948e62", "752fcd2ef7a345b3a78a94c5ffc440fe", "9fdb5f3ea9af47e9bfd89a3852f7d985", "57bfa49d6e104a739aaa13ebeccda2f5", "3b85b72208104979ab1371d99f73360d", "6651724ccd7c4effb3e74e9154cf7299", "f6283c808f934aeaa4fccd0ce9fe0bf9", "c93f9bb17af94cba934779bdfbcdc2a0" ] }, "id": "b4IGmprvbDiE", "outputId": "785651b6-98fa-49c7-b5cf-d095e4084ce8" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "modules.json: 0%| | 0.00/385 [00:00= threshold:\n", " # Check if the current item or its nearest neighbor is already in the to_keep list\n", " nearest_neighbor = I[i, 1]\n", " if i not in to_keep and nearest_neighbor not in to_keep:\n", " # If not, add the current item to the list\n", " to_keep.append(i)\n", " else:\n", " # If the similarity is below the threshold, always keep the current item\n", " to_keep.append(i)\n", "\n", " # Filter the dataset based on the indices to keep\n", " dataset = dataset[\"train\"].select(to_keep)\n", "\n", " # Print the filtered dataset\n", " print(dataset.to_pandas())\n", "\n", " # Return the deduplicated dataset wrapped in a DatasetDict\n", " return DatasetDict({\"train\": dataset})\n", "\n", "# Call the deduplicate_dataset function to deduplicate the dataset using the specified model and threshold\n", "deduped_dataset = deduplicate_dataset(dataset, \"thenlper/gte-large\", 0.95)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "qQGcbdwUbIOv", "outputId": "7ac3aeb2-d85b-4b85-eaf4-f1d7efa6b135" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "DatasetDict({\n", " train: Dataset({\n", " features: ['input', 'output', 'instruction', 'data_source'],\n", " num_rows: 18188\n", " })\n", "})" ] }, "metadata": {}, "execution_count": 14 } ], "source": [ "deduped_dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "4nEfgTDlbPls", "outputId": "65546eba-ddad-4c88-b3a4-0885f5f9bd52" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " input output \\\n", "0 To find the probability of the spinner landing... \n", "1 I need to choose 6 people out of 14, and the o... \n", "2 First we count the number of all 4-letter word... \n", "3 She can do this if and only if at least one of... \n", "4 Think of the problem as a sequence of H's and ... \n", "... ... ... \n", "18183 There are several formulas that generate all p... \n", "18184 Sure, here are some of the best universities:\\... \n", "18185 [Enter stage left]\\n\\nFirst Citizen: Good morr... \n", "18186 That's a very thoughtful idea! Here are some s... \n", "18187 Certainly! Here's an implementation of the Tim... \n", "\n", " instruction data_source \n", "0 A board game spinner is divided into three par... MATH/PRM-800K \n", "1 My school's math club has 6 boys and 8 girls. ... MATH/PRM-800K \n", "2 How many 4-letter words with at least one cons... MATH/PRM-800K \n", "3 Melinda will roll two standard six-sided dice ... MATH/PRM-800K \n", "4 Let $p$ be the probability that, in the proces... MATH/PRM-800K \n", "... ... ... \n", "18183 Can we find a formula to generate all prime nu... guanaco \n", "18184 What are some of the best university's for stu... guanaco \n", "18185 Write me a SPL (Shakespeare Programming Langua... guanaco \n", "18186 Hi. I want to make an embossed picture for my ... guanaco \n", "18187 Please implement the Timsort algorithm on Lean... guanaco \n", "\n", "[18188 rows x 4 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
inputoutputinstructiondata_source
0To find the probability of the spinner landing...A board game spinner is divided into three par...MATH/PRM-800K
1I need to choose 6 people out of 14, and the o...My school's math club has 6 boys and 8 girls. ...MATH/PRM-800K
2First we count the number of all 4-letter word...How many 4-letter words with at least one cons...MATH/PRM-800K
3She can do this if and only if at least one of...Melinda will roll two standard six-sided dice ...MATH/PRM-800K
4Think of the problem as a sequence of H's and ...Let $p$ be the probability that, in the proces...MATH/PRM-800K
...............
18183There are several formulas that generate all p...Can we find a formula to generate all prime nu...guanaco
18184Sure, here are some of the best universities:\\...What are some of the best university's for stu...guanaco
18185[Enter stage left]\\n\\nFirst Citizen: Good morr...Write me a SPL (Shakespeare Programming Langua...guanaco
18186That's a very thoughtful idea! Here are some s...Hi. I want to make an embossed picture for my ...guanaco
18187Certainly! Here's an implementation of the Tim...Please implement the Timsort algorithm on Lean...guanaco
\n", "

18188 rows × 4 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"deduped_dataset[\\\"train\\\"]\",\n \"rows\": 18188,\n \"fields\": [\n {\n \"column\": \"input\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 7,\n \"samples\": [\n \"\",\n \"Choose A, B, C or D as your solution.\",\n \"When you review a fellow student's writing, try to make your feedback clear and specific. You can use questions such as the following to guide your feedback:\\nIdeas and development: Does the writer express a clear main idea and develop it with evidence, examples, and analysis?\\nOrganization: Does the writer order ideas in a clear, logical way so that the ideas build on one another and are easy to follow?\\nSentence fluency: Do the writer's sentences vary in structure and length, or does the writing sound choppy, rambling, or repetitive?\\nWord choice: Does the writer use words accurately and precisely, avoiding excessive repetition or inappropriate language to create clear, effective, and engaging writing?\\nGrammar and mechanics: Does the writer use accurate spelling, punctuation, and grammar to create writing that is correct and easy to read?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"output\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18155,\n \"samples\": [\n \"\\ndef k_distant_indices(nums, key, k):\\n result = []\\n for i in range(len(nums)):\\n for j in range(max(0, i - k), min(i + k + 1, len(nums))):\\n if nums[j] == key:\\n result.append(i)\\n break\\n return result\\n\",\n \"Let $z = x + yi,$ where $x$ and $y$ are real numbers.\\n\\nFrom the equation $\\\\left| \\\\frac{z - 4}{z - 8} \\\\right| = 1,$ $|z - 4| = |z - 8|.$ Then\\n\\\\[|x + yi - 4| = |x + yi - 8|,\\\\]so $(x - 4)^2 + y^2 = (x - 8)^2 + y^2.$ This simplifies to $x = 6.$\\n\\nFrom the equation $\\\\left| \\\\frac{z - 12}{z - 8i} \\\\right| = \\\\frac{5}{3},$ $3|z - 12| = 5|z - 8i|.$ Then\\n\\\\[3|6 + yi - 12| = 5|6 + yi - 8i|,\\\\]so $9(36 + y^2) = 25(36 + (y - 8)^2).$ This simplifies to $16y^2 - 400y + 2176 = 0,$ which factors as $16(y - 8)(y - 17) = 0.$ Hence, $y = 8$ or $y = 17.$\\n\\nThus, the solutions in $z$ are $6 + 8i, 6 + 17i.$\",\n \"To find the number of positive divisors of a number, I need to factor it into prime factors and use a formula based on the exponents of those factors. 6! means 6 times 5 times 4 times 3 times 2 times 1, so I can factor it as 2^4 times 3^2 times 5^1. The formula for the number of divisors is to add one to each exponent and multiply them together. So in this case, the number of divisors is (4 + 1) times (2 + 1) times (1 + 1), which is 5 times 3 times 2, which is 30. Therefore, 6! has 30 positive divisors. \"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 18188,\n \"samples\": [\n \"The expression $x^2 + 18x - 63$ can be written in the form $(x - a)(x + b)$, where $a$ and $b$ are both nonnegative real numbers. What is the value of $b$?\",\n \"Implement a C++ function that checks if a given number is prime or not.\\nPLAINFORMAT\",\n \"Select the animal.\\nA: Basil has green leaves.\\nB: Grizzly bears walk and run.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"data_source\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 9,\n \"samples\": [\n \"airoboros\",\n \"ARB\",\n \"tigerbot-kaggle\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 15 } ], "source": [ "deduped_dataset[\"train\"].to_pandas()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "o_vsUAKlbR3A", "outputId": "76aa3bbc-a793-400d-cc9e-1bad066ab19a" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Number of rows in the Original Dataset 24895\n", "Number of rows in the deduped dataset 18188\n", "Number of rows removed: 6707\n" ] } ], "source": [ "# Print the number of rows in the original dataset\n", "# `dataset[\"train\"]` refers to the training split of the dataset\n", "print(\"Number of rows in the Original Dataset\", len(dataset[\"train\"]))\n", "\n", "# Print the number of rows in the deduplicated dataset\n", "# `deduped_dataset[\"train\"]` refers to the training split of the dataset after duplicates have been removed\n", "print(\"Number of rows in the deduped dataset\", len(deduped_dataset[\"train\"]))\n", "\n", "# Calculate and print the number of rows removed during the deduplication process\n", "# This is computed by subtracting the number of rows in the deduplicated dataset from the original dataset\n", "print(f\"Number of rows removed: {len(dataset['train']) - len(deduped_dataset['train'])}\")\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "2swLwl1ObUV_", "outputId": "a6b2afa6-a691-4848-d886-9c724082ecf7" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Instruction Tokens Count [85, 53, 75, 86, 82, 30, 46, 36, 101, 41, 19, 102, 34, 20, 54, 132, 104, 37, 171, 62, 23, 52, 43, 149, 184, 124, 47, 112, 60, 55, 95, 114, 59, 14, 52, 51, 153, 23, 26, 44, 21, 83, 19, 62, 55, 11, 65, 37, 100, 44, 61, 154, 88, 12, 37, 32, 191, 148, 77, 30, 25, 69, 27, 22, 115, 53, 31, 35, 86, 72, 119, 17, 130, 25, 10, 25, 61, 33, 26, 37, 93, 30, 193, 21, 11, 88, 61, 22, 19, 305, 81, 87, 73, 51, 111, 64, 66, 25, 29, 349, 126, 60, 117, 21, 40, 54, 63, 30, 74, 68, 38, 24, 65, 75, 67, 79, 110, 74, 171, 84, 372, 79, 18, 31, 22, 27, 13, 68, 120, 43, 41, 48, 665, 32, 35, 47, 97, 110, 57, 51, 17, 42, 25, 247, 45, 56, 100, 10, 10, 335, 72, 42, 27, 13, 58, 173, 10, 239, 55, 54, 122, 25, 72, 56, 10, 14, 35, 328, 41, 54, 64, 102, 57, 228, 232, 40, 57, 33, 30, 55, 38, 136, 108, 53, 66, 89, 23, 128, 123, 77, 31, 14, 107, 37, 151, 44, 144, 46, 37, 43, 195, 83, 82, 23, 322, 170, 15, 46, 78, 44, 24, 34, 203, 86, 152, 40, 49, 53, 23, 54, 33, 42, 61, 115, 55, 107, 265, 58, 18, 275, 184, 36, 66, 59, 82, 31, 88, 73, 40, 48, 37, 73, 61, 20, 108, 26, 23, 80, 53, 53, 39, 134, 37, 13, 105, 40, 26, 39, 99, 35, 172, 38, 54, 63, 17, 103, 54, 93, 65, 21, 27, 15, 33, 54, 32, 16, 31, 47, 27, 20, 37, 44, 20, 60, 26, 24, 63, 282, 59, 47, 24, 43, 55, 33, 27, 40, 41, 30, 49, 58, 208, 15, 41, 30, 34, 90, 100, 211, 45, 66, 84, 48, 90, 36, 94, 15, 29, 175, 38, 72, 67, 10, 38, 148, 71, 178, 31, 27, 277, 103, 133, 98, 58, 27, 66, 56, 19, 93, 99, 32, 49, 53, 18, 79, 52, 27, 31, 111, 56, 52, 38, 47, 16, 15, 49, 38, 79, 58, 96, 29, 22, 62, 146, 55, 52, 79, 115, 69, 218, 143, 42, 32, 60, 58, 124, 127, 39, 22, 19, 24, 30, 396, 39, 22, 128, 32, 54, 18, 56, 290, 60, 81, 195, 54, 46, 49, 65, 220, 36, 45, 106, 56, 615, 40, 98, 42, 72, 46, 12, 22, 166, 79, 21, 36, 113, 26, 27, 189, 37, 36, 114, 225, 48, 27, 45, 77, 87, 100, 69, 53, 35, 33, 64, 303, 38, 63, 67, 31, 113, 96, 266, 222, 149, 27, 53, 176, 90, 132, 21, 57, 84, 89, 53, 489, 71, 98, 22, 56, 250, 30, 19, 200, 397, 48, 88, 27, 191, 82, 58, 264, 52, 22, 43, 52, 53, 26, 78, 40, 124, 116, 64, 169, 123, 73, 73, 978, 38, 34, 52, 149, 65, 20, 69, 56, 85, 22, 20, 229, 50, 54, 66, 10, 62, 55, 11, 21, 38, 190, 44, 42, 24, 93, 204, 102, 98, 19, 128, 68, 57, 55, 77, 36, 124, 62, 142, 24, 301, 72, 15, 38, 21, 54, 585, 69, 306, 46, 39, 52, 69, 117, 65, 77, 106, 97, 90, 50, 53, 42, 50, 24, 24, 74, 26, 66, 71, 102, 59, 35, 149, 42, 60, 96, 50, 18, 33, 53, 14, 39, 53, 32, 159, 46, 207, 108, 60, 81, 129, 53, 46, 35, 30, 117, 50, 86, 23, 475, 104, 40, 37, 38, 14, 129, 60, 47, 145, 29, 14, 51, 173, 32, 70, 54, 110, 85, 49, 158, 19, 35, 26, 39, 362, 69, 124, 108, 190, 148, 31, 46, 27, 26, 153, 138, 233, 27, 25, 74, 148, 52, 24, 139, 97, 54, 131, 27, 102, 39, 11, 23, 22, 90, 28, 372, 146, 71, 289, 27, 38, 19, 80, 114, 58, 53, 39, 30, 65, 99, 72, 82, 18, 31, 75, 19, 51, 30, 71, 106, 67, 124, 110, 108, 63, 65, 40, 66, 41, 29, 37, 93, 52, 104, 201, 58, 15, 44, 64, 84, 69, 35, 69, 18, 126, 157, 44, 47, 43, 181, 11, 76, 67, 50, 81, 19, 40, 111, 61, 80, 86, 12, 55, 62, 206, 127, 33, 89, 58, 129, 45, 73, 36, 43, 83, 36, 121, 60, 56, 83, 40, 88, 39, 33, 38, 59, 281, 78, 54, 186, 47, 33, 89, 54, 52, 40, 57, 232, 110, 46, 58, 233, 42, 34, 73, 39, 99, 58, 53, 54, 51, 75, 56, 288, 45, 34, 23, 19, 47, 78, 985, 123, 241, 39, 28, 87, 20, 16, 42, 76, 143, 42, 31, 33, 62, 94, 86, 71, 55, 54, 27, 51, 26, 65, 56, 31, 47, 64, 111, 20, 77, 34, 53, 44, 89, 101, 79, 61, 126, 42, 219, 80, 34, 68, 73, 29, 74, 34, 95, 58, 46, 91, 108, 37, 56, 88, 90, 46, 96, 111, 60, 58, 58, 39, 90, 58, 38, 201, 46, 56, 31, 56, 47, 52, 55, 86, 179, 60, 55, 44, 68, 70, 55, 76, 39, 21, 55, 24, 121, 76, 49, 60, 33, 35, 61, 107, 36, 92, 29, 45, 1066, 47, 45, 113, 40, 70, 37, 46, 100, 52, 55, 34, 44, 95, 44, 49, 47, 44, 101, 75, 36, 86, 62, 67, 81, 55, 88, 37, 65, 32, 23, 98, 144, 86, 126, 51, 53, 31, 55, 116, 46, 56, 24, 34, 54, 23, 61, 32, 51, 46, 67, 44, 101, 107, 68, 54, 59, 104, 75, 47, 65, 80, 81, 97, 28, 48, 22, 237, 57, 66, 107, 32, 52, 40, 94, 92, 52, 322, 58, 50, 43, 63, 72, 32, 42, 57, 86, 125, 66, 62, 103, 37, 47, 50, 72, 86, 45, 70, 1062, 46, 38, 53, 76, 76, 56, 67, 22, 60, 79, 58, 161, 113, 46, 103, 61, 38, 34, 24, 101, 41, 37, 43, 27, 40, 35, 47, 64, 104, 34, 73, 78, 62, 192, 20, 188, 70, 49, 65, 81, 19, 64, 33, 123, 67, 51, 46, 61, 84, 38, 73, 28, 71, 86, 50, 41, 111, 59, 26, 61, 29, 99, 34, 210, 34, 26, 85, 103, 74, 55, 56, 55, 28, 44, 97, 43, 94, 69, 65, 48, 96, 25, 103, 22, 177, 45, 130, 54, 39, 110, 179, 38, 52, 82, 34, 37, 33, 46, 79, 52, 113, 61, 85, 197, 40, 49, 25, 999, 53, 112, 46, 46, 55, 66, 51, 31, 68, 97, 59, 168, 49, 322, 55, 36, 112, 51, 29, 26, 70, 17, 85, 47, 30, 97, 100, 53, 107, 25, 35, 26, 245, 43, 39, 72, 37, 83, 36, 44, 92, 80, 269, 77, 60, 48, 94, 151, 92, 56, 98, 33, 56, 88, 34, 81, 29, 34, 32, 96, 103, 24, 66, 42, 49, 86, 26, 64, 64, 40, 276, 90, 64, 46, 101, 90, 87, 106, 38, 316, 70, 117, 52, 45, 108, 85, 113, 38, 37, 93, 41, 33, 68, 51, 60, 25, 41, 63, 95, 183, 55, 54, 45, 35, 48, 68, 60, 69, 34, 48, 54, 45, 71, 81, 81, 50, 56, 36, 101, 25, 111, 35, 37, 43, 51, 25, 33, 40, 47, 53, 167, 35, 103, 63, 24, 57, 59, 52, 35, 65, 47, 45, 58, 200, 49, 75, 48, 64, 67, 23, 53, 22, 40, 46, 54, 44, 54, 84, 64, 59, 25, 78, 21, 50, 97, 47, 63, 11, 45, 254, 43, 111, 101, 64, 37, 50, 71, 87, 70, 22, 50, 197, 38, 294, 71, 28, 20, 100, 41, 86, 82, 35, 25, 47, 30, 84, 69, 52, 51, 38, 48, 49, 101, 110, 38, 132, 30, 57, 60, 86, 479, 40, 207, 29, 79, 79, 190, 63, 66, 101, 92, 51, 110, 40, 87, 68, 37, 87, 81, 64, 56, 65, 131, 55, 42, 48, 40, 114, 39, 48, 19, 81, 63, 94, 28, 50, 74, 59, 57, 43, 43, 46, 57, 113, 96, 35, 59, 270, 70, 67, 49, 31, 41, 44, 48, 70, 78, 303, 66, 70, 161, 31, 45, 72, 280, 36, 219, 77, 81, 61, 32, 50, 54, 42, 43, 189, 57, 36, 25, 58, 53, 121, 24, 33, 60, 76, 25, 37, 57, 84, 40, 22, 53, 76, 94, 60, 26, 163, 72, 35, 72, 35, 39, 55, 119, 39, 75, 39, 43, 41, 46, 38, 56, 88, 122, 53, 62, 34, 54, 131, 78, 82, 62, 91, 53, 88, 60, 30, 149, 80, 44, 30, 54, 38, 88, 77, 69, 55, 49, 48, 30, 50, 34, 72, 153, 63, 54, 105, 33, 49, 36, 34, 81, 68, 689, 32, 58, 295, 71, 107, 96, 49, 203, 62, 23, 69, 22, 51, 59, 49, 36, 91, 90, 26, 61, 98, 95, 59, 89, 44, 98, 45, 42, 62, 60, 38, 98, 40, 64, 65, 49, 37, 77, 40, 56, 71, 439, 141, 23, 137, 33, 58, 78, 62, 64, 53, 59, 1020, 388, 37, 118, 51, 74, 115, 242, 57, 100, 42, 52, 90, 32, 50, 116, 47, 90, 98, 73, 73, 33, 202, 85, 89, 30, 177, 45, 67, 47, 51, 38, 60, 56, 62, 69, 48, 73, 35, 44, 53, 42, 78, 114, 42, 43, 63, 67, 43, 145, 54, 103, 156, 62, 50, 84, 94, 63, 54, 53, 47, 171, 105, 62, 97, 41, 49, 147, 27, 39, 47, 48, 69, 671, 58, 104, 62, 85, 60, 65, 70, 69, 106, 81, 34, 259, 248, 82, 59, 41, 42, 26, 29, 49, 91, 51, 41, 161, 84, 121, 47, 41, 154, 50, 32, 43, 33, 57, 89, 62, 55, 67, 57, 48, 28, 43, 49, 118, 9, 50, 63, 52, 53, 76, 55, 93, 34, 39, 50, 153, 34, 73, 42, 45, 41, 21, 83, 66, 97, 120, 48, 104, 39, 49, 31, 57, 44, 47, 42, 73, 39, 58, 76, 93, 40, 54, 89, 78, 30, 40, 121, 33, 94, 29, 358, 982, 86, 62, 39, 64, 36, 498, 53, 93, 53, 36, 37, 99, 35, 111, 198, 145, 25, 53, 68, 76, 80, 83, 26, 80, 159, 109, 132, 40, 66, 63, 33, 45, 52, 102, 75, 52, 27, 85, 106, 22, 60, 57, 108, 14, 26, 42, 25, 109, 46, 48, 132, 93, 42, 106, 45, 32, 62, 148, 62, 56, 16, 101, 34, 42, 78, 22, 40, 97, 85, 95, 86, 86, 72, 129, 48, 91, 98, 394, 37, 53, 57, 135, 67, 45, 20, 27, 41, 94, 62, 60, 34, 78, 77, 38, 157, 29, 75, 110, 45, 41, 65, 108, 49, 34, 35, 105, 39, 32, 117, 679, 38, 71, 37, 31, 92, 81, 62, 60, 69, 37, 46, 67, 39, 36, 48, 60, 39, 55, 47, 48, 50, 48, 36, 119, 107, 59, 52, 84, 59, 68, 37, 59, 40, 17, 50, 91, 20, 198, 64, 56, 25, 36, 52, 83, 44, 125, 51, 75, 64, 47, 32, 132, 88, 39, 52, 55, 73, 80, 69, 97, 81, 58, 49, 317, 103, 70, 124, 47, 40, 32, 64, 37, 48, 48, 28, 27, 47, 61, 63, 26, 40, 137, 131, 65, 59, 23, 77, 73, 33, 139, 41, 72, 18, 178, 136, 31, 36, 48, 33, 47, 65, 61, 51, 15, 66, 48, 31, 68, 49, 124, 43, 44, 71, 33, 38, 59, 51, 67, 46, 61, 94, 71, 146, 45, 51, 27, 26, 217, 32, 27, 72, 35, 76, 74, 82, 83, 82, 55, 114, 33, 51, 48, 79, 61, 76, 45, 49, 60, 83, 153, 76, 42, 45, 150, 95, 44, 59, 55, 53, 98, 78, 66, 109, 62, 52, 133, 57, 35, 55, 33, 80, 51, 68, 72, 100, 28, 65, 109, 55, 37, 62, 88, 374, 49, 38, 125, 83, 52, 23, 53, 46, 59, 49, 36, 81, 72, 73, 65, 98, 55, 70, 83, 54, 75, 110, 52, 49, 58, 107, 155, 64, 139, 76, 141, 30, 19, 17, 77, 53, 19, 36, 61, 29, 60, 33, 28, 117, 43, 23, 41, 7, 19, 76, 98, 27, 36, 55, 26, 30, 57, 49, 23, 30, 13, 23, 43, 58, 112, 45, 20, 30, 61, 46, 66, 27, 15, 38, 12, 41, 32, 31, 76, 33, 30, 34, 42, 80, 60, 28, 60, 24, 14, 63, 48, 78, 80, 12, 69, 57, 20, 92, 15, 45, 82, 22, 101, 40, 57, 31, 103, 146, 31, 57, 35, 35, 44, 50, 52, 155, 52, 42, 49, 32, 21, 55, 15, 34, 33, 25, 38, 21, 17, 25, 20, 30, 19, 32, 78, 27, 38, 34, 27, 56, 41, 264, 109, 32, 38, 23, 79, 12, 62, 46, 65, 67, 118, 23, 55, 141, 57, 64, 42, 86, 19, 52, 41, 22, 43, 29, 190, 28, 17, 18, 50, 44, 61, 46, 52, 86, 39, 21, 22, 35, 40, 27, 77, 125, 85, 62, 75, 42, 35, 14, 21, 182, 25, 19, 57, 56, 47, 21, 113, 29, 43, 94, 70, 99, 21, 33, 37, 57, 52, 20, 32, 92, 44, 29, 35, 63, 17, 93, 24, 42, 121, 33, 123, 21, 42, 41, 16, 179, 22, 35, 17, 44, 35, 65, 44, 29, 17, 111, 39, 34, 11, 27, 124, 30, 36, 72, 12, 23, 23, 29, 71, 62, 36, 17, 14, 16, 31, 51, 148, 87, 61, 115, 78, 44, 35, 17, 31, 31, 49, 94, 24, 64, 17, 18, 47, 21, 35, 148, 67, 62, 24, 39, 23, 49, 55, 29, 89, 57, 18, 36, 13, 18, 44, 35, 41, 57, 38, 20, 40, 62, 63, 16, 195, 31, 25, 50, 87, 32, 30, 47, 97, 71, 34, 31, 22, 19, 64, 13, 48, 29, 27, 24, 56, 43, 177, 60, 20, 16, 57, 106, 13, 41, 71, 36, 104, 25, 154, 76, 46, 38, 34, 13, 49, 34, 17, 14, 42, 188, 118, 73, 51, 75, 24, 86, 79, 38, 17, 33, 27, 26, 66, 40, 39, 24, 113, 41, 71, 39, 47, 17, 16, 15, 45, 13, 24, 40, 147, 13, 39, 13, 42, 26, 17, 43, 21, 37, 30, 31, 82, 45, 15, 32, 93, 20, 28, 21, 20, 43, 92, 39, 51, 36, 61, 24, 54, 26, 18, 73, 30, 28, 61, 28, 44, 30, 76, 71, 27, 44, 34, 28, 49, 55, 48, 47, 28, 32, 27, 18, 29, 70, 29, 37, 30, 18, 50, 26, 29, 31, 37, 88, 18, 99, 83, 22, 44, 18, 13, 43, 25, 22, 27, 212, 65, 26, 72, 52, 28, 13, 51, 41, 28, 22, 50, 22, 57, 81, 24, 54, 37, 34, 48, 38, 16, 23, 118, 33, 72, 37, 29, 25, 62, 59, 84, 72, 19, 26, 17, 19, 139, 133, 41, 40, 141, 15, 79, 101, 28, 56, 160, 191, 22, 83, 15, 16, 135, 17, 146, 23, 18, 78, 34, 68, 34, 42, 22, 112, 37, 30, 97, 48, 26, 35, 17, 36, 36, 17, 28, 64, 23, 39, 65, 53, 65, 98, 31, 35, 21, 69, 32, 16, 16, 16, 28, 32, 144, 50, 13, 117, 79, 42, 66, 42, 15, 18, 32, 22, 110, 17, 76, 25, 49, 41, 29, 33, 25, 40, 11, 30, 85, 29, 22, 42, 18, 42, 24, 60, 38, 61, 40, 30, 23, 39, 55, 129, 20, 34, 47, 96, 21, 59, 101, 26, 21, 76, 27, 56, 66, 43, 27, 42, 82, 28, 80, 39, 66, 36, 43, 41, 73, 35, 58, 31, 49, 36, 53, 38, 37, 121, 108, 110, 24, 21, 24, 31, 69, 17, 93, 15, 62, 68, 57, 40, 33, 56, 25, 21, 42, 37, 16, 70, 25, 21, 60, 24, 26, 82, 23, 33, 35, 48, 40, 56, 40, 188, 59, 33, 78, 58, 57, 23, 88, 13, 41, 30, 140, 105, 50, 43, 14, 16, 98, 90, 70, 246, 18, 23, 35, 20, 50, 54, 36, 48, 77, 84, 87, 37, 49, 23, 49, 74, 45, 123, 64, 33, 66, 19, 71, 25, 34, 30, 24, 106, 62, 52, 19, 40, 38, 130, 44, 42, 93, 26, 58, 24, 49, 92, 10, 47, 51, 40, 40, 37, 58, 119, 19, 14, 48, 33, 100, 49, 229, 23, 22, 45, 19, 42, 30, 77, 15, 21, 24, 21, 25, 18, 21, 27, 26, 34, 34, 83, 55, 42, 22, 18, 74, 98, 17, 109, 15, 36, 31, 35, 30, 34, 109, 17, 15, 179, 116, 15, 16, 79, 46, 121, 20, 17, 39, 15, 65, 50, 24, 26, 13, 113, 16, 99, 88, 121, 76, 19, 62, 32, 85, 34, 40, 81, 105, 23, 43, 146, 80, 31, 37, 18, 38, 28, 91, 25, 142, 105, 86, 19, 54, 65, 37, 22, 40, 15, 28, 50, 22, 58, 30, 33, 19, 41, 50, 80, 20, 27, 52, 16, 23, 19, 24, 19, 27, 91, 42, 42, 32, 16, 65, 42, 14, 17, 20, 28, 38, 51, 25, 146, 42, 28, 55, 28, 25, 49, 51, 47, 85, 45, 31, 27, 26, 62, 21, 46, 12, 95, 39, 39, 32, 59, 79, 234, 14, 258, 65, 124, 37, 274, 30, 43, 21, 262, 71, 90, 30, 50, 18, 15, 253, 66, 62, 99, 27, 27, 36, 29, 56, 43, 342, 92, 60, 46, 50, 55, 44, 57, 42, 214, 72, 81, 119, 349, 62, 44, 86, 21, 105, 32, 72, 65, 48, 92, 122, 25, 52, 31, 79, 123, 48, 28, 83, 20, 54, 52, 84, 49, 60, 36, 83, 82, 37, 41, 354, 34, 118, 29, 17, 285, 30, 59, 25, 28, 56, 62, 44, 83, 28, 29, 63, 54, 51, 58, 70, 44, 71, 35, 87, 18, 59, 308, 179, 92, 144, 45, 88, 13, 88, 44, 258, 10, 20, 138, 40, 29, 83, 13, 67, 40, 344, 82, 119, 76, 36, 33, 313, 53, 67, 98, 97, 134, 16, 79, 82, 20, 125, 94, 56, 32, 62, 92, 180, 15, 77, 28, 39, 58, 95, 45, 23, 123, 126, 43, 65, 49, 103, 76, 74, 95, 26, 45, 131, 35, 117, 47, 10, 52, 24, 86, 114, 81, 79, 113, 179, 51, 213, 18, 59, 126, 70, 84, 188, 43, 44, 110, 65, 176, 69, 234, 68, 45, 75, 260, 31, 123, 100, 24, 95, 55, 42, 49, 88, 75, 16, 47, 77, 37, 79, 74, 51, 65, 84, 96, 75, 99, 43, 27, 11, 253, 61, 35, 42, 64, 38, 67, 34, 34, 153, 95, 66, 51, 122, 65, 53, 66, 70, 114, 48, 97, 69, 113, 54, 60, 64, 111, 24, 52, 37, 76, 36, 71, 29, 105, 73, 25, 418, 65, 76, 90, 104, 31, 66, 89, 125, 51, 40, 280, 352, 113, 65, 59, 27, 117, 97, 27, 91, 327, 48, 413, 29, 362, 51, 53, 58, 134, 434, 72, 81, 98, 107, 126, 66, 91, 46, 110, 51, 86, 93, 40, 57, 50, 50, 57, 32, 70, 24, 13, 43, 91, 53, 53, 72, 56, 99, 85, 78, 24, 57, 65, 34, 32, 62, 57, 38, 10, 48, 74, 274, 84, 59, 35, 33, 47, 69, 71, 43, 91, 76, 94, 46, 50, 93, 24, 54, 42, 23, 19, 53, 52, 32, 36, 77, 22, 70, 100, 86, 69, 134, 122, 25, 66, 51, 39, 46, 72, 73, 274, 37, 99, 40, 40, 111, 77, 35, 37, 47, 46, 538, 97, 83, 86, 29, 66, 55, 140, 500, 84, 99, 25, 96, 33, 77, 18, 95, 104, 71, 52, 179, 100, 78, 79, 30, 66, 64, 101, 31, 33, 240, 146, 57, 60, 47, 22, 56, 10, 105, 24, 186, 68, 31, 56, 76, 60, 60, 76, 54, 34, 44, 53, 80, 37, 118, 73, 37, 34, 50, 63, 36, 404, 62, 56, 87, 46, 46, 33, 37, 92, 92, 84, 152, 108, 57, 105, 147, 25, 76, 27, 65, 37, 102, 19, 63, 81, 655, 43, 57, 38, 25, 56, 102, 204, 126, 50, 53, 64, 34, 41, 52, 115, 51, 37, 17, 28, 143, 22, 85, 112, 75, 95, 19, 849, 205, 113, 76, 92, 77, 58, 22, 111, 54, 47, 68, 106, 71, 28, 76, 94, 56, 41, 35, 132, 303, 332, 75, 115, 82, 134, 66, 228, 17, 89, 35, 127, 112, 118, 61, 109, 47, 111, 56, 65, 268, 10, 95, 52, 169, 39, 74, 96, 53, 113, 118, 21, 48, 23, 175, 40, 76, 40, 44, 10, 89, 62, 72, 94, 66, 45, 32, 10, 50, 64, 41, 94, 293, 87, 149, 40, 31, 41, 52, 43, 85, 60, 11, 47, 368, 72, 99, 81, 42, 289, 47, 59, 71, 30, 60, 32, 42, 17, 48, 74, 31, 61, 154, 36, 101, 74, 43, 37, 44, 51, 80, 50, 83, 64, 59, 17, 128, 63, 40, 47, 185, 35, 67, 97, 43, 21, 35, 79, 31, 54, 46, 43, 67, 24, 85, 50, 74, 82, 45, 43, 55, 43, 53, 31, 493, 40, 68, 67, 116, 58, 89, 29, 158, 48, 86, 100, 721, 45, 49, 73, 42, 47, 204, 118, 45, 249, 14, 26, 73, 58, 87, 130, 107, 152, 44, 40, 27, 66, 57, 9, 73, 71, 69, 60, 65, 23, 59, 114, 49, 34, 74, 81, 37, 68, 70, 122, 77, 56, 50, 82, 176, 25, 47, 56, 57, 29, 32, 24, 16, 47, 108, 279, 24, 32, 14, 32, 12, 65, 43, 48, 31, 15, 77, 17, 31, 43, 71, 9, 97, 14, 49, 53, 27, 25, 54, 45, 30, 46, 67, 1104, 49, 61, 60, 60, 17, 21, 276, 50, 44, 26, 153, 18, 46, 14, 84, 38, 36, 32, 12, 32, 36, 26, 64, 83, 114, 21, 32, 62, 22, 32, 70, 16, 13, 63, 19, 34, 23, 79, 30, 11, 17, 23, 22, 58, 17, 19, 49, 87, 43, 18, 25, 47, 21, 28, 21, 11, 294, 37, 16, 32, 12, 18, 161, 10, 44, 25, 78, 750, 36, 293, 55, 9, 138, 38, 39, 31, 49, 13, 56, 290, 53, 239, 66, 42, 61, 23, 168, 59, 81, 131, 32, 50, 56, 21, 75, 14, 30, 38, 148, 29, 26, 37, 224, 46, 37, 45, 39, 31, 89, 21, 102, 55, 19, 39, 78, 87, 53, 11, 875, 17, 31, 172, 266, 55, 37, 63, 46, 24, 41, 182, 21, 66, 36, 32, 19, 17, 31, 22, 176, 16, 196, 61, 13, 33, 36, 106, 44, 17, 20, 164, 51, 30, 66, 71, 148, 163, 68, 55, 12, 21, 18, 26, 143, 43, 33, 378, 16, 37, 33, 36, 32, 174, 184, 62, 30, 87, 25, 19, 43, 155, 52, 16, 166, 62, 43, 41, 47, 25, 42, 35, 62, 32, 199, 12, 25, 40, 28, 26, 38, 62, 36, 1054, 14, 55, 19, 39, 119, 45, 41, 142, 44, 71, 23, 32, 46, 42, 14, 187, 13, 48, 61, 56, 614, 56, 35, 17, 16, 31, 25, 29, 47, 49, 20, 23, 24, 242, 62, 20, 56, 52, 31, 45, 454, 26, 23, 16, 30, 36, 198, 40, 66, 11, 14, 280, 67, 68, 344, 487, 48, 35, 36, 14, 36, 33, 32, 21, 186, 55, 59, 40, 62, 38, 50, 40, 47, 47, 162, 36, 64, 27, 109, 30, 42, 217, 24, 34, 55, 51, 69, 44, 26, 27, 30, 73, 52, 32, 27, 16, 166, 166, 10, 16, 54, 46, 44, 44, 67, 61, 50, 32, 45, 90, 52, 34, 47, 63, 90, 42, 32, 104, 74, 15, 79, 35, 187, 431, 44, 24, 57, 74, 18, 29, 51, 167, 181, 26, 175, 42, 186, 207, 177, 15, 29, 54, 11, 71, 51, 38, 286, 60, 42, 57, 35, 38, 35, 82, 46, 556, 40, 15, 41, 155, 18, 298, 13, 41, 15, 222, 51, 886, 38, 64, 70, 30, 17, 263, 15, 86, 19, 35, 34, 39, 20, 14, 45, 46, 206, 25, 17, 52, 49, 210, 203, 36, 31, 66, 78, 192, 13, 50, 25, 50, 182, 112, 87, 15, 434, 21, 19, 42, 251, 117, 45, 39, 95, 16, 41, 49, 25, 69, 77, 240, 17, 39, 40, 28, 35, 37, 255, 100, 160, 109, 376, 12, 22, 391, 56, 56, 25, 29, 27, 680, 37, 21, 22, 194, 25, 87, 116, 74, 230, 16, 18, 16, 30, 24, 582, 22, 13, 69, 52, 162, 46, 23, 23, 41, 26, 32, 29, 179, 79, 749, 175, 47, 39, 31, 23, 67, 36, 41, 77, 39, 233, 12, 13, 284, 35, 34, 536, 26, 98, 72, 15, 19, 40, 13, 59, 29, 27, 25, 45, 21, 597, 42, 47, 39, 26, 24, 15, 368, 294, 41, 37, 14, 12, 33, 66, 181, 72, 48, 353, 72, 23, 289, 39, 197, 29, 26, 46, 38, 15, 51, 44, 20, 30, 381, 20, 33, 82, 50, 87, 33, 40, 79, 254, 21, 34, 173, 16, 38, 20, 18, 15, 41, 29, 10, 78, 20, 42, 33, 15, 115, 36, 58, 28, 25, 69, 22, 15, 259, 31, 151, 18, 23, 90, 29, 30, 170, 118, 212, 67, 67, 21, 19, 58, 37, 14, 23, 50, 34, 101, 33, 18, 156, 109, 27, 41, 45, 23, 28, 55, 26, 32, 132, 69, 40, 127, 11, 128, 40, 87, 36, 50, 25, 42, 80, 45, 242, 64, 62, 14, 21, 23, 41, 12, 94, 54, 49, 69, 46, 46, 38, 30, 23, 13, 54, 19, 201, 26, 21, 177, 31, 18, 146, 62, 71, 14, 16, 18, 59, 30, 33, 28, 24, 109, 43, 165, 26, 12, 30, 34, 41, 37, 44, 564, 39, 73, 32, 30, 17, 286, 67, 35, 185, 62, 230, 14, 28, 15, 35, 58, 15, 144, 319, 22, 200, 40, 365, 20, 21, 57, 34, 71, 48, 48, 78, 112, 22, 75, 35, 21, 313, 89, 43, 19, 25, 29, 83, 25, 36, 14, 21, 39, 72, 65, 24, 15, 67, 120, 54, 55, 35, 47, 70, 16, 20, 69, 29, 23, 31, 52, 204, 177, 28, 83, 129, 24, 151, 22, 22, 32, 45, 15, 21, 16, 57, 147, 486, 39, 35, 215, 23, 22, 272, 53, 60, 38, 19, 27, 32, 104, 27, 169, 37, 748, 19, 177, 47, 17, 34, 53, 52, 36, 25, 14, 30, 20, 132, 180, 55, 50, 31, 60, 23, 41, 75, 35, 32, 30, 57, 35, 16, 23, 27, 336, 101, 82, 31, 282, 102, 23, 63, 174, 15, 51, 31, 149, 97, 35, 65, 85, 153, 92, 47, 32, 28, 215, 363, 140, 166, 14, 12, 11, 186, 93, 180, 66, 13, 44, 22, 29, 60, 26, 31, 45, 849, 199, 13, 137, 21, 79, 437, 37, 33, 45, 84, 24, 152, 294, 349, 28, 27, 32, 540, 55, 76, 312, 40, 15, 484, 55, 18, 67, 85, 36, 327, 45, 690, 33, 21, 51, 17, 38, 26, 46, 206, 108, 42, 307, 54, 26, 39, 22, 23, 31, 44, 38, 703, 191, 31, 37, 51, 27, 21, 39, 38, 32, 29, 33, 78, 30, 38, 58, 13, 370, 19, 268, 50, 37, 28, 50, 30, 50, 64, 43, 40, 24, 35, 60, 225, 75, 39, 50, 275, 668, 36, 34, 12, 381, 13, 89, 52, 61, 27, 24, 59, 31, 17, 70, 21, 39, 227, 66, 41, 63, 93, 55, 153, 15, 15, 34, 18, 89, 46, 34, 18, 19, 28, 37, 28, 22, 100, 56, 24, 21, 15, 22, 122, 46, 95, 23, 222, 21, 25, 79, 63, 29, 66, 29, 50, 17, 255, 42, 46, 33, 72, 17, 143, 40, 64, 321, 52, 17, 37, 199, 73, 299, 63, 15, 23, 27, 36, 185, 302, 19, 51, 32, 200, 48, 96, 273, 39, 63, 65, 73, 256, 214, 17, 25, 43, 25, 32, 182, 26, 35, 65, 49, 388, 126, 63, 40, 320, 81, 133, 54, 59, 13, 28, 175, 14, 17, 181, 332, 76, 78, 18, 36, 23, 25, 21, 182, 210, 12, 169, 57, 15, 21, 22, 152, 114, 21, 262, 33, 59, 57, 67, 65, 48, 13, 19, 52, 20, 31, 55, 35, 43, 158, 58, 71, 18, 49, 15, 43, 36, 20, 35, 83, 15, 36, 38, 20, 124, 30, 24, 31, 40, 128, 75, 46, 147, 80, 307, 35, 125, 25, 215, 176, 56, 10, 214, 38, 221, 24, 168, 34, 35, 148, 406, 466, 40, 153, 55, 36, 50, 104, 61, 260, 284, 324, 249, 284, 260, 160, 60, 40, 41, 211, 58, 115, 330, 214, 245, 107, 347, 68, 44, 41, 76, 61, 76, 531, 118, 286, 438, 80, 44, 48, 78, 202, 607, 39, 79, 140, 45, 53, 49, 1000, 39, 41, 113, 102, 32, 75, 329, 114, 34, 80, 159, 73, 255, 58, 56, 67, 12, 255, 158, 302, 77, 36, 110, 74, 50, 417, 426, 398, 109, 251, 66, 208, 726, 180, 137, 250, 103, 65, 11, 173, 505, 51, 119, 263, 166, 34, 271, 81, 44, 304, 1352, 93, 147, 24, 18, 112, 54, 148, 70, 71, 296, 70, 147, 65, 27, 348, 382, 176, 577, 115, 172, 89, 145, 128, 88, 153, 258, 111, 45, 602, 236, 73, 331, 151, 177, 57, 285, 353, 52, 48, 60, 44, 148, 24, 55, 143, 305, 75, 35, 156, 54, 265, 52, 193, 287, 136, 268, 167, 57, 295, 11, 51, 83, 561, 37, 11, 319, 268, 63, 113, 399, 80, 48, 267, 108, 153, 45, 108, 49, 62, 107, 105, 98, 172, 42, 82, 416, 56, 53, 100, 264, 298, 69, 112, 78, 153, 90, 56, 131, 51, 87, 150, 76, 213, 91, 176, 84, 440, 447, 204, 10, 161, 38, 344, 46, 120, 167, 62, 251, 181, 189, 91, 38, 129, 110, 411, 49, 69, 84, 125, 43, 52, 89, 151, 146, 257, 190, 258, 114, 34, 63, 31, 67, 104, 155, 46, 233, 117, 82, 330, 40, 142, 259, 63, 344, 49, 43, 105, 66, 95, 142, 30, 201, 345, 258, 470, 53, 81, 24, 53, 55, 132, 617, 228, 37, 50, 207, 56, 89, 44, 20, 102, 182, 64, 211, 379, 53, 214, 385, 39, 102, 60, 155, 66, 123, 198, 50, 45, 415, 44, 81, 174, 168, 142, 65, 68, 36, 84, 251, 47, 159, 431, 190, 88, 45, 352, 332, 114, 56, 169, 56, 251, 72, 262, 123, 126, 85, 47, 49, 48, 25, 303, 96, 9, 57, 24, 101, 70, 108, 378, 208, 164, 54, 429, 362, 51, 117, 102, 76, 138, 239, 45, 313, 55, 222, 180, 325, 34, 71, 96, 87, 37, 249, 39, 202, 288, 59, 265, 221, 40, 76, 354, 78, 105, 101, 64, 160, 307, 470, 130, 72, 60, 45, 85, 147, 165, 73, 307, 135, 86, 431, 80, 253, 111, 363, 169, 238, 133, 84, 141, 142, 251, 226, 12, 335, 134, 152, 322, 259, 27, 128, 66, 198, 335, 50, 352, 392, 55, 360, 133, 42, 47, 78, 36, 23, 183, 35, 156, 187, 252, 94, 235, 46, 345, 308, 243, 11, 475, 279, 284, 397, 62, 115, 354, 148, 108, 75, 90, 47, 42, 350, 290, 43, 292, 410, 239, 99, 151, 220, 53, 67, 112, 64, 297, 286, 104, 38, 172, 83, 83, 39, 62, 102, 166, 68, 93, 79, 131, 84, 45, 253, 96, 210, 115, 80, 63, 269, 224, 127, 68, 94, 35, 11, 292, 96, 142, 213, 98, 143, 53, 302, 406, 81, 365, 43, 67, 152, 37, 50, 124, 197, 123, 111, 122, 47, 62, 213, 253, 1200, 260, 46, 343, 300, 258, 47, 51, 88, 161, 274, 64, 106, 45, 112, 56, 253, 41, 49, 65, 200, 49, 189, 179, 185, 33, 85, 238, 76, 94, 37, 50, 10, 195, 331, 49, 92, 221, 74, 102, 433, 49, 219, 171, 159, 299, 45, 391, 33, 338, 160, 112, 65, 284, 11, 152, 370, 101, 80, 79, 371, 265, 41, 49, 31, 114, 146, 49, 49, 11, 330, 54, 185, 406, 206, 272, 222, 358, 156, 49, 103, 214, 239, 45, 42, 150, 11, 213, 57, 177, 292, 281, 73, 61, 41, 186, 55, 304, 251, 316, 179, 43, 378, 58, 81, 61, 37, 261, 196, 63, 58, 83, 515, 88, 187, 46, 114, 125, 340, 58, 57, 76, 150, 72, 94, 11, 708, 116, 240, 34, 94, 312, 50, 95, 19, 10, 304, 57, 466, 42, 42, 175, 168, 130, 64, 128, 87, 641, 22, 45, 111, 287, 89, 353, 67, 9, 252, 38, 144, 148, 127, 196, 74, 406, 32, 100, 219, 37, 91, 54, 153, 69, 459, 255, 121, 267, 110, 138, 226, 150, 52, 65, 58, 61, 209, 93, 43, 215, 131, 321, 568, 274, 206, 115, 36, 100, 26, 51, 171, 317, 44, 55, 144, 140, 53, 52, 152, 72, 471, 130, 219, 96, 119, 9, 137, 51, 58, 52, 582, 241, 246, 133, 45, 122, 47, 248, 77, 102, 226, 136, 11, 106, 123, 28, 64, 221, 53, 340, 94, 54, 44, 61, 83, 51, 305, 138, 112, 11, 64, 43, 46, 83, 167, 92, 396, 222, 50, 261, 84, 46, 311, 74, 276, 285, 526, 146, 102, 96, 337, 85, 57, 50, 44, 147, 144, 271, 115, 162, 172, 45, 197, 53, 65, 159, 179, 338, 39, 48, 72, 61, 271, 106, 48, 77, 310, 308, 300, 46, 83, 78, 27, 37, 68, 70, 28, 36, 15, 33, 27, 62, 30, 146, 24, 59, 35, 27, 30, 58, 27, 16, 531, 25, 56, 33, 158, 83, 53, 31, 59, 49, 18, 30, 32, 41, 91, 60, 24, 91, 36, 28, 21, 36, 36, 26, 206, 75, 30, 41, 21, 59, 20, 44, 36, 27, 37, 50, 28, 17, 59, 21, 157, 25, 63, 70, 21, 49, 35, 26, 43, 16, 47, 48, 25, 24, 38, 101, 29, 35, 14, 70, 39, 67, 30, 16, 29, 46, 41, 38, 34, 40, 31, 30, 76, 123, 25, 42, 47, 81, 28, 36, 38, 17, 16, 66, 41, 80, 45, 27, 28, 33, 14, 30, 34, 23, 76, 67, 31, 60, 42, 70, 92, 48, 17, 52, 15, 24, 90, 180, 36, 117, 49, 37, 28, 61, 50, 56, 93, 35, 48, 37, 92, 73, 23, 59, 43, 67, 101, 41, 41, 120, 20, 57, 29, 32, 41, 81, 63, 41, 29, 25, 30, 482, 44, 58, 29, 23, 45, 57, 42, 47, 27, 26, 44, 66, 37, 58, 25, 29, 22, 24, 82, 23, 25, 25, 17, 46, 51, 27, 52, 63, 53, 34, 60, 52, 32, 11, 72, 30, 134, 109, 43, 9, 21, 75, 41, 21, 38, 28, 34, 25, 58, 49, 42, 42, 37, 40, 78, 35, 45, 40, 64, 21, 28, 45, 31, 190, 28, 35, 84, 170, 29, 28, 76, 26, 35, 38, 89, 62, 69, 35, 44, 56, 48, 32, 22, 16, 29, 75, 36, 36, 26, 34, 71, 38, 33, 51, 11, 34, 76, 43, 123, 46, 32, 41, 30, 46, 13, 22, 30, 30, 31, 81, 34, 77, 29, 53, 40, 28, 64, 79, 51, 49, 383, 39, 48, 60, 60, 34, 37, 21, 29, 29, 31, 46, 33, 21, 65, 40, 38, 122, 30, 37, 53, 67, 97, 23, 41, 74, 59, 30, 22, 298, 54, 52, 59, 505, 65, 55, 73, 41, 41, 25, 51, 16, 51, 107, 84, 33, 29, 85, 46, 47, 25, 47, 34, 26, 47, 28, 23, 15, 57, 47, 42, 14, 75, 24, 31, 80, 25, 55, 18, 49, 20, 40, 74, 64, 25, 41, 590, 88, 71, 41, 45, 97, 74, 19, 31, 29, 26, 15, 20, 73, 139, 32, 47, 38, 41, 25, 516, 51, 38, 10, 95, 34, 431, 49, 213, 16, 31, 67, 25, 55, 35, 75, 19, 25, 32, 73, 29, 39, 47, 67, 49, 29, 54, 35, 16, 62, 44, 47, 53, 108, 22, 102, 63, 107, 62, 23, 15, 72, 67, 42, 19, 43, 26, 43, 65, 34, 32, 39, 24, 39, 33, 31, 70, 14, 41, 27, 68, 73, 115, 28, 96, 69, 34, 22, 51, 75, 57, 33, 18, 40, 26, 41, 115, 68, 42, 46, 43, 31, 85, 82, 56, 121, 13, 32, 34, 39, 38, 57, 50, 87, 45, 57, 30, 58, 66, 51, 83, 41, 50, 74, 32, 57, 37, 28, 32, 57, 36, 14, 35, 32, 11, 18, 51, 57, 31, 27, 34, 60, 25, 88, 37, 120, 80, 48, 110, 47, 40, 28, 32, 32, 66, 199, 85, 37, 37, 26, 71, 64, 37, 64, 61, 16, 32, 19, 112, 124, 55, 32, 105, 78, 55, 37, 101, 308, 78, 57, 113, 33, 28, 40, 51, 57, 34, 16, 26, 33, 15, 34, 27, 33, 36, 19, 45, 19, 62, 70, 20, 38, 52, 21, 78, 27, 63, 62, 87, 24, 52, 20, 34, 35, 60, 33, 50, 75, 52, 45, 35, 45, 22, 32, 55, 26, 35, 45, 21, 72, 25, 73, 49, 28, 37, 59, 86, 25, 53, 54, 345, 49, 54, 38, 877, 31, 22, 23, 16, 60, 42, 98, 50, 49, 22, 91, 47, 23, 33, 45, 18, 45, 38, 19, 56, 102, 97, 58, 33, 41, 39, 27, 44, 33, 91, 39, 47, 64, 41, 41, 16, 27, 38, 234, 20, 45, 96, 11, 860, 61, 60, 43, 42, 24, 30, 37, 36, 69, 53, 32, 11, 57, 45, 37, 110, 37, 53, 972, 26, 57, 59, 55, 16, 25, 70, 18, 47, 44, 42, 26, 25, 17, 30, 33, 28, 48, 56, 48, 21, 28, 66, 43, 44, 37, 43, 72, 63, 35, 31, 25, 68, 48, 43, 58, 43, 80, 92, 32, 57, 49, 88, 26, 28, 94, 66, 30, 34, 33, 27, 34, 492, 25, 38, 58, 35, 34, 15, 33, 77, 71, 18, 22, 33, 55, 63, 127, 74, 42, 16, 61, 44, 25, 41, 63, 41, 78, 53, 54, 114, 13, 97, 41, 60, 27, 48, 33, 12, 40, 54, 74, 90, 38, 35, 42, 74, 33, 50, 39, 72, 26, 41, 25, 23, 75, 26, 32, 31, 77, 37, 55, 56, 71, 27, 61, 26, 56, 85, 116, 37, 47, 61, 25, 18, 23, 31, 30, 57, 129, 38, 29, 43, 58, 63, 73, 38, 37, 22, 27, 23, 70, 33, 78, 85, 27, 36, 33, 49, 36, 23, 21, 86, 17, 21, 52, 147, 42, 26, 21, 22, 26, 69, 894, 84, 32, 12, 95, 19, 32, 54, 73, 84, 21, 25, 17, 32, 75, 20, 24, 34, 38, 41, 21, 38, 27, 31, 32, 32, 92, 73, 45, 36, 21, 885, 24, 65, 51, 48, 21, 15, 41, 46, 16, 63, 33, 37, 56, 33, 46, 28, 34, 46, 45, 32, 39, 31, 39, 36, 26, 33, 93, 49, 31, 16, 60, 57, 53, 74, 25, 38, 23, 15, 50, 73, 27, 19, 49, 30, 101, 35, 58, 65, 14, 30, 39, 13, 87, 59, 58, 34, 54, 78, 29, 90, 34, 26, 60, 33, 32, 27, 28, 32, 70, 42, 30, 48, 40, 32, 38, 100, 15, 30, 56, 41, 40, 39, 19, 23, 59, 184, 39, 37, 36, 32, 67, 855, 30, 34, 25, 29, 51, 19, 26, 91, 65, 27, 53, 29, 32, 37, 22, 19, 62, 43, 50, 44, 72, 21, 53, 464, 96, 35, 39, 61, 17, 79, 44, 25, 32, 29, 114, 33, 40, 60, 85, 54, 37, 49, 32, 45, 42, 28, 44, 43, 16, 47, 50, 20, 42, 39, 40, 25, 36, 57, 66, 40, 52, 35, 29, 49, 43, 377, 17, 44, 15, 58, 17, 56, 19, 24, 91, 60, 41, 32, 20, 23, 47, 38, 48, 19, 30, 91, 29, 25, 127, 24, 35, 46, 53, 12, 31, 31, 47, 50, 36, 71, 102, 45, 34, 45, 42, 27, 70, 19, 52, 21, 25, 24, 192, 54, 44, 474, 20, 64, 28, 49, 33, 240, 14, 40, 25, 50, 63, 546, 33, 60, 73, 15, 49, 16, 24, 87, 48, 54, 44, 41, 289, 91, 40, 48, 58, 68, 33, 32, 481, 84, 82, 56, 62, 43, 16, 23, 38, 77, 27, 52, 79, 27, 55, 46, 21, 25, 63, 76, 46, 34, 73, 51, 44, 17, 21, 12, 20, 34, 34, 34, 34, 24, 37, 39, 29, 12, 42, 39, 51, 67, 47, 46, 50, 46, 40, 30, 25, 31, 45, 81, 41, 75, 39, 43, 40, 41, 45, 26, 53, 14, 31, 35, 61, 19, 31, 897, 42, 36, 44, 46, 25, 17, 39, 59, 77, 45, 313, 59, 27, 38, 44, 30, 29, 32, 26, 26, 48, 30, 55, 10, 24, 59, 27, 41, 56, 41, 31, 29, 11, 28, 81, 40, 72, 93, 28, 40, 38, 51, 24, 37, 12, 47, 39, 33, 29, 43, 17, 62, 19, 38, 69, 17, 40, 44, 62, 22, 23, 37, 25, 46, 25, 42, 104, 40, 30, 27, 23, 35, 36, 18, 59, 37, 34, 46, 27, 21, 22, 44, 60, 186, 37, 44, 17, 21, 70, 33, 28, 57, 50, 22, 39, 33, 39, 69, 27, 46, 32, 31, 40, 17, 12, 22, 58, 894, 51, 81, 19, 52, 31, 105, 33, 20, 117, 41, 36, 32, 42, 34, 59, 29, 18, 11, 31, 39, 34, 25, 76, 56, 66, 29, 80, 27, 48, 25, 15, 34, 36, 50, 505, 40, 45, 69, 29, 12, 24, 33, 16, 28, 65, 11, 29, 66, 39, 29, 43, 25, 35, 68, 71, 26, 28, 19, 25, 42, 23, 10, 26, 25, 324, 32, 72, 63, 22, 54, 75, 52, 58, 22, 53, 28, 28, 32, 47, 59, 22, 37, 24, 47, 18, 54, 19, 19, 58, 17, 34, 23, 23, 42, 194, 21, 51, 29, 32, 66, 332, 44, 24, 49, 48, 30, 37, 29, 39, 25, 34, 65, 106, 45, 51, 67, 27, 38, 53, 65, 88, 29, 29, 81, 46, 26, 47, 50, 52, 51, 35, 40, 13, 36, 30, 79, 85, 31, 26, 26, 106, 65, 39, 34, 30, 12, 54, 32, 46, 22, 21, 35, 54, 34, 868, 38, 266, 91, 84, 40, 41, 73, 78, 34, 60, 28, 69, 34, 35, 23, 16, 26, 87, 60, 39, 58, 47, 18, 31, 69, 42, 92, 25, 44, 42, 45, 27, 26, 51, 43, 54, 51, 21, 44, 46, 31, 23, 25, 40, 38, 20, 15, 65, 44, 96, 32, 19, 122, 50, 20, 72, 37, 49, 33, 18, 50, 19, 20, 31, 30, 34, 30, 32, 34, 47, 35, 30, 26, 56, 35, 38, 39, 44, 25, 42, 13, 32, 28, 53, 43, 61, 60, 32, 94, 60, 46, 34, 35, 112, 34, 38, 54, 59, 62, 37, 52, 113, 39, 24, 59, 13, 23, 47, 27, 26, 18, 38, 41, 78, 28, 56, 17, 44, 56, 57, 74, 91, 22, 35, 36, 34, 37, 31, 153, 30, 33, 26, 29, 19, 200, 33, 30, 52, 61, 28, 79, 38, 42, 115, 34, 85, 45, 53, 110, 41, 26, 57, 66, 89, 39, 19, 57, 162, 54, 35, 56, 63, 47, 57, 38, 188, 26, 36, 595, 48, 39, 67, 33, 46, 23, 51, 35, 274, 31, 19, 58, 16, 95, 64, 63, 55, 188, 50, 144, 86, 37, 28, 15, 80, 77, 66, 61, 39, 117, 50, 11, 53, 46, 78, 26, 47, 17, 408, 44, 232, 23, 687, 31, 39, 23, 30, 52, 20, 97, 164, 75, 75, 199, 30, 71, 37, 48, 51, 28, 27, 69, 508, 77, 60, 52, 32, 490, 30, 27, 61, 37, 51, 52, 67, 83, 71, 18, 69, 37, 20, 65, 51, 29, 27, 55, 44, 76, 84, 62, 147, 37, 54, 43, 24, 62, 23, 94, 39, 327, 62, 42, 12, 77, 115, 20, 65, 20, 394, 105, 47, 52, 35, 20, 141, 70, 21, 71, 69, 74, 54, 149, 49, 18, 31, 68, 46, 59, 50, 25, 61, 135, 57, 66, 63, 60, 42, 36, 26, 41, 81, 48, 43, 56, 38, 16, 55, 46, 32, 1442, 32, 40, 98, 85, 51, 58, 37, 60, 50, 11, 76, 27, 310, 148, 735, 275, 102, 50, 46, 18, 52, 151, 44, 26, 50, 21, 27, 40, 41, 96, 48, 27, 45, 105, 87, 42, 41, 33, 32, 22, 41, 52, 24, 72, 24, 77, 55, 43, 58, 31, 19, 25, 43, 71, 120, 51, 24, 44, 34, 59, 40, 49, 50, 90, 170, 28, 44, 663, 74, 64, 69, 64, 18, 60, 15, 35, 45, 72, 50, 76, 21, 34, 53, 137, 25, 34, 77, 49, 36, 58, 17, 17, 42, 135, 71, 48, 72, 81, 59, 303, 72, 81, 28, 153, 33, 179, 129, 293, 34, 331, 21, 159, 181, 20, 54, 158, 60, 31, 52, 38, 144, 20, 116, 61, 23, 50, 95, 131, 62, 200, 235, 36, 69, 58, 26, 39, 18, 148, 62, 113, 44, 111, 48, 29, 35, 36, 26, 46, 20, 89, 51, 17, 33, 160, 46, 18, 32, 33, 62, 14, 80, 149, 47, 52, 76, 261, 26, 70, 157, 31, 18, 46, 36, 12, 45, 53, 54, 74, 65, 38, 199, 46, 38, 191, 48, 38, 51, 30, 50, 33, 40, 18, 62, 58, 51, 52, 35, 20, 88, 30, 54, 45, 49, 86, 31, 38, 43, 40, 67, 13, 65, 34, 229, 198, 52, 96, 122, 67, 368, 102, 111, 61, 52, 44, 106, 69, 80, 30, 44, 57, 226, 56, 44, 35, 191, 26, 35, 63, 30, 42, 60, 50, 164, 29, 52, 19, 55, 32, 57, 41, 26, 17, 21, 55, 14, 44, 57, 30, 42, 69, 30, 25, 55, 144, 94, 55, 54, 49, 50, 55, 24, 47, 33, 612, 41, 61, 198, 21, 17, 48, 49, 36, 79, 86, 43, 47, 102, 55, 48, 35, 34, 66, 82, 44, 141, 113, 38, 52, 11, 54, 76, 66, 78, 59, 33, 56, 126, 89, 64, 114, 81, 88, 37, 273, 92, 37, 34, 100, 39, 47, 317, 84, 66, 42, 93, 153, 22, 27, 49, 42, 35, 61, 56, 38, 63, 40, 44, 61, 23, 21, 59, 46, 114, 42, 52, 25, 43, 93, 57, 50, 48, 64, 35, 78, 50, 70, 32, 34, 13, 71, 77, 113, 74, 78, 45, 86, 28, 32, 36, 42, 40, 36, 106, 39, 91, 183, 79, 58, 57, 63, 35, 48, 143, 92, 30, 53, 50, 34, 62, 165, 69, 65, 41, 58, 86, 103, 80, 136, 183, 75, 67, 66, 48, 170, 59, 59, 47, 81, 48, 55, 36, 39, 101, 121, 24, 58, 59, 36, 228, 30, 53, 80, 82, 56, 112, 56, 35, 72, 78, 88, 81, 44, 47, 53, 81, 29, 29, 50, 73, 42, 47, 90, 36, 50, 104, 105, 1002, 778, 92, 40, 71, 36, 120, 66, 105, 103, 38, 109, 411, 26, 53, 62, 78, 68, 116, 35, 28, 39, 423, 42, 56, 87, 85, 106, 51, 46, 36, 41, 116, 56, 31, 56, 30, 43, 46, 75, 81, 63, 47, 63, 55, 42, 158, 53, 74, 43, 81, 41, 36, 51, 78, 76, 67, 1064, 31, 83, 22, 33, 84, 65, 25, 48, 31, 62, 52, 131, 26, 79, 73, 79, 72, 41, 58, 51, 36, 56, 50, 64, 58, 44, 130, 60, 68, 80, 42, 138, 84, 97, 95, 67, 90, 60, 211, 38, 58, 34, 78, 56, 114, 270, 39, 47, 31, 70, 80, 64, 46, 59, 76, 37, 30, 39, 51, 82, 40, 272, 42, 47, 104, 117, 60, 64, 76, 60, 51, 38, 70, 59, 67, 84, 64, 53, 120, 41, 38, 29, 109, 33, 108, 57, 37, 28, 74, 85, 113, 25, 36, 84, 352, 25, 129, 58, 299, 51, 54, 121, 39, 42, 49, 64, 627, 62, 200, 70, 115, 138, 125, 77, 85, 54, 33, 59, 58, 93, 40, 56, 111, 48, 48, 58, 76, 82, 28, 47, 62, 56, 82, 26, 27, 44, 170, 16, 70, 104, 123, 55, 80, 34, 26, 33, 47, 89, 79, 49, 67, 39, 132, 32, 61, 65, 75, 57, 78, 69, 46, 34, 49, 46, 24, 48, 46, 52, 16, 66, 88, 134, 18, 189, 90, 48, 48, 64, 52, 61, 55, 80, 44, 46, 39, 110, 48, 87, 101, 72, 144, 78, 193, 265, 35, 214, 44, 103, 20, 53, 53, 57, 60, 32, 43, 40, 131, 30, 44, 140, 84, 36, 43, 290, 89, 43, 179, 45, 46, 170, 61, 31, 53, 58, 33, 100, 118, 99, 30, 296, 35, 54, 64, 81, 68, 426, 47, 70, 70, 20, 22, 52, 34, 251, 37, 60, 69, 58, 37, 38, 84, 61, 41, 123, 64, 87, 54, 112, 65, 26, 72, 48, 54, 42, 67, 153, 88, 20, 68, 29, 175, 52, 58, 38, 70, 46, 82, 53, 66, 37, 104, 40, 40, 63, 67, 69, 67, 44, 114, 86, 30, 47, 125, 68, 128, 97, 265, 74, 47, 54, 47, 121, 97, 27, 27, 75, 64, 126, 21, 57, 39, 54, 108, 89, 34, 55, 104, 58, 77, 139, 45, 102, 83, 22, 55, 45, 75, 149, 80, 126, 37, 18, 68, 103, 74, 34, 55, 18, 114, 45, 21, 90, 31, 68, 41, 58, 95, 49, 48, 40, 42, 27, 74, 55, 44, 212, 59, 91, 57, 59, 106, 82, 64, 187, 129, 64, 107, 65, 26, 57, 110, 107, 79, 69, 108, 70, 48, 63, 87, 56, 39, 41, 86, 56, 93, 77, 65, 73, 53, 23, 43, 49, 68, 68, 54, 38, 48, 49, 54, 127, 112, 103, 350, 26, 22, 64, 46, 70, 10, 69, 47, 53, 91, 52, 111, 80, 85, 81, 74, 66, 47, 38, 44, 14, 65, 66, 45, 26, 32, 56, 81, 36, 66, 60, 38, 17, 93, 164, 51, 73, 49, 30, 47, 145, 92, 154, 15, 71, 65, 53, 113, 37, 48, 104, 49, 55, 27, 42, 41, 58, 49, 106, 267, 37, 64, 59, 76, 73, 22, 50, 33, 59, 34, 31, 56, 54, 79, 42, 22, 38, 53, 20, 69, 301, 110, 19, 268, 39, 54, 79, 75, 66, 38, 24, 27, 681, 47, 107, 91, 25, 50, 48, 109, 73, 61, 62, 47, 105, 56, 77, 51, 93, 44, 70, 63, 23, 77, 107, 39, 58, 40, 35, 86, 69, 202, 46, 24, 63, 88, 65, 95, 23, 47, 43, 37, 94, 43, 122, 108, 41, 41, 37, 79, 49, 49, 32, 54, 39, 38, 50, 91, 33, 86, 40, 48, 21, 73, 75, 61, 84, 133, 72, 41, 87, 131, 53, 221, 45, 53, 72, 78, 361, 64, 67, 78, 185, 47, 350, 120, 49, 15, 55, 49, 18, 42, 98, 65, 43, 52, 23, 54, 81, 60, 73, 26, 50, 46, 73, 58, 55, 75, 38, 90, 65, 102, 72, 92, 18, 62, 40, 46, 44, 89, 86, 23, 41, 15, 24, 25, 19, 74, 44, 33, 23, 196, 50, 16, 78, 62, 31, 48, 73, 20, 26, 18, 22, 33, 65, 18, 35, 55, 38, 43, 53, 52, 52, 30, 97, 21, 79, 18, 57, 17, 31, 28, 26, 55, 21, 44, 35, 60, 101, 55, 47, 24, 21, 23, 44, 21, 73, 51, 82, 32, 31, 22, 15, 26, 39, 54, 83, 15, 93, 23, 41, 40, 70, 43, 30, 26, 19, 41, 47, 38, 46, 25, 74, 38, 83, 44, 20, 69, 29, 19, 44, 39, 61, 14, 37, 45, 57, 76, 17, 20, 36, 20, 22, 49, 64, 16, 28, 26, 20, 27, 37, 59, 33, 30, 81, 43, 46, 21, 86, 56, 68, 24, 34, 23, 68, 45, 20, 40, 68, 23, 26, 49, 39, 36, 52, 81, 80, 56, 51, 29, 64, 35, 93, 115, 43, 19, 114, 64, 92, 25, 39, 42, 39, 10, 93, 167, 102, 63, 45, 26, 100, 26, 25, 14, 38, 84, 57, 32, 115, 26, 33, 57, 37, 17, 51, 72, 63, 69, 47, 41, 42, 56, 20, 33, 22, 27, 36, 24, 104, 82, 56, 130, 120, 30, 71, 38, 29, 28, 32, 16, 34, 63, 32, 44, 26, 33, 21, 26, 50, 32, 16, 83, 26, 42, 117, 19, 30, 42, 46, 46, 32, 62, 35, 39, 78, 41, 32, 16, 16, 71, 22, 34, 120, 33, 70, 19, 139, 59, 24, 20, 31, 71, 112, 36, 55, 50, 73, 85, 34, 25, 22, 24, 103, 38, 23, 36, 38, 43, 42, 36, 17, 37, 41, 31, 70, 57, 63, 63, 42, 73, 40, 25, 32, 31, 20, 19, 38, 24, 25, 60, 45, 27, 15, 29, 31, 26, 47, 62, 41, 25, 18, 29, 20, 33, 35, 55, 31, 28, 53, 76, 30, 23, 42, 19, 52, 29, 43, 24, 38, 32, 49, 27, 97, 43, 24, 46, 30, 177, 22, 55, 11, 101, 156, 32, 74, 67, 26, 96, 13, 55, 21, 81, 99, 45, 35, 90, 36, 22, 18, 24, 19, 24, 79, 31, 28, 83, 38, 70, 38, 38, 63, 23, 18, 33, 43, 35, 55, 42, 156, 88, 26, 31, 23, 37, 121, 94, 40, 34, 17, 22, 18, 22, 23, 39, 16, 26, 41, 35, 34, 30, 66, 106, 26, 34, 107, 49, 22, 38, 40, 27, 37, 49, 52, 60, 16, 73, 18, 18, 38, 18, 34, 59, 45, 15, 46, 42, 49, 49, 73, 27, 54, 27, 49, 64, 63, 68, 44, 15, 59, 30, 110, 27, 25, 38, 69, 46, 37, 63, 37, 28, 47, 38, 40, 89, 67, 81, 41, 17, 33, 37, 59, 18, 61, 29, 52, 59, 15, 23, 53, 27, 95, 49, 52, 36, 239, 11, 14, 21, 17, 19, 38, 30, 40, 36, 102, 68, 31, 114, 74, 29, 64, 35, 76, 37, 17, 40, 117, 23, 35, 21, 47, 47, 60, 33, 29, 18, 110, 55, 54, 105, 30, 120, 30, 20, 29, 35, 36, 25, 23, 84, 74, 65, 43, 34, 87, 76, 45, 60, 180, 60, 121, 55, 95, 36, 34, 165, 86, 78, 77, 44, 37, 55, 50, 50, 178, 32, 24, 38, 29, 211, 38, 49, 34, 29, 63, 33, 61, 36, 51, 190, 65, 96, 70, 121, 187, 91, 137, 61, 107, 50, 12, 35, 76, 31, 41, 59, 97, 88, 43, 65, 47, 94, 39, 42, 110, 32, 49, 28, 43, 109, 33, 35, 45, 63, 126, 17, 35, 96, 40, 60, 13, 41, 58, 138, 45, 84, 23, 91, 28, 301, 57, 66, 116, 88, 61, 43, 49, 35, 112, 79, 63, 114, 41, 51, 55, 152, 87, 62, 159, 28, 148, 10, 48, 49, 39, 22, 84, 335, 55, 47, 238, 39, 77, 104, 67, 65, 87, 74, 59, 94, 40, 94, 35, 213, 31, 56, 340, 67, 64, 149, 49, 54, 48, 59, 290, 57, 72, 46, 84, 77, 42, 59, 62, 48, 53, 55, 163, 18, 9, 77, 58, 109, 48, 85, 67, 46, 28, 62, 68, 47, 15, 89, 301, 207, 169, 12, 78, 739, 30, 35, 49, 36, 100, 115, 22, 68, 40, 40, 42, 31, 59, 96, 82, 380, 52, 47, 61, 64, 64, 100, 21, 106, 104, 87, 78, 77, 31, 50, 45, 11, 84, 106, 138, 86, 17, 59, 104, 89, 51, 45, 40, 82, 210, 113, 50, 226, 72, 39, 200, 66, 61, 73, 52, 71, 112, 61, 64, 50, 72, 42, 133, 31, 66, 59, 101, 43, 51, 88, 65, 38, 39, 45, 25, 139, 91, 75, 28, 231, 79, 59, 31, 13, 65, 47, 92, 83, 91, 78, 92, 62, 31, 113, 26, 85, 72, 28, 106, 78, 29, 108, 18, 44, 62, 131, 41, 123, 38, 129, 50, 43, 53, 105, 96, 117, 39, 11, 85, 60, 76, 33, 38, 25, 124, 38, 45, 66, 97, 51, 40, 67, 38, 11, 40, 80, 204, 62, 194, 82, 125, 52, 83, 31, 68, 44, 11, 33, 118, 9, 28, 35, 43, 103, 68, 94, 79, 86, 29, 64, 236, 30, 39, 78, 69, 36, 83, 32, 41, 133, 23, 140, 34, 85, 61, 80, 37, 98, 84, 146, 23, 61, 85, 158, 38, 74, 33, 103, 231, 72, 37, 22, 39, 79, 41, 117, 60, 47, 67, 24, 52, 67, 52, 66, 114, 36, 141, 31, 55, 312, 50, 74, 45, 33, 103, 33, 21, 77, 101, 10, 35, 99, 40, 49, 88, 49, 95, 236, 122, 47, 41, 19, 74, 43, 61, 43, 57, 85, 64, 85, 96, 55, 33, 100, 104, 62, 82, 29, 11, 56, 24, 228, 32, 78, 41, 206, 112, 52, 104, 50, 155, 15, 31, 35, 86, 23, 26, 20, 67, 23, 36, 17, 69, 185, 34, 17, 49, 58, 27, 36, 21, 46, 15, 23, 54, 488, 54, 50, 62, 28, 51, 22, 19, 40, 80, 38, 50, 15, 56, 38, 38, 37, 42, 61, 47, 18, 44, 51, 224, 165, 27, 11, 49, 19, 112, 272, 18, 19, 25, 21, 69, 10, 74, 73, 49, 49, 59, 83, 16, 69, 35, 259, 23, 84, 19, 37, 16, 250, 36, 42, 101, 26, 19, 221, 17, 22, 112, 13, 182, 38, 14, 464, 21, 24, 89, 55, 77, 38, 42, 16, 35, 26, 56, 882, 39, 54, 42, 36, 33, 78, 58, 33, 57, 13, 70, 32, 28, 44, 23, 23, 42, 49, 46, 19, 25, 21, 13, 19, 11, 43, 18, 35, 64, 248, 24, 78, 22, 13, 104, 132, 12, 13, 28, 284, 54, 32, 35, 12, 28, 40, 14, 19, 125, 26, 24, 66, 27, 37, 42, 115, 14, 21, 45, 13, 37, 18, 56, 23, 269, 70, 202, 16, 54, 59, 21, 103, 64, 277, 36, 20, 27, 18, 56, 208, 21, 139, 18, 93, 16, 41, 37, 131, 46, 239, 406, 20, 28, 16, 13, 91, 12, 28, 156, 17, 35, 185, 16, 36, 165, 43, 180, 59, 339, 84, 19, 41, 22, 144, 25, 25, 47, 65, 42, 20, 33, 22, 47, 51, 28, 87, 180, 40, 74, 36, 35, 64, 94, 40, 13, 13, 206, 45, 38, 94, 31, 69, 200, 18, 230, 66, 196, 48, 19, 15, 67, 30, 78, 58, 42, 122, 61, 135, 30, 41, 43, 138, 46, 59, 51, 26, 42, 40, 70, 233, 12, 22, 11, 287, 63, 36, 43, 25, 87, 27, 66, 49, 33, 18, 16, 27, 10, 97, 13, 213, 41, 38, 14, 146, 10, 36, 101, 15, 217, 90, 848, 334, 42, 55, 32, 28, 197, 40, 65, 34, 43, 38, 56, 85, 19, 90, 44, 29, 37, 43, 64, 51, 157, 24, 62, 51, 305, 28, 60, 868, 23, 52, 78, 31, 22, 30, 16, 54, 240, 142, 42, 58, 30, 16, 15, 93, 56, 52, 41, 88, 335, 58, 368, 42, 15, 14, 177, 21, 154, 17, 24, 17, 27, 36, 33, 26, 54, 19, 14, 18, 16, 80, 42, 66, 20, 75, 42, 29, 52, 11, 304, 28, 57, 40, 23, 51, 43, 28, 406, 21, 16, 65, 40, 17, 89, 30, 24, 33, 125, 12, 58, 33, 40, 56, 54, 17, 37, 28, 35, 34, 57, 42, 38, 30, 163, 17, 93, 16, 65, 99, 32, 36, 19, 20, 46, 147, 21, 34, 142, 62, 48, 50, 39, 53, 56, 63, 38, 154, 28, 37, 26, 101, 517, 41, 226, 12, 58, 194, 27, 24, 128, 152, 45, 58, 39, 31, 38, 75, 46, 35, 13, 40, 47, 63, 14, 62, 29, 27, 15, 32, 27, 35, 38, 32, 85, 14, 298, 33, 110, 38, 27, 24, 21, 17, 27, 70, 67, 90, 70, 89, 93, 21, 47, 26, 32, 46, 40, 103, 17, 45, 43, 17, 48, 25, 17, 58, 230, 44, 33, 30, 172, 121, 34, 80, 35, 30, 43, 412, 37, 65, 16, 65, 78, 55, 160, 65, 21, 154, 78, 39, 29, 47, 23, 48, 63, 124, 43, 269, 18, 153, 28, 164, 36, 55, 34, 40, 220, 23, 71, 35, 246, 52, 45, 316, 75, 39, 37, 17, 117, 19, 16, 191, 19, 95, 41, 49, 49, 40, 150, 457, 903, 50, 54, 12, 59, 277, 47, 43, 45, 24, 47, 21, 21, 36, 233, 40, 48, 62, 98, 86, 73, 75, 29, 38, 36, 257, 31, 69, 59, 31, 56, 17, 78, 54, 49, 26, 38, 488, 80, 28, 89, 23, 30, 244, 193, 36, 31, 530, 11, 21, 18, 88, 115, 69, 14, 93, 22, 354, 28, 43, 47, 138, 27, 16, 38, 200, 63, 19, 244, 17, 82, 228, 16, 22, 23, 697, 96, 39, 49, 11, 70, 16, 14, 26, 41, 394, 15, 32, 30, 31, 18, 100, 19, 37, 55, 83, 10, 68, 150, 100, 36, 188, 28, 22, 69, 90, 62, 200, 253, 40, 43, 83, 176, 338, 76, 21, 48, 75, 52, 47, 19, 25, 63, 35, 67, 40, 29, 14, 81, 26, 16, 31, 10, 70, 39, 41, 190, 35, 36, 33, 58, 71, 235, 70, 21, 35, 18, 43, 63, 18, 58, 32, 19, 11, 11, 30, 34, 73, 23, 37, 26, 11, 21, 39, 549, 135, 15, 172, 103, 105, 158, 32, 78, 19, 98, 81, 50, 1034, 197, 230, 57, 487, 38, 12, 56, 61, 39, 43, 60, 172, 36, 152, 12, 11, 184, 49, 10, 44, 45, 63, 257, 53, 705, 326, 408, 288, 128, 383, 40, 202, 73, 228, 239, 203, 229, 214, 64, 293, 59, 239, 70, 315, 65, 68, 43, 39, 38, 28, 51, 43, 156, 257, 137, 477, 334, 260, 56, 97, 148, 130, 303, 214, 428, 204, 52, 94, 270, 56, 38, 83, 184, 200, 27, 11, 287, 101, 194, 50, 76, 52, 47, 41, 40, 370, 38, 16, 55, 11, 32, 87, 45, 123, 11, 77, 252, 235, 45, 76, 49, 41, 37, 87, 47, 245, 220, 35, 54, 321, 75, 191, 184, 11, 377, 51, 148, 172, 50, 51, 227, 170, 74, 302, 96, 84, 26, 46, 312, 41, 62, 45, 167, 317, 302, 194, 94, 203, 59, 316, 360, 393, 45, 95, 39, 73, 168, 43, 300, 39, 10, 61, 348, 65, 75, 43, 66, 234, 643, 261, 74, 57, 353, 74, 194, 53, 57, 20, 540, 54, 42, 275, 76, 30, 69, 295, 62, 263, 57, 125, 333, 293, 57, 302, 42, 34, 11, 225, 303, 251, 62, 56, 44, 157, 167, 243, 407, 58, 55, 60, 26, 71, 41, 278, 25, 36, 43, 61, 49, 253, 283, 92, 196, 72, 112, 323, 307, 53, 243, 297, 198, 57, 41, 48, 155, 341, 18, 64, 67, 38, 42, 33, 354, 40, 60, 32, 50, 10, 66, 284, 241, 456, 57, 169, 120, 67, 300, 187, 152, 234, 100, 66, 115, 64, 248, 483, 262, 47, 103, 11, 71, 37, 28, 49, 210, 192, 41, 32, 51, 63, 39, 170, 376, 22, 53, 84, 95, 327, 290, 313, 258, 233, 40, 389, 37, 298, 213, 36, 50, 24, 52, 36, 46, 56, 53, 70, 53, 19, 185, 144, 224, 166, 267, 216, 281, 24, 206, 53, 84, 127, 56, 45, 34, 27, 88, 26, 59, 69, 11, 51, 26, 178, 52, 342, 279, 569, 234, 37, 66, 191, 359, 11, 152, 64, 274, 47, 303, 154, 178, 236, 45, 74, 33, 51, 41, 60, 106, 165, 242, 72, 35, 252, 328, 362, 527, 89, 286, 28, 81, 199, 168, 54, 63, 58, 243, 48, 344, 311, 495, 207, 125, 52, 240, 11, 187, 271, 309, 65, 28, 249, 43, 76, 77, 326, 64, 40, 370, 416, 30, 135, 62, 199, 99, 58, 72, 62, 314, 65, 89, 76, 127, 77, 250, 81, 38, 179, 223, 85, 330, 62, 47, 72, 58, 62, 25, 46, 27, 31, 51, 41, 58, 45, 16, 49, 31, 38, 60, 38, 17, 72, 42, 145, 34, 52, 31, 61, 24, 23, 46, 35, 105, 56, 52, 34, 34, 18, 33, 59, 45, 18, 55, 53, 42, 18, 33, 30, 35, 40, 74, 48, 42, 74, 45, 65, 40, 28, 19, 16, 26, 26, 21, 33, 37, 53, 84, 19, 51, 56, 61, 47, 28, 49, 102, 38, 55, 15, 39, 64, 32, 81, 29, 29, 34, 19, 23, 34, 28, 110, 55, 29, 20, 121, 31, 219, 22, 43, 37, 26, 74, 73, 31, 96, 26, 15, 101, 27, 41, 41, 37, 37, 35, 40, 49, 46, 44, 35, 71, 39, 46, 97, 25, 163, 56, 45, 30, 67, 82, 43, 54, 25, 45, 33, 34, 20, 18, 57, 38, 41, 36, 39, 18, 31, 66, 34, 35, 64, 115, 29, 43, 26, 60, 18, 51, 40, 36, 91, 219, 39, 22, 79, 64, 27, 52, 43, 14, 37, 51, 25, 69, 28, 45, 41, 61, 51, 52, 70, 69, 35, 30, 39, 38, 41, 223, 36, 32, 34, 90, 44, 25, 32, 12, 92, 39, 13, 48, 37, 34, 22, 93, 85, 41, 27, 35, 33, 74, 47, 23, 78, 33, 40, 91, 50, 70, 32, 48, 20, 30, 20, 65, 63, 19, 16, 28, 27, 53, 85, 88, 34, 29, 37, 53, 48, 60, 36, 72, 50, 53, 27, 36, 48, 38, 25, 12, 338, 23, 56, 33, 25, 94, 62, 70, 28, 44, 59, 31, 34, 30, 39, 26, 36, 75, 25, 33, 34, 64, 53, 30, 88, 28, 47, 31, 52, 37, 132, 33, 89, 58, 25, 53, 41, 33, 29, 38, 40, 29, 18, 35, 60, 39, 37, 24, 37, 52, 32, 18, 38, 38, 16, 59, 36, 53, 43, 22, 95, 48, 116, 68, 37, 76, 55, 62, 26, 52, 52, 98, 43, 66, 22, 47, 106, 30, 52, 49, 51, 55, 81, 83, 25, 34, 30, 54, 60, 29, 73, 35, 39, 24, 28, 51, 46, 28, 57, 28, 47, 94, 52, 405, 58, 50, 10, 33, 47, 20, 25, 24, 49, 86, 27, 42, 24, 38, 41, 23, 54, 43, 29, 12, 50, 68, 59, 53, 39, 38, 35, 32, 30, 30, 31, 32, 63, 39, 22, 105, 75, 56, 48, 31, 23, 34, 31, 39, 36, 110, 37, 44, 116, 40, 83, 12, 36, 36, 31, 57, 29, 224, 20, 73, 17, 35, 21, 57, 48, 58, 58, 48, 25, 36, 111, 101, 45, 26, 14, 73, 46, 36, 23, 37, 24, 50, 42, 54, 48, 67, 33, 52, 34, 38, 422, 41, 50, 70, 54, 53, 196, 46, 21, 37, 87, 27, 137, 27, 74, 38, 45, 45, 494, 55, 58, 27, 24, 48, 53, 31, 49, 73, 40, 46, 73, 38, 105, 45, 39, 38, 78, 25, 20, 40, 18, 19, 24, 47, 31, 13, 48, 58, 34, 28, 30, 29, 48, 36, 43, 13, 9, 67, 35, 64, 26, 19, 29, 27, 10, 40, 43, 73, 26, 68, 37, 54, 16, 53, 17, 73, 47, 18, 52, 52, 66, 563, 40, 19, 25, 81, 41, 61, 27, 37, 75, 36, 977, 73, 30, 48, 60, 80, 20, 65, 86, 68, 66, 43, 18, 13, 32, 100, 41, 73, 68, 12, 47, 25, 56, 77, 121, 57, 35, 20, 82, 43, 38, 298, 49, 66, 21, 29, 107, 73, 57, 10, 29, 82, 54, 33, 42, 68, 270, 30, 46, 25, 67, 27, 17, 59, 167, 53, 28, 39, 29, 30, 27, 21, 29, 45, 90, 42, 33, 36, 88, 69, 64, 43, 44, 75, 20, 26, 27, 41, 78, 47, 48, 68, 108, 48, 67, 21, 32, 52, 56, 961, 41, 52, 18, 26, 40, 87, 50, 32, 447, 36, 34, 57, 14, 30, 50, 55, 61, 47, 36, 32, 45, 46, 82, 38, 36, 36, 43, 100, 63, 24, 25, 55, 69, 32, 22, 46, 17, 46, 70, 39, 31, 25, 22, 380, 52, 43, 46, 29, 49, 21, 15, 66, 60, 23, 17, 48, 70, 67, 76, 30, 50, 34, 45, 19, 34, 37, 50, 49, 43, 29, 32, 50, 28, 97, 45, 33, 30, 79, 39, 53, 55, 49, 16, 27, 71, 27, 26, 38, 25, 44, 76, 46, 70, 37, 23, 38, 46, 19, 89, 58, 72, 41, 32, 35, 77, 57, 27, 47, 19, 58, 31, 38, 54, 73, 48, 26, 66, 74, 42, 23, 40, 19, 61, 26, 56, 38, 22, 30, 33, 33, 43, 72, 24, 29, 47, 72, 34, 26, 29, 38, 33, 52, 92, 29, 84, 49, 142, 38, 81, 32, 48, 19, 21, 39, 23, 44, 35, 21, 49, 51, 45, 9, 26, 49, 18, 35, 54, 36, 64, 14, 53, 510, 14, 77, 22, 15, 80, 23, 35, 36, 98, 49, 137, 49, 35, 31, 28, 295, 84, 27, 34, 14, 153, 49, 62, 44, 18, 34, 54, 34, 32, 67, 43, 34, 31, 45, 110, 36, 63, 41, 93, 26, 73, 32, 51, 49, 64, 37, 93, 34, 78, 30, 30, 43, 35, 51, 15, 23, 19, 20, 39, 74, 74, 40, 39, 21, 42, 118, 36, 20, 86, 16, 14, 17, 51, 20, 85, 33, 39, 20, 30, 32, 37, 362, 38, 28, 21, 37, 66, 49, 42, 51, 62, 22, 41, 42, 57, 46, 51, 66, 49, 39, 41, 71, 95, 66, 181, 36, 38, 51, 72, 41, 81, 50, 51, 50, 50, 32, 43, 39, 43, 44, 32, 45, 28, 57, 24, 34, 75, 115, 55, 39, 36, 109, 29, 40, 56, 71, 16, 40, 27, 74, 33, 60, 27, 76, 24, 36, 55, 61, 30, 54, 30, 20, 34, 46, 55, 18, 49, 51, 32, 68, 16, 17, 46, 114, 26, 35, 27, 49, 60, 65, 112, 49, 15, 22, 68, 83, 15, 87, 80, 57, 33, 38, 68, 26, 36, 24, 39, 56, 48, 38, 33, 33, 30, 48, 40, 46, 39, 15, 31, 37, 41, 176, 41, 54, 56, 87, 43, 31, 31, 49, 56, 70, 40, 44, 39, 84, 39, 64, 61, 48, 42, 35, 23, 30, 33, 91, 39, 16, 29, 22, 28, 53, 163, 26, 83, 18, 37, 44, 42, 499, 37, 41, 30, 28, 14, 78, 30, 58, 142, 48, 39, 40, 46, 99, 181, 67, 91, 111, 58, 76, 77, 51, 59, 81, 39, 69, 70, 189, 46, 69, 56, 38, 98, 159, 40, 73, 74, 53, 48, 98, 43, 31, 28, 108, 52, 47, 94, 88, 75, 81, 104, 82, 87, 114, 118, 108, 699, 836, 482, 915, 733, 847, 866, 726, 936, 985, 786, 557, 373, 551, 416, 510, 568, 101, 100, 626, 672, 63, 579, 596, 56, 581, 596, 391, 523, 46, 42, 34, 157, 125, 59, 985, 48, 102, 481, 50, 198, 95, 137, 107, 137, 59, 118, 243, 253, 87, 68, 81, 79, 140, 77, 121, 109, 81, 109, 190, 147, 30, 169, 141, 111, 120, 126, 87, 75, 159, 218, 245, 36, 72, 96, 125, 152, 121, 57, 204, 208, 96, 205, 124, 89, 85, 93, 148, 45, 68, 84, 72, 84, 73, 76, 171, 36, 115, 171, 86, 113, 187, 66, 86, 43, 51, 64, 260, 44, 245, 79, 46, 71, 65, 170, 74, 118, 84, 76, 118, 59, 60, 218, 38, 27, 69, 47, 39, 34, 59, 42, 61, 26, 53, 33, 64, 93, 55, 67, 61, 61, 20, 52, 67, 20, 85, 63, 49, 30, 38, 117, 44, 31, 65, 99, 49, 67, 27, 40, 56, 114, 37, 50, 62, 78, 26, 76, 48, 52, 63, 61, 92, 121, 52, 21, 54, 118, 20, 41, 52, 36, 36, 63, 68, 25, 64, 34, 13, 22, 39, 74, 40, 21, 59, 63, 66, 192, 18, 82, 76, 79, 74, 121, 62, 111, 95, 58, 53, 36, 60, 77, 58, 45, 60, 83, 56, 36, 15, 43, 27, 50, 51, 43, 31, 53, 47, 20, 82, 55, 67, 51, 75, 71, 24, 59, 120, 44, 20, 127, 62, 94, 20, 59, 49, 27, 51, 53, 57, 71, 61, 60, 70, 64, 30, 63, 69, 29, 67, 37, 29, 38, 39, 68, 59, 24, 49, 72, 75, 54, 42, 49, 27, 80, 105, 82, 59, 88, 147, 62, 34, 24, 41, 53, 33, 56, 64, 61, 52, 68, 53, 36, 65, 114, 22, 29, 25, 27, 21, 31, 113, 66, 24, 40, 38, 27, 55, 32, 50, 107, 38, 80, 62, 25, 59, 58, 19, 63, 29, 180, 26, 69, 61, 59, 95, 114, 50, 37, 37, 18, 25, 29, 59, 44, 16, 25, 74, 20, 113, 70, 62, 62, 51, 95, 15, 65, 111, 18, 47, 37, 23, 26, 22, 127, 28, 96, 35, 178, 73, 25, 40, 70, 39, 26, 49, 28, 56, 58, 92, 50, 25, 47, 57, 35, 67, 150, 59, 46, 30, 52, 37, 56, 15, 32, 76, 26, 42, 28, 47, 105, 43, 62, 76, 86, 54, 35, 20, 68, 20, 34, 17, 93, 76, 58, 100, 76, 65, 42, 46, 23, 21, 40, 21, 82, 59, 90, 29, 32, 44, 33, 24, 78, 85, 63, 68, 47, 80, 47, 51, 80, 54, 84, 70, 55, 45, 26, 56, 42, 39, 47, 54, 80, 67, 38, 57, 46, 59, 63, 53, 33, 90, 17, 40, 27, 20, 40, 37, 29, 133, 87, 59, 20, 107, 81, 36, 58, 82, 171, 113, 54, 25, 114, 102, 26, 39, 130, 61, 37, 63, 73, 73, 156, 70, 83, 60, 87, 33, 38, 28, 64, 22, 23, 40, 29, 82, 23, 26, 34, 111, 87, 34, 63, 61, 46, 20, 66, 51, 37, 58, 47, 69, 50, 112, 62, 40, 49, 36, 105, 63, 27, 22, 75, 27, 50, 36, 34, 57, 179, 26, 224, 49, 119, 55, 81, 35, 55, 122, 65, 51, 31, 61, 75, 163, 21, 56, 72, 38, 19, 59, 31, 16, 67, 14, 64, 145, 26, 84, 74, 89, 66, 49, 62, 152, 82, 35, 65, 28, 31, 42, 64, 83, 94, 53, 68, 24, 102, 49, 45, 136, 115, 85, 24, 70, 131, 58, 28, 42, 19, 14, 130, 93, 43, 58, 25, 85, 27, 120, 102, 154, 37, 46, 127, 208, 69, 39, 22, 53, 27, 22, 81, 102, 177, 110, 26, 154, 49, 55, 78, 26, 98, 32, 61, 68, 115, 114, 66, 29, 25, 31, 113, 82, 97, 21, 27, 52, 67, 33, 23, 86, 61, 74, 16, 83, 60, 18, 72, 23, 36, 67, 18, 139, 76, 168, 44, 20, 45, 72, 49, 17, 59, 34, 66, 118, 72, 22, 91, 38, 52, 44, 41, 16, 82, 19, 67, 48, 66, 72, 34, 89, 26, 29, 14, 112, 43, 31, 53, 27, 21, 71, 29, 20, 51, 104, 79, 127, 40, 24, 18, 43, 35, 39, 37, 49, 37, 64, 24, 93, 49, 107, 66, 107, 42, 52, 45, 43, 31, 49, 23, 47, 19, 75, 55, 48, 65, 90, 49, 59, 58, 34, 98, 34, 121, 31, 84, 70, 37, 17, 31, 66, 61, 53, 32, 16, 27, 29, 54, 60, 49, 157, 106, 142, 49, 28, 123, 19, 16, 63, 19, 63, 153, 62, 86, 16, 27, 23, 70, 54, 46, 51, 66, 37, 57, 30, 23, 69, 16, 63, 75, 46, 81, 21, 72, 59, 34, 52, 26, 98, 121, 26, 28, 50, 42, 28, 48, 74, 37, 20, 76, 79, 62, 38, 51, 48, 78, 70, 26, 43, 102, 92, 64, 41, 100, 84, 42, 27, 39, 93, 53, 19, 113, 104, 55, 31, 31, 70, 131, 74, 40, 42, 32, 117, 88, 98, 32, 69, 29, 106, 161, 100, 42, 49, 17, 108, 108, 26, 55, 18, 46, 27, 46, 31, 95, 23, 56, 52, 27, 77, 24, 30, 30, 25, 67, 17, 68, 25, 35, 54, 52, 105, 125, 117, 17, 39, 33, 113, 106, 30, 86, 106, 28, 95, 50, 68, 65, 23, 135, 43, 95, 21, 104, 96, 27, 60, 56, 31, 21, 50, 19, 65, 34, 51, 64, 41, 60, 27, 24, 28, 25, 35, 40, 186, 64, 94, 100, 27, 85, 56, 70, 19, 73, 58, 78, 80, 57, 65, 51, 39, 107, 39, 41, 103, 31, 166, 20, 37, 27, 30, 70, 40, 87, 104, 71, 33, 20, 56, 55, 97, 78, 118, 24, 19, 95, 62, 22, 38, 19, 67, 120, 16, 29, 74, 39, 52, 36, 73, 51, 41, 22, 77, 27, 53, 20, 25, 79, 52, 52, 27, 30, 27, 59, 183, 50, 60, 52, 48, 83, 67, 95, 20, 43, 45, 61, 50, 28, 26, 18, 93, 32, 65, 78, 36, 33, 153, 93, 28, 53, 112, 18, 52, 106, 59, 66, 69, 96, 78, 55, 35, 71, 26, 15, 64, 39, 34, 62, 41, 51, 86, 23, 17, 16, 20, 77, 45, 37, 76, 76, 110, 65, 45, 60, 49, 23, 40, 34, 28, 19, 145, 27, 26, 42, 33, 55, 56, 35, 47, 27, 58, 159, 44, 59, 53, 41, 21, 28, 63, 46, 42, 46, 41, 53, 18, 75, 51, 41, 69, 33, 31, 88, 112, 37, 35, 21, 23, 44, 39, 35, 52, 22, 43, 31, 54, 27, 26, 21, 43, 51, 36, 21, 46, 49, 50, 65, 59, 160, 68, 31, 48, 25, 82, 71, 28, 15, 58, 55, 40, 52, 173, 79, 59, 25, 38, 204, 20, 41, 25, 63, 52, 66, 20, 66, 52, 31, 32, 30, 24, 156, 22, 28, 55, 29, 83, 69, 117, 105, 20, 30, 36, 15, 24, 22, 28, 129, 18, 38, 67, 103, 34, 61, 48, 58, 58, 42, 68, 56, 21, 98, 121, 29, 22, 42, 25, 58, 62, 60, 45, 45, 31, 109, 43, 190, 58, 52, 49, 41, 44, 25, 68, 30, 53, 58, 115, 25, 51, 59, 46, 50, 36, 55, 95, 41, 54, 35, 86, 86, 39, 15, 39, 64, 121, 42, 67, 78, 53, 54, 28, 26, 60, 144, 80, 25, 44, 30, 28, 35, 24, 23, 24, 34, 32, 116, 35, 24, 27, 43, 41, 37, 28, 44, 141, 59, 47, 65, 60, 43, 45, 57, 117, 40, 193, 46, 26, 72, 52, 63, 76, 23, 63, 56, 57, 104, 19, 21, 51, 25, 61, 44, 61, 46, 51, 87, 21, 31, 178, 67, 86, 151, 127, 70, 81, 131, 85, 113, 41, 132, 67, 61, 128, 41, 68, 74, 67, 48, 123, 62, 82, 76, 71, 79, 96, 87, 116, 105, 67, 52, 79, 171, 55, 40, 146, 77, 89, 85, 74, 113, 140, 82, 45, 122, 124, 67, 130, 81, 69, 75, 200, 288, 110, 260, 106, 158, 328, 68, 98, 114, 77, 105, 154, 138, 121, 72, 62, 97, 117, 70, 153, 68, 50, 126, 76, 138, 124, 103, 85, 76, 58, 62, 103, 73, 59, 109, 121, 75, 86, 125, 91, 121, 134, 55, 68, 161, 94, 125, 45, 79, 71, 37, 86, 82, 71, 134, 25, 49, 63, 45, 86, 104, 53, 125, 94, 24, 30, 133, 21, 74, 71, 32, 29, 36, 143, 53, 43, 42, 123, 44, 41, 29, 43, 60, 24, 131, 68, 32, 91, 64, 42, 51, 123, 107, 87, 38, 36, 116, 47, 238, 62, 40, 77, 70, 81, 80, 126, 156, 61, 88, 102, 115, 229, 95, 296, 54, 225, 108, 106, 88, 167, 53, 95, 83, 70, 247, 195, 137, 288, 126, 127, 216, 154, 142, 343, 131, 180, 156, 68, 191, 42, 81, 102, 132, 128, 54, 75, 80, 142, 53, 104, 25, 76, 61, 111, 104, 96, 86, 90, 76, 116, 67, 146, 77, 88, 142, 102, 65, 99, 83, 87, 154, 93, 84, 96, 64, 90, 47, 86, 69, 64, 47, 75, 187, 84, 53, 74, 423, 123, 102, 184, 75, 85, 88, 72, 44, 58, 115, 116, 154, 143, 112, 97, 78, 82, 132, 63, 98, 49, 115, 132, 72, 81, 136, 150, 58, 57, 134, 105, 69, 94, 84, 153, 167, 67, 72, 148, 50, 145, 51, 138, 104, 131, 118, 122, 63, 38, 99, 106, 73, 128, 148, 63, 86, 111, 80, 78, 79, 43, 140, 149, 62, 45, 106, 45, 60, 60, 20, 16, 39, 122, 51, 17, 79, 27, 31, 29, 70, 73, 81, 200, 72, 48, 122, 51, 14, 94, 114, 31, 84, 62, 106, 104, 47, 66, 77, 74, 31, 68, 79, 60, 58, 24, 117, 70, 70, 24, 105, 34, 84, 159, 35, 97, 56, 20, 143, 47, 124, 55, 44, 27, 224, 59, 126, 38, 150, 77, 63, 59, 115, 28, 74, 188, 13, 54, 72, 64, 139, 88, 57, 101, 84, 144, 87, 105, 78, 41, 65, 73, 159, 52, 185, 85, 120, 187, 134, 58, 60, 115, 45, 45, 129, 62, 133, 151, 43, 85, 107, 89, 144, 178, 89, 202, 41, 49, 57, 185, 48, 41, 78, 44, 64, 44, 66, 122, 89, 81, 83, 20, 251, 30, 95, 28, 60, 36, 30, 46, 40, 187, 147, 80, 43, 33, 164, 63, 103, 23, 133, 60, 113, 36, 129, 146, 62, 78, 170, 204, 29, 232, 250, 76, 68, 86, 193, 135, 130, 65, 122, 141, 124, 189, 95, 57, 144, 69, 83, 61, 47, 65, 152, 216, 81, 63, 112, 55, 62, 57, 48, 43, 77, 187, 161, 28, 168, 35, 178, 63, 155, 115, 258, 172, 158, 35, 60, 35, 63, 58, 20, 48, 75, 122, 30, 447, 525, 361, 502, 387, 680, 645, 394, 737, 470, 488, 497, 339, 420, 369, 610, 367, 729, 570, 470, 528, 272, 368, 424, 291, 363, 486, 556, 243, 232, 396, 403, 498, 501, 336, 261, 673, 587, 634, 315, 315, 563, 441, 506, 418, 288, 500, 427, 301, 445, 458, 695, 652, 383, 376, 388, 444, 771, 276, 222, 290, 522, 511, 415, 656, 506, 430, 505, 581, 453, 763, 349, 347, 446, 445, 521, 312, 285, 596, 647, 471, 431, 595, 500, 392, 412, 546, 221, 593, 446, 276, 325, 516, 687, 528, 447, 626, 545, 480, 500, 376, 398, 474, 438, 598, 557, 576, 315, 282, 459, 669, 489, 621, 527, 613, 471, 374, 315, 652, 502, 418, 473, 490, 549, 443, 430, 517, 420, 465, 412, 651, 525, 460, 522, 445, 636, 514, 642, 509, 594, 336, 317, 410, 525, 492, 531, 654, 421, 461, 587, 782, 386, 439, 442, 363, 585, 490, 346, 493, 415, 400, 351, 404, 482, 348, 430, 750, 519, 578, 580, 560, 623, 584, 427, 345, 421, 1759, 479, 384, 412, 305, 497, 483, 504, 438, 400, 480, 304, 638, 295, 807, 455, 427, 579, 371, 398, 492, 285, 426, 551, 360, 527, 776, 359, 630, 495, 438, 435, 415, 428, 512, 543, 535, 725, 447, 513, 657, 608, 446, 668, 326, 533, 370, 567, 604, 820, 650, 516, 492, 427, 576, 268, 403, 393, 455, 540, 442, 289, 352, 546, 455, 418, 427, 468, 445, 760, 480, 330, 555, 707, 435, 537, 534, 595, 238, 649, 418, 299, 398, 522, 571, 533, 457, 282, 622, 482, 329, 524, 429, 581, 584, 382, 386, 311, 429, 321, 655, 300, 388, 363, 348, 371, 715, 490, 511, 482, 338, 571, 643, 577, 585, 321, 424, 353, 312, 529, 318, 325, 306, 242, 307, 140, 350, 200, 958, 252, 358, 278, 538, 183, 449, 258, 226, 316, 212, 219, 251, 110, 616, 241, 376, 765, 516, 191, 448, 270, 771, 396, 407, 243, 232, 212, 328, 241, 351, 248, 276, 247, 288, 243, 286, 255, 259, 172, 284, 244, 521, 397, 162, 696, 228, 206, 470, 300, 353, 314, 274, 382, 250, 219, 402, 190, 275, 213, 661, 621, 402, 484, 424, 179, 589, 251, 213, 170, 166, 307, 240, 355, 310, 315, 169, 194, 340, 290, 309, 298, 579, 199, 394, 145, 721, 608, 290, 212, 624, 353, 390, 648, 308, 220, 225, 557, 359, 234, 439, 403, 820, 1095, 265, 327, 437, 630, 241, 503, 177, 206, 382, 210, 661, 480, 167, 282, 272, 382, 629, 558, 97, 323, 349, 160, 263, 154, 235, 198, 399, 462, 302, 148, 375, 706, 240, 385, 279, 335, 337, 466, 226, 200, 107, 164, 413, 519, 305, 381, 350, 211, 264, 401, 199, 284, 520, 175, 206, 352, 172, 277, 304, 223, 157, 380, 317, 445, 163, 321, 297, 552, 271, 196, 530, 382, 191, 555, 438, 271, 776, 638, 270, 318, 231, 569, 367, 346, 521, 358, 466, 680, 379, 486, 293, 359, 362, 318, 266, 209, 296, 304, 412, 358, 263, 290, 253, 332, 395, 382, 527, 337, 312, 413, 301, 307, 396, 406, 180, 219, 163, 376, 231, 1013, 313, 663, 719, 804, 312, 752, 262, 156, 273, 564, 267, 288, 582, 301, 365, 223, 169, 332, 117, 214, 569, 294, 826, 539, 480, 574, 420, 222, 457, 345, 157, 154, 860, 195, 278, 422, 298, 636, 364, 524, 244, 425, 819, 195, 331, 298, 432, 187, 644, 514, 336, 291, 272, 321, 195, 813, 377, 336, 324, 211, 458, 194, 255, 457, 326, 1056, 289, 775, 555, 553, 440, 209, 505, 343, 545, 185, 201, 540, 921, 348, 442, 358, 633, 463, 410, 357, 697, 684, 189, 200, 383, 410, 386, 381, 320, 728, 314, 303, 347, 375, 261, 432, 362, 312, 438, 160, 617, 358, 361, 321, 317, 499, 375, 757, 770, 693, 222, 370, 400, 400, 502, 637, 606, 219, 274, 303, 546, 98, 491, 226, 187, 299, 350, 572, 423, 593, 191, 445, 454, 238, 208, 304, 438, 847, 451, 285, 345, 318, 525, 345, 363, 181, 650, 270, 802, 594, 759, 361, 500, 503, 442, 339, 501, 365, 276, 615, 623, 369, 588, 444, 374, 488, 211, 602, 427, 487, 558, 308, 260, 403, 326, 749, 512, 526, 505, 217, 412, 356, 566, 548, 568, 373, 453, 343, 466, 843, 540, 270, 745, 698, 415, 616, 543, 602, 387, 344, 292, 310, 304, 791, 444, 378, 382, 990, 831, 504, 486, 475, 457, 568, 408, 324, 483, 270, 542, 538, 558, 675, 418, 867, 455, 322, 624, 261, 441, 652, 461, 734, 372, 759, 1118, 375, 409, 522, 496, 542, 521, 620, 756, 645, 401, 273, 470, 368, 319, 853, 384, 235, 330, 1246, 456, 477, 368, 674, 112, 350, 235, 413, 573, 384, 791, 248, 445, 651, 362, 367, 581, 755, 654, 341, 459, 188, 845, 369, 497, 446, 324, 493, 425, 517, 307, 668, 428, 367, 367, 261, 462, 436, 496, 372, 368, 372, 489, 149, 861, 505, 905, 268, 320, 288, 390, 875, 1132, 725, 446, 617, 578, 370, 372, 662, 420, 610, 399, 1202, 735, 770, 265, 923, 399, 540, 491, 521, 402, 449, 298, 808, 517, 615, 409, 248, 676, 225, 191, 395, 368, 513, 129, 333, 111, 469, 610, 576, 276, 442, 803, 587, 596, 638, 374, 728, 801, 380, 667, 663, 173, 199, 170, 538, 689, 1063, 411, 438, 161, 260, 469, 462, 441, 326, 493, 407, 309, 296, 457, 451, 529, 644, 404, 278, 369, 413, 623, 646, 559, 381, 208, 446, 503, 288, 616, 365, 330, 497, 284, 434, 446, 698, 895, 493, 664, 380, 831, 616, 605, 951, 418, 362, 281, 515, 450, 748, 727, 476, 411, 477, 536, 525, 672, 453, 546, 434, 750, 488, 580, 356, 370, 373, 563, 344, 398, 535, 636, 470, 371, 548, 550, 404, 425, 945, 388, 496, 323, 371, 456, 555, 335, 545, 346, 519, 526, 716, 354, 551, 667, 713, 497, 463, 478, 548, 368, 406, 979, 397, 813, 464, 728, 569, 353, 430, 680, 1273, 280, 320, 597, 434, 283, 949, 413, 207, 483, 454, 595, 578, 235, 720, 326, 417, 444, 404, 669, 302, 722, 451, 534, 324, 224, 1232, 406, 397, 152, 664, 833, 545, 341, 412, 468, 455, 529, 465, 396, 444, 315, 391, 369, 343, 354, 394, 511, 247, 808, 1017, 275, 180, 278, 620, 252, 465, 351, 511, 350, 183, 470, 569, 390, 553, 382, 404, 268, 726, 594, 416, 290, 478, 220, 547, 502, 859, 244, 262, 615, 313, 328, 364, 564, 540, 467, 255, 272, 815, 411, 239, 430, 270, 159, 857, 454, 693, 402, 288, 660, 310, 852, 764, 709, 681, 420, 202, 408, 606, 261, 719, 323, 291, 539, 612, 449, 388, 345, 448, 748, 306, 218, 410, 364, 362, 658, 638, 492, 881, 355, 833, 490, 522, 219, 427, 479, 417, 790, 169, 513, 384, 592, 782, 1152, 381, 416, 459, 410, 230, 353, 150, 589, 350, 412, 256, 284, 420, 289, 356, 777, 617, 470, 677, 407, 397, 499, 496, 767, 390, 788, 461, 499, 452, 410, 448, 670, 431, 652, 417, 300, 521, 492, 449, 245, 339, 705, 611, 378, 386, 255, 617, 269, 341, 176, 324, 534, 420, 915, 554, 317, 354, 443, 552, 491, 271, 696, 234, 307, 336, 270, 197, 303, 261, 935, 543, 545, 332, 1150, 408, 324, 299, 651, 541, 365, 261, 597, 478, 386, 290, 587, 487, 653, 313, 250, 841, 553, 615, 378, 462, 642, 493, 300, 601, 396, 410, 743, 564, 770, 658, 453, 724, 247, 995, 722, 425, 594, 708, 324, 558, 331, 248, 599, 373, 470, 459, 597, 714, 456, 436, 219, 815, 688, 217, 533, 479, 664, 340, 487, 420, 225, 411, 315, 554, 450, 663, 495, 544, 564, 216, 619, 893, 319, 513, 678, 465, 696, 278, 318, 263, 216, 342, 415, 759, 180, 218, 638, 391, 198, 343, 228, 149, 180, 821, 398, 551, 623, 386, 439, 399, 404, 439, 579, 468, 701, 970, 653, 337, 246, 191, 576, 656, 669, 602, 201, 904, 315, 336, 632, 380, 487, 257, 692, 564, 430, 530, 330, 327, 314, 233, 656, 489, 461, 174, 341, 372, 353, 336, 514, 224, 307, 263, 520, 737, 321, 246, 363, 617, 456, 210, 639, 638, 292, 393, 413, 448, 532, 379, 516, 301, 796, 406, 302, 454, 649, 404, 638, 510, 369, 382, 491, 400, 980, 471, 1042, 466, 1011, 308, 520, 209, 652, 353, 493, 628, 904, 446, 444, 440, 606, 398, 213, 405, 547, 183, 354, 181, 218, 538, 356, 395, 217, 302, 748, 393, 837, 307, 581, 287, 409, 693, 500, 835, 669, 334, 378, 557, 411, 273, 251, 550, 345, 355, 338, 407, 399, 226, 498, 503, 592, 246, 913, 628, 394, 550, 757, 466, 937, 386, 285, 319, 468, 380, 297, 338, 364, 391, 489, 395, 262, 512, 449, 653, 907, 345, 585, 457, 256, 896, 1052, 207, 312, 519, 466, 473, 525, 971, 342, 920, 792, 298, 570, 522, 623, 571, 873, 165, 232, 257, 635, 1042, 365, 609, 440, 333, 414, 368, 522, 684, 224, 381, 473, 551, 347, 318, 534, 416, 688, 802, 244, 713, 610, 490, 227, 536, 502, 712, 412, 209, 492, 379, 721, 661, 459, 682, 405, 438, 590, 559, 505, 912, 322, 568, 424, 810, 873, 312, 386, 404, 207, 434, 753, 358, 444, 556, 426, 414, 236, 529, 369, 265, 334, 220, 353, 490, 534, 583, 750, 548, 564, 732, 280, 594, 739, 489, 341, 358, 669, 1260, 555, 564, 273, 272, 458, 455, 613, 453, 533, 494, 552, 738, 605, 265, 651, 345, 386, 336, 618, 366, 569, 542, 706, 330, 686, 731, 457, 212, 332, 824, 276, 472, 526, 436, 827, 1735, 746, 544, 174, 560, 381, 192, 460, 718, 333, 419, 532, 674, 398, 1151, 688, 433, 249, 476, 375, 379, 315, 665, 449, 397, 406, 562, 457, 219, 550, 415, 371, 387, 347, 451, 623, 452, 531, 341, 396, 931, 561, 533, 1115, 339, 262, 458, 709, 488, 275, 416, 355, 371, 164, 539, 339, 566, 786, 690, 422, 33, 19, 44, 36, 84, 48, 48, 42, 105, 51, 53, 37, 69, 31, 35, 40, 35, 59, 566, 59, 66, 43, 33, 48, 1642, 53, 27, 45, 412, 22, 702, 47, 69, 1326, 33, 42, 140, 29, 34, 45, 35, 96, 703, 54, 49, 35, 42, 21, 85, 39, 18, 29, 94, 15, 62, 62, 651, 47, 17, 75, 61, 27, 41, 57, 63, 51, 84, 24, 49, 22, 19, 54, 57, 18, 21, 45, 40, 22, 41, 52, 722, 34, 105, 66, 83, 105, 50, 74, 62, 32, 80, 46, 27, 53, 812, 41, 58, 65, 37, 18, 50, 46, 64, 63, 48, 18, 19, 881, 26, 59, 144, 51, 51, 761, 84, 85, 72, 45, 1201, 124, 544, 42, 1205, 52, 23, 50, 150, 110, 114, 40, 45, 19, 25, 1473, 44, 1059, 978, 27, 50, 99, 66, 30, 871, 83, 47, 62, 883, 35, 75, 47, 822, 81, 74, 33, 28, 38, 66, 52, 60, 25, 16, 49, 29, 32, 23, 61, 981, 61, 52, 39, 890, 1284, 36, 13, 1073, 38, 55, 19, 788, 67, 22, 51, 45, 36, 51, 53, 39, 17, 16, 23, 18, 99, 25, 858, 25, 614, 53, 876, 81, 57, 42, 132, 42, 10, 38, 928, 48, 36, 41, 25, 60, 47, 71, 1259, 110, 25, 27, 15, 951, 34, 35, 65, 41, 49, 662, 57, 43, 73, 146, 794, 35, 49, 621, 79, 176, 48, 448, 15, 53, 52, 47, 57, 645, 41, 104, 59, 19, 21, 24, 24, 39, 43, 21, 67, 141, 37, 32, 59, 35, 54, 25, 34, 39, 21, 49, 71, 34, 31, 42, 73, 73, 39, 76, 43, 25, 35, 954, 43, 43, 38, 24, 20, 37, 24, 76, 848, 24, 67, 37, 29, 56, 27, 136, 43, 1221, 70, 35, 767, 85, 606, 49, 44, 17, 46, 45, 48, 40, 975, 21, 154, 15, 17, 1125, 44, 480, 23, 60, 26, 867, 28, 58, 15, 28, 63, 50, 51, 49, 830, 1673, 873, 22, 692, 58, 697, 43, 124, 31, 51, 653, 46, 1506, 62, 747, 58, 659, 100, 39, 825, 23, 50, 113, 1138, 1309, 89, 759, 708, 52, 32, 84, 1028, 33, 34, 670, 45, 38, 102, 63, 699, 48, 54, 46, 72, 64, 39, 70, 58, 49, 1447, 63, 75, 800, 50, 37, 41, 45, 80, 539, 89, 43, 26, 99, 66, 27, 105, 1249, 37, 73, 38, 17, 25, 30, 27, 51, 83, 41, 26, 41, 23, 52, 39, 74, 190, 25, 64, 58, 41, 47, 33, 47, 50, 38, 61, 57, 66, 13, 507, 57, 725, 158, 37, 59, 55, 50, 25, 862, 1176, 114, 18, 1694, 26, 25, 34, 47, 20, 28, 26, 142, 57, 26, 49, 71, 25, 29, 58, 838, 41, 50, 82, 34, 40, 89, 54, 74, 46, 133, 1177, 848, 1548, 31, 33, 121, 743, 47, 28, 16, 51, 30, 431, 900, 621, 32, 42, 45, 50, 39, 44, 102, 60, 63, 22, 139, 39, 160, 58, 746, 57, 1024, 44, 38, 33, 80, 46, 42, 29, 445, 40, 168, 73, 793, 53, 69, 27, 58, 67, 75, 38, 52, 694, 55, 141, 85, 33, 26, 57, 66, 40, 10, 1004, 56, 26, 75, 728, 35, 23, 30, 53, 64, 57, 49, 46, 26, 29, 142, 22, 60, 32, 978, 137, 673, 18, 59, 33, 55, 36, 372, 74, 1016, 17, 50, 786, 1221, 29, 26, 57, 25, 486, 54, 1317, 773, 19, 35, 867, 20, 42, 38, 778, 47, 728, 57, 118, 79, 125, 47, 43, 93, 15, 20, 52, 49, 48, 54, 57, 36, 1616, 100, 864, 58, 16, 29, 47, 117, 25, 728, 54, 70, 28, 77, 33, 54, 689, 52, 40, 26, 12, 1089, 80, 37, 22, 627, 585, 36, 559, 1253, 55, 76, 155, 41, 15, 18, 23, 51, 55, 21, 46, 35, 72, 55, 20, 13, 62, 137, 86, 122, 17, 100, 57, 15, 692, 53, 15, 70, 28, 58, 62, 492, 59, 8, 124, 70, 27, 39, 1597, 45, 1033, 55, 17, 34, 32, 700, 30, 66, 47, 62, 58, 73, 57, 1125, 50, 56, 60, 46, 860, 29, 868, 120, 682, 87, 77, 25, 746, 47, 55, 36, 93, 57, 115, 111, 48, 79, 28, 690, 734, 44, 59, 65, 37, 74, 56, 89, 905, 16, 40, 25, 57, 51, 735, 60, 24, 42, 59, 133, 12, 17, 1065, 47, 79, 37, 114, 70, 130, 729, 36, 69, 838, 22, 541, 61, 50, 15, 1236, 111, 48, 1234, 625, 43, 47, 696, 1145, 92, 118, 21, 749, 67, 39, 42, 41, 954, 47, 702, 1398, 19, 48, 18, 870, 94, 20, 862, 571, 28, 27, 82, 19, 10, 24, 40, 18, 22, 38, 46, 42, 13, 140, 35, 38, 48, 53, 747, 30, 36, 28, 59, 24, 38, 793, 47, 46, 60, 19, 88, 57, 75, 1405, 46, 47, 35, 55, 27, 68, 25, 125, 26, 734, 81, 94, 54, 431, 800, 54, 707, 28, 65, 45, 44, 999, 8, 63, 21, 50, 1124, 45, 59, 112, 43, 137, 29, 54, 43, 43, 41, 29, 93, 74, 133, 50, 68, 20, 23, 31, 103, 101, 119, 15, 43, 74, 732, 46, 78, 36, 40, 25, 39, 75, 48, 99, 28, 138, 51, 683, 55, 9, 78, 27, 43, 69, 1166, 38, 1403, 55, 56, 416, 27, 102, 29, 60, 30, 88, 44, 52, 920, 644, 104, 56, 21, 60, 88, 63, 52, 41, 28, 40, 80, 21, 23, 887, 78, 46, 1365, 43, 131, 71, 70, 728, 14, 47, 1297, 125, 128, 40, 30, 34, 91, 1232, 46, 50, 42, 19, 30, 51, 124, 67, 29, 32, 761, 49, 45, 24, 20, 90, 129, 81, 23, 19, 773, 66, 22, 51, 76, 169, 26, 22, 30, 19, 21, 880, 706, 43, 727, 17, 115, 1170, 44, 52, 53, 30, 668, 53, 577, 53, 53, 34, 24, 10, 101, 25, 26, 58, 61, 16, 15, 21, 63, 38, 128, 26, 118, 123, 28, 1261, 33, 30, 133, 146, 16, 22, 19, 22, 831, 43, 28, 56, 78, 48, 31, 33, 24, 800, 981, 744, 110, 58, 1102, 38, 676, 36, 52, 1221, 19, 712, 22, 38, 47, 76, 1122, 62, 941, 45, 31, 76, 66, 35, 35, 28, 18, 107, 85, 790, 106, 1202, 44, 45, 25, 118, 48, 68, 549, 76, 47, 11, 57, 926, 749, 56, 49, 16, 40, 707, 18, 44, 25, 59, 1512, 585, 963, 59, 72, 50, 100, 71, 16, 69, 1512, 23, 69, 91, 125, 706, 26, 48, 61, 65, 544, 47, 26, 99, 38, 47, 156, 26, 40, 10, 21, 1234, 29, 51, 66, 40, 73, 32, 71, 51, 65, 33, 27, 30, 76, 9, 57, 23, 38, 1112, 31, 69, 806, 16, 38, 70, 626, 35, 31, 1831, 65, 102, 18, 61, 767, 35, 45, 219, 29, 71, 58, 50, 58, 37, 19, 47, 1124, 871, 111, 104, 20, 10, 23, 111, 36, 42, 46, 763, 19, 943, 42, 37, 49, 73, 31, 43, 47, 69, 103, 17, 31, 1231, 70, 29, 40, 24, 880, 35, 44, 20, 49, 51, 22, 1431, 1014, 55, 1071, 62, 1024, 48, 74, 62, 42, 34, 63, 27, 46, 41, 110, 45, 47, 38, 682, 741, 51, 120, 72, 926, 33, 1083, 52, 59, 30, 731, 45, 20, 65, 869, 72, 56, 73, 145, 47, 51, 30, 821, 1314, 26, 987, 44, 671, 69, 21, 55, 15, 1096, 142, 60, 30, 938, 825, 33, 658, 127, 117, 75, 47, 50, 131, 40, 110, 28, 44, 27, 13, 62, 57, 20, 19, 163, 535, 109, 67, 670, 34, 119, 37, 29, 55, 83, 70, 34, 757, 149, 28, 26, 31, 83, 605, 78, 130, 49, 57, 44, 56, 23, 876, 34, 46, 62, 45, 55, 1309, 28, 44, 127, 22, 31, 1041, 80, 17, 89, 51, 24, 682, 156, 29, 52, 48, 26, 25, 67, 53, 1230, 25, 510, 991, 32, 39, 46, 46, 59, 39, 55, 48, 150, 41, 29, 27, 690, 32, 23, 40, 30, 845, 939, 108, 45, 1465, 42, 26, 46, 50, 32, 55, 40, 62, 113, 41, 33, 17, 105, 39, 19, 22, 56, 133, 114, 34, 40, 52, 85, 847, 26, 106, 33, 73, 69, 41, 994, 132, 70, 36, 468, 24, 19, 106, 635, 19, 28, 964, 46, 58, 13, 89, 72, 95, 33, 22, 26, 69, 46, 140, 69, 57, 37, 43, 119, 25, 597, 40, 53, 970, 9, 20, 53, 45, 119, 21, 59, 563, 33, 22, 27, 28, 32, 21, 25, 82, 44, 64, 14, 53, 107, 98, 52, 41, 63, 50, 64, 81, 106, 49, 1420, 45, 138, 19, 1028, 61, 1024, 44, 36, 20, 44, 33, 37, 34, 19, 83, 44, 655, 1118, 1295, 52, 58, 923, 689, 50, 29, 34, 26, 105, 1423, 41, 65, 1172, 99, 701, 1007, 1193, 1403, 45, 47, 924, 28, 28, 829, 104, 79, 52, 103, 26, 42, 41, 540, 76, 34, 686, 60, 712, 134, 78, 136, 1155, 114, 21, 64, 67, 25, 21, 53, 55, 965, 22, 27, 31, 30, 42, 40, 53, 34, 27, 612, 36, 59, 55, 816, 49, 1403, 117, 13, 724, 1021, 48, 1053, 105, 36, 54, 45, 44, 139, 37, 38, 22, 130, 53, 1339, 21, 45, 920, 23, 738, 52, 29, 57, 23, 755, 119, 34, 112, 53, 53, 28, 125, 122, 702, 14, 110, 125, 22, 45, 25, 1398, 49, 54, 36, 41, 42, 22, 40, 501, 47, 44, 25, 839, 19, 52, 24, 16, 60, 123, 50, 861, 58, 13, 112, 120, 65, 69, 577, 26, 94, 29, 63, 125, 165, 122, 51, 61, 78, 77, 570, 72, 69, 104, 122, 583, 51, 59, 26, 21, 29, 22, 28, 48, 785, 36, 22, 43, 40, 65, 1131, 1476, 937, 139, 132, 32, 952, 142, 581, 735, 38, 29, 52, 16, 1549, 54, 20, 25, 54, 770, 19, 61, 58, 34, 42, 54, 41, 103, 889, 1228, 23, 52, 798, 1115, 53, 24, 983, 721, 52, 17, 19, 26, 31, 51, 105, 31, 38, 45, 64, 28, 62, 29, 31, 62, 145, 35, 41, 28, 25, 664, 64, 19, 1212, 1871, 33, 19, 69, 607, 1115, 20, 33, 40, 32, 19, 616, 31, 78, 25, 24, 36, 866, 68, 35, 770, 1295, 55, 22, 37, 1157, 823, 75, 154, 28, 58, 35, 92, 503, 36, 115, 148, 1620, 21, 117, 19, 824, 1424, 1268, 41, 29, 59, 67, 93, 9, 1070, 22, 33, 84, 124, 68, 852, 40, 19, 56, 18, 14, 49, 680, 39, 115, 180, 23, 70, 51, 121, 52, 36, 34, 51, 1014, 1057, 52, 79, 934, 39, 36, 127, 73, 35, 19, 47, 24, 147, 19, 761, 695, 16, 1139, 91, 37, 1495, 31, 37, 56, 41, 758, 55, 52, 30, 771, 132, 1300, 1084, 35, 23, 45, 1215, 23, 1051, 66, 33, 129, 781, 110, 115, 57, 29, 16, 43, 66, 130, 1213, 48, 44, 859, 93, 18, 56, 34, 73, 51, 32, 24, 37, 38, 38, 698, 37, 40, 45, 101, 16, 53, 903, 66, 28, 1468, 98, 16, 39, 75, 23, 78, 41, 28, 636, 31, 24, 15, 42, 30, 77, 42, 59, 89, 61, 35, 1113, 20, 110, 124, 167, 101, 46, 60, 1676, 1477, 63, 26, 43, 94, 120, 123, 33, 50, 44, 80, 37, 796, 22, 128, 53, 120, 15, 112, 74, 36, 34, 57, 118, 53, 25, 1143, 19, 647, 123, 37, 443, 1189, 32, 652, 1400, 110, 21, 32, 41, 76, 21, 53, 833, 64, 26, 16, 652, 48, 31, 57, 65, 33, 989, 1260, 63, 19, 25, 1686, 32, 152, 12, 95, 67, 70, 52, 44, 90, 138, 117, 35, 97, 79, 49, 46, 95, 46, 72, 916, 615, 77, 29, 68, 35, 66, 1504, 1223, 136, 84, 19, 40, 1630, 772, 45, 93, 948, 28, 124, 864, 23, 29, 79, 674, 25, 57, 18, 14, 30, 37, 53, 147, 1027, 76, 955, 62, 43, 707, 39, 1058, 42, 20, 32, 54, 861, 101, 22, 1281, 20, 69, 57, 29, 10, 50, 29, 1154, 29, 18, 831, 1000, 1388, 19, 1062, 657, 898, 20, 871, 11, 54, 148, 17, 60, 1104, 54, 45, 36, 66, 45, 1079, 121, 122, 26, 106, 37, 1034, 37, 30, 44, 565, 1335, 53, 57, 16, 149, 120, 896, 1212, 74, 16, 23, 21, 1172, 44, 13, 27, 948, 27, 1218, 92, 123, 50, 27, 1551, 803, 20, 856, 140, 30, 923, 40, 98, 765, 127, 38, 18, 77, 62, 1308, 1317, 487, 14, 137, 23, 68, 18, 1239, 51, 742, 67, 25, 21, 734, 731, 96, 108, 23, 838, 25, 26, 54, 548, 53, 1044, 55, 741, 51, 71, 1160, 53, 147, 148, 1768, 48, 793, 22, 35, 67, 122, 22, 34, 1373, 19, 612, 49, 18, 79, 1238, 926, 58, 526, 67, 631, 831, 147, 27, 35, 579, 85, 36, 972, 69, 814, 33, 91, 49, 25, 100, 46, 51, 1341, 134, 110, 27, 1136, 127, 61, 63, 762, 44, 18, 22, 1190, 1188, 45, 835, 840, 21, 40, 122, 745, 149, 88, 32, 36, 58, 33, 132, 43, 97, 676, 50, 59, 81, 63, 13, 120, 41, 139, 175, 1362, 44, 57, 18, 24, 75, 26, 1331, 36, 19, 73, 1054, 49, 738, 28, 40, 122, 41, 1002, 43, 49, 1072, 47, 24, 21, 1158, 157, 813, 34, 84, 107, 1031, 36, 45, 121, 156, 952, 48, 115, 60, 1193, 10, 111, 56, 71, 672, 160, 452, 887, 23, 31, 676, 26, 54, 20, 1515, 717, 23, 1215, 1187, 51, 58, 42, 61, 46, 78, 69, 99, 47, 128, 48, 13, 103, 36, 137, 28, 69, 637, 1572, 20, 19, 24, 41, 54, 11, 112, 22, 34, 68, 62, 51, 51, 19, 876, 643, 105, 136, 21, 21, 90, 39, 29, 115, 1191, 28, 887, 77, 39, 736, 1559, 845, 852, 43, 151, 63, 30, 44, 983, 21, 118, 29, 715, 1037, 17, 21, 1102, 30, 56, 471, 112, 77, 86, 19, 1234, 41, 57, 30, 52, 28, 42, 73, 25, 11, 70, 39, 46, 123, 526, 29, 572, 26, 115, 797, 37, 31, 52, 36, 49, 21, 24, 107, 880, 48, 28, 80, 128, 49, 34, 101, 19, 18, 826, 40, 28, 46, 146, 29, 23, 16, 50, 90, 24, 85, 1052, 1221, 506, 41, 103, 774, 1630, 65, 701, 21, 25, 26, 72, 23, 1850, 68, 29, 26, 46, 771, 77, 829, 44, 35, 616, 911, 35, 125, 707, 27, 40, 174, 13, 23, 21, 24, 38, 1214, 839, 61, 40, 676, 103, 914, 35, 494, 21, 69, 24, 41, 32, 364, 30, 33, 58, 18, 13, 26, 19, 42, 24, 139, 25, 14, 17, 89, 33, 23, 24, 65, 14, 11, 21, 19, 62, 81, 14, 23, 14, 14, 61, 45, 54, 67, 507, 101, 10, 15, 17, 49, 15, 18, 11, 53, 26, 7, 12, 38, 35, 23, 75, 12, 36, 12, 19, 35, 40, 30, 22, 14, 24, 23, 24, 113, 34, 16, 48, 36, 10, 29, 918, 13, 18, 67, 21, 59, 43, 39, 1139, 20, 15, 68, 49, 18, 42, 30, 15, 20, 15, 85, 21, 127, 22, 122, 57, 8, 6, 41, 46, 83, 38, 127, 18, 143, 63, 43, 174, 81, 36, 27, 26, 20, 17, 11, 60, 52, 40, 23, 94, 11, 50, 93, 39, 49, 288, 15, 76, 56, 45, 24, 9, 10, 169, 14, 226, 71, 15, 10, 435, 12, 10, 24, 52, 222, 147, 14, 18, 41, 120, 139, 11, 14, 11, 17, 238, 79, 16, 64, 11, 89, 19, 16, 326, 311, 14, 9, 18, 18, 355, 35, 128, 56, 45, 9, 14, 63, 18, 136, 7, 57, 27, 23, 27, 6, 37, 12, 174, 93, 28, 123, 89, 19, 338, 17, 90, 171, 18, 14, 6, 71, 749, 25, 58, 18, 33, 470, 399, 26, 128, 48, 20, 445, 66, 9, 9, 68, 16, 57, 272, 23, 24, 9, 12, 14, 7, 42, 17, 19, 9, 68, 25, 18, 20, 18, 26, 256, 34, 12, 25, 50, 66, 14, 10, 77, 49, 26, 35, 15, 57, 36, 104, 15, 9, 15, 21, 17, 14, 10, 9, 39, 13, 23, 59, 89, 86, 13, 41, 65, 148, 98, 10, 67, 131, 18, 12, 52, 18, 7, 12, 25, 32, 21, 59, 22, 102, 27, 17, 26, 41, 116, 14, 1345, 31, 34, 8, 20, 14, 87, 19, 62, 56, 12, 23, 69, 14, 52, 42, 13, 15, 15, 28, 75, 40, 28, 52, 116, 75, 5, 11, 20, 9, 8, 51, 19, 32, 12, 21, 26, 32, 16, 39, 30, 47, 33, 38, 60, 76, 708, 14, 20, 10, 19, 23, 58, 20, 42, 39, 61, 74, 18, 17, 28, 37, 59, 26, 30, 35, 8, 15, 36, 17, 44, 51, 498, 34, 143, 20, 21, 18, 118, 40, 23, 66, 69, 16, 30, 14, 51, 68, 26, 59, 15, 32, 35, 17, 40, 11, 11, 16, 36, 32, 22, 14, 18, 22, 106, 16, 72, 90, 34, 19, 19, 21, 19, 31, 15, 21, 117, 19, 15, 66, 77, 25, 28, 40, 27, 25, 20, 20, 25, 234, 32, 15, 69, 20, 6, 96, 22, 8, 74, 23, 29, 17, 26, 33, 88, 22, 29, 21, 28, 20, 17, 32, 41, 53, 32, 40, 67, 82, 32, 327, 30, 19, 107, 46, 74, 65, 30, 59, 9, 60, 23, 48, 46, 25, 43, 59, 38, 122, 23, 24, 49, 12, 8, 28, 16, 20, 22, 65, 4, 1062, 34, 29, 25, 380, 42, 34, 19, 75, 60, 30, 38, 18, 34, 16, 9, 22, 20, 41, 482, 7, 75, 47, 135, 134, 21, 22, 43, 46, 24, 20, 79, 15, 11, 14, 28, 8, 200, 13, 553, 64, 16, 33, 27, 19, 56, 15, 654, 28, 346, 31, 83, 44, 371, 11, 29, 108, 77, 451, 19, 60, 70, 205, 161, 52, 41, 877, 120, 67, 62, 19, 36, 127, 50, 77, 8, 17, 14, 48, 951, 32, 315, 14, 49, 732, 151, 19, 11, 137, 708, 48, 16, 12, 113, 12, 28, 9, 35, 22, 21, 32, 31, 14, 28, 15, 52, 17, 24, 279, 46, 46, 16, 223, 61, 23, 39, 48, 24, 54, 54, 79, 646, 54, 21, 24, 16, 12, 18, 20, 19, 44, 15, 43, 23, 16, 72, 21, 8, 87, 21, 24, 1298, 26, 31, 28, 9, 54, 12, 139, 39, 19, 23, 8, 26, 7, 69, 37, 59, 40, 63, 29, 30, 23, 28, 64, 17, 25, 24, 31, 13, 39, 15, 16, 11, 85, 137, 17, 30, 17, 15, 14, 16, 25, 17, 18, 41, 11, 7, 39, 37, 29, 111, 39, 14, 16, 31, 72, 15, 9, 14, 246, 5, 15, 18, 16, 23, 7, 63, 49, 16, 48, 16, 26, 59, 38, 25, 104, 18, 37, 49, 51, 15, 64, 17, 12, 24, 31, 29, 278, 14, 47, 105, 23, 267, 12, 18, 18, 343, 16, 16, 20, 255, 22, 10, 56, 87, 52, 39, 7, 12, 59, 12, 18, 14, 50, 24, 62, 13, 14, 69, 19, 44, 11, 72, 105, 84, 9, 573, 16, 30, 8, 103, 20, 145, 11, 86, 44, 425, 87, 38, 39, 62, 14, 276, 17, 9, 63, 49, 19, 21, 14, 31, 69, 15]\n", "Length of Instruction Tokens Count 18188\n", "Output Tokens Count [223, 105, 193, 96, 440, 217, 324, 80, 267, 267, 135, 194, 251, 194, 130, 958, 158, 76, 137, 201, 256, 206, 384, 59, 306, 558, 634, 98, 122, 423, 122, 142, 178, 210, 215, 306, 124, 306, 209, 216, 40, 513, 239, 278, 130, 505, 228, 315, 112, 169, 625, 326, 544, 186, 375, 125, 421, 374, 87, 96, 141, 149, 104, 32, 227, 195, 133, 181, 432, 78, 553, 609, 437, 428, 167, 355, 413, 143, 322, 165, 317, 108, 414, 197, 20, 101, 483, 426, 356, 805, 277, 293, 312, 355, 189, 74, 58, 76, 124, 245, 301, 183, 195, 236, 222, 170, 143, 339, 278, 246, 190, 151, 150, 81, 321, 78, 244, 212, 426, 273, 338, 212, 113, 258, 180, 206, 117, 153, 108, 241, 194, 161, 307, 188, 244, 214, 220, 230, 515, 202, 246, 123, 226, 53, 202, 104, 272, 243, 103, 66, 213, 74, 110, 199, 347, 112, 226, 858, 275, 102, 318, 99, 277, 263, 229, 569, 78, 187, 175, 63, 200, 372, 88, 330, 105, 226, 166, 151, 259, 627, 200, 432, 349, 121, 285, 327, 67, 569, 152, 364, 53, 158, 294, 212, 108, 285, 185, 167, 138, 216, 101, 85, 103, 428, 101, 280, 56, 281, 64, 38, 1801, 102, 63, 495, 82, 120, 165, 889, 152, 313, 235, 204, 410, 135, 254, 552, 131, 93, 167, 523, 1026, 213, 235, 131, 546, 70, 187, 176, 220, 60, 209, 139, 433, 145, 123, 232, 240, 440, 213, 83, 65, 124, 211, 107, 348, 306, 345, 214, 286, 102, 399, 518, 77, 494, 229, 263, 87, 220, 165, 162, 245, 233, 82, 167, 105, 73, 68, 256, 93, 58, 316, 274, 315, 80, 321, 358, 1043, 144, 553, 231, 697, 145, 270, 144, 138, 161, 49, 253, 446, 193, 332, 184, 258, 174, 121, 100, 229, 573, 281, 260, 88, 56, 249, 167, 647, 123, 317, 535, 143, 235, 222, 319, 686, 194, 159, 78, 66, 235, 646, 72, 358, 141, 232, 67, 269, 659, 124, 133, 131, 363, 747, 279, 123, 166, 38, 109, 94, 397, 113, 213, 61, 182, 251, 86, 159, 229, 131, 497, 138, 181, 370, 233, 191, 104, 263, 266, 579, 240, 466, 73, 365, 59, 160, 310, 76, 111, 209, 285, 210, 465, 43, 484, 146, 392, 601, 180, 241, 163, 159, 216, 113, 165, 551, 75, 140, 159, 281, 752, 377, 71, 687, 155, 81, 73, 132, 146, 308, 80, 63, 256, 446, 222, 200, 47, 192, 258, 272, 324, 109, 192, 194, 472, 76, 215, 154, 189, 481, 80, 141, 223, 164, 233, 96, 131, 201, 176, 173, 140, 93, 110, 332, 180, 363, 32, 150, 152, 421, 111, 209, 121, 233, 141, 159, 189, 143, 389, 196, 45, 72, 437, 254, 163, 169, 163, 167, 246, 237, 889, 153, 376, 85, 146, 234, 393, 146, 1150, 205, 211, 1409, 169, 262, 99, 589, 348, 256, 254, 161, 60, 306, 1209, 145, 73, 139, 408, 309, 234, 157, 234, 36, 164, 328, 158, 290, 111, 315, 471, 369, 164, 175, 375, 205, 461, 362, 493, 164, 97, 277, 167, 144, 169, 87, 72, 327, 163, 195, 406, 240, 688, 353, 235, 283, 313, 1011, 419, 120, 117, 266, 271, 246, 856, 99, 187, 447, 295, 254, 262, 43, 385, 244, 279, 314, 361, 219, 299, 175, 84, 328, 116, 437, 272, 295, 197, 190, 177, 213, 304, 157, 253, 352, 109, 203, 109, 201, 282, 268, 153, 214, 96, 164, 381, 161, 274, 242, 509, 213, 356, 716, 95, 439, 176, 210, 585, 94, 142, 182, 107, 148, 249, 676, 275, 441, 218, 246, 340, 81, 1494, 462, 321, 231, 213, 327, 134, 246, 333, 188, 64, 207, 254, 175, 296, 160, 179, 125, 160, 93, 294, 287, 342, 177, 302, 160, 293, 361, 157, 166, 112, 218, 49, 247, 454, 201, 78, 387, 398, 69, 195, 187, 138, 127, 80, 192, 714, 335, 429, 156, 278, 48, 273, 28, 376, 162, 50, 33, 299, 110, 123, 105, 143, 175, 376, 97, 133, 227, 653, 177, 129, 182, 162, 167, 276, 188, 277, 232, 128, 366, 262, 348, 102, 278, 290, 279, 139, 296, 94, 189, 163, 52, 110, 140, 158, 476, 101, 200, 175, 126, 303, 137, 268, 325, 104, 264, 594, 836, 539, 120, 211, 424, 234, 77, 137, 188, 273, 704, 979, 155, 226, 276, 367, 585, 264, 157, 608, 802, 672, 109, 577, 136, 221, 890, 899, 427, 555, 480, 682, 1336, 330, 941, 1117, 64, 102, 407, 233, 298, 308, 1152, 873, 513, 346, 275, 695, 122, 551, 101, 116, 260, 223, 47, 945, 741, 52, 181, 513, 250, 533, 184, 296, 260, 242, 268, 159, 275, 287, 593, 498, 409, 587, 481, 284, 111, 121, 222, 345, 292, 778, 553, 654, 473, 101, 1266, 160, 618, 229, 1831, 437, 803, 289, 641, 320, 188, 170, 223, 388, 565, 56, 175, 889, 305, 126, 590, 174, 184, 202, 427, 449, 301, 343, 231, 398, 324, 308, 726, 305, 302, 1837, 330, 132, 321, 786, 739, 320, 316, 812, 429, 299, 312, 64, 656, 174, 261, 551, 472, 749, 152, 114, 391, 1174, 307, 788, 178, 353, 715, 548, 347, 520, 134, 117, 83, 748, 300, 229, 636, 400, 252, 195, 702, 204, 347, 230, 734, 469, 525, 84, 108, 493, 372, 303, 236, 667, 907, 889, 254, 271, 508, 357, 256, 383, 58, 402, 417, 183, 439, 191, 79, 83, 148, 265, 395, 398, 228, 101, 164, 434, 223, 311, 781, 157, 134, 210, 240, 1265, 215, 538, 364, 291, 553, 433, 437, 74, 614, 511, 221, 232, 378, 425, 937, 373, 255, 869, 279, 141, 991, 666, 271, 264, 96, 382, 748, 179, 741, 540, 289, 560, 455, 276, 89, 305, 452, 172, 340, 185, 273, 199, 690, 221, 42, 93, 273, 285, 179, 767, 560, 624, 316, 360, 493, 224, 821, 319, 573, 489, 515, 386, 178, 231, 278, 220, 391, 189, 138, 384, 124, 223, 562, 553, 432, 78, 285, 164, 562, 103, 226, 557, 159, 217, 202, 74, 150, 139, 1103, 281, 345, 166, 316, 313, 134, 284, 114, 98, 277, 208, 130, 382, 517, 209, 377, 99, 542, 430, 63, 249, 131, 289, 170, 332, 689, 220, 307, 395, 325, 314, 145, 614, 216, 122, 537, 321, 120, 544, 359, 425, 584, 425, 428, 339, 479, 300, 555, 409, 647, 216, 167, 244, 567, 277, 248, 314, 96, 727, 148, 167, 566, 106, 94, 460, 624, 232, 371, 678, 929, 165, 51, 294, 473, 216, 170, 373, 316, 461, 289, 180, 695, 239, 130, 271, 90, 466, 344, 674, 343, 937, 265, 490, 103, 148, 159, 310, 245, 449, 389, 254, 330, 88, 244, 52, 259, 325, 118, 180, 96, 605, 354, 245, 443, 359, 663, 261, 648, 431, 864, 799, 149, 499, 724, 298, 235, 250, 565, 804, 310, 188, 150, 449, 235, 398, 367, 353, 167, 656, 195, 386, 181, 134, 520, 458, 145, 303, 131, 284, 275, 859, 105, 183, 183, 338, 136, 143, 529, 306, 560, 208, 538, 542, 413, 300, 392, 299, 131, 183, 592, 485, 661, 251, 611, 416, 792, 378, 296, 280, 160, 245, 280, 776, 112, 147, 148, 80, 49, 304, 135, 202, 333, 439, 140, 75, 188, 459, 87, 210, 321, 83, 162, 244, 609, 331, 501, 278, 304, 159, 208, 632, 413, 472, 302, 513, 188, 205, 856, 476, 159, 296, 269, 121, 183, 229, 590, 123, 268, 714, 122, 448, 152, 317, 264, 73, 1029, 372, 349, 225, 240, 366, 354, 301, 157, 365, 612, 697, 650, 293, 392, 58, 328, 776, 237, 232, 297, 182, 258, 107, 494, 184, 756, 705, 447, 310, 332, 803, 180, 287, 347, 195, 213, 182, 244, 275, 281, 491, 274, 69, 192, 422, 131, 403, 734, 472, 311, 562, 380, 343, 522, 248, 249, 333, 530, 599, 206, 262, 194, 109, 441, 311, 521, 389, 368, 203, 462, 204, 446, 356, 407, 164, 501, 500, 170, 552, 195, 728, 407, 455, 240, 374, 223, 525, 440, 537, 657, 98, 393, 660, 433, 247, 457, 516, 701, 500, 306, 515, 726, 176, 304, 245, 272, 637, 468, 78, 100, 193, 230, 220, 777, 781, 83, 262, 630, 209, 801, 204, 497, 73, 477, 302, 927, 449, 452, 639, 229, 212, 857, 500, 255, 133, 214, 346, 487, 344, 357, 383, 149, 272, 722, 220, 186, 221, 253, 164, 1007, 643, 609, 546, 287, 255, 454, 392, 487, 952, 518, 251, 343, 1122, 180, 446, 833, 250, 545, 806, 227, 1186, 180, 439, 376, 466, 385, 261, 133, 132, 346, 24, 322, 177, 447, 837, 263, 416, 489, 542, 271, 407, 456, 47, 537, 65, 219, 255, 380, 251, 307, 662, 315, 490, 186, 89, 234, 327, 139, 393, 661, 523, 130, 155, 266, 512, 467, 336, 265, 257, 204, 526, 770, 360, 259, 1194, 543, 532, 251, 372, 157, 192, 120, 480, 276, 186, 481, 684, 442, 61, 357, 200, 466, 112, 260, 132, 113, 499, 228, 228, 561, 249, 171, 65, 136, 351, 501, 378, 201, 204, 373, 368, 177, 734, 1931, 623, 532, 189, 288, 339, 159, 561, 424, 414, 249, 324, 550, 234, 397, 188, 66, 258, 272, 264, 154, 242, 198, 190, 433, 945, 223, 107, 173, 351, 107, 180, 213, 199, 901, 278, 220, 252, 930, 241, 250, 398, 405, 115, 169, 248, 802, 454, 323, 312, 93, 1049, 294, 278, 380, 162, 843, 426, 114, 346, 203, 256, 544, 382, 357, 538, 116, 221, 125, 287, 235, 693, 460, 210, 642, 107, 950, 103, 493, 808, 309, 307, 166, 168, 372, 195, 264, 529, 617, 293, 421, 222, 243, 113, 160, 225, 315, 155, 444, 530, 87, 1857, 434, 153, 287, 755, 96, 423, 459, 246, 673, 1417, 267, 313, 1021, 413, 208, 273, 617, 306, 294, 967, 259, 426, 54, 230, 884, 379, 295, 207, 504, 104, 80, 75, 563, 346, 208, 158, 339, 418, 509, 433, 768, 71, 993, 360, 481, 47, 521, 465, 251, 357, 304, 237, 561, 718, 231, 865, 642, 579, 283, 942, 514, 288, 418, 532, 384, 148, 366, 296, 145, 224, 667, 505, 465, 128, 396, 417, 146, 117, 208, 417, 293, 264, 89, 221, 235, 132, 205, 344, 734, 364, 472, 260, 432, 955, 269, 484, 587, 351, 477, 410, 176, 205, 367, 234, 312, 373, 75, 283, 179, 201, 747, 210, 450, 270, 282, 223, 251, 697, 444, 867, 348, 273, 121, 280, 762, 1316, 358, 194, 297, 233, 618, 117, 196, 303, 196, 371, 630, 228, 369, 422, 111, 441, 207, 269, 119, 158, 561, 411, 337, 234, 454, 311, 122, 242, 158, 354, 201, 466, 269, 254, 347, 338, 430, 452, 822, 102, 318, 1037, 521, 406, 374, 516, 43, 283, 217, 127, 368, 542, 788, 609, 725, 123, 234, 343, 226, 178, 381, 182, 468, 272, 151, 281, 113, 279, 462, 282, 522, 164, 252, 510, 150, 359, 248, 268, 540, 806, 185, 101, 223, 104, 124, 533, 612, 275, 525, 270, 186, 135, 232, 488, 338, 372, 1457, 145, 480, 382, 1176, 214, 433, 447, 605, 241, 824, 335, 357, 350, 170, 1392, 448, 197, 114, 173, 668, 248, 140, 394, 494, 233, 223, 352, 376, 471, 333, 171, 232, 71, 352, 502, 543, 201, 533, 273, 189, 304, 188, 578, 584, 153, 298, 58, 187, 374, 42, 192, 400, 225, 507, 852, 153, 462, 324, 751, 112, 295, 222, 136, 294, 1051, 355, 356, 283, 660, 220, 206, 260, 733, 470, 238, 220, 418, 449, 236, 315, 304, 801, 527, 498, 107, 480, 395, 745, 183, 327, 71, 221, 408, 575, 433, 947, 677, 272, 960, 309, 156, 396, 460, 635, 399, 255, 231, 549, 208, 122, 468, 269, 335, 280, 565, 669, 1114, 211, 274, 817, 145, 102, 216, 318, 215, 169, 323, 862, 236, 139, 303, 607, 167, 586, 255, 140, 380, 243, 592, 200, 562, 624, 205, 475, 468, 119, 340, 135, 86, 192, 472, 192, 287, 175, 516, 240, 168, 322, 125, 282, 145, 153, 274, 53, 221, 369, 380, 359, 249, 113, 466, 355, 524, 285, 278, 70, 117, 334, 273, 83, 159, 165, 672, 186, 346, 376, 392, 191, 195, 310, 164, 146, 62, 356, 420, 295, 185, 374, 193, 267, 330, 105, 102, 200, 453, 344, 335, 50, 261, 290, 228, 59, 96, 191, 293, 772, 330, 150, 270, 248, 372, 249, 249, 609, 354, 257, 343, 182, 307, 152, 541, 311, 103, 457, 743, 288, 336, 412, 129, 231, 311, 23, 39, 361, 190, 108, 180, 152, 204, 318, 182, 396, 142, 106, 502, 564, 112, 79, 168, 536, 462, 275, 288, 152, 479, 315, 243, 202, 482, 125, 665, 178, 288, 197, 334, 74, 253, 62, 71, 83, 238, 109, 611, 144, 217, 648, 352, 408, 605, 190, 310, 289, 140, 344, 338, 146, 279, 257, 486, 332, 228, 152, 258, 556, 455, 222, 194, 121, 369, 144, 519, 216, 531, 202, 145, 260, 107, 385, 214, 230, 168, 548, 467, 117, 373, 768, 137, 333, 136, 212, 247, 283, 123, 55, 971, 302, 332, 245, 284, 317, 135, 402, 131, 298, 389, 202, 196, 284, 255, 125, 210, 800, 44, 406, 86, 166, 158, 215, 129, 282, 200, 315, 151, 306, 96, 110, 180, 518, 252, 107, 60, 85, 388, 424, 423, 369, 312, 74, 295, 300, 160, 137, 199, 209, 234, 436, 116, 162, 258, 94, 309, 437, 537, 462, 160, 341, 288, 241, 74, 166, 149, 173, 342, 238, 232, 126, 158, 153, 110, 164, 342, 378, 158, 208, 257, 285, 394, 132, 205, 366, 385, 484, 365, 211, 281, 697, 422, 638, 317, 65, 278, 228, 162, 260, 191, 220, 161, 182, 298, 365, 377, 447, 204, 72, 162, 227, 154, 190, 195, 143, 158, 75, 311, 148, 321, 151, 122, 110, 219, 221, 197, 257, 354, 562, 462, 228, 142, 328, 486, 642, 172, 302, 38, 315, 139, 921, 199, 70, 301, 353, 339, 461, 208, 188, 424, 129, 698, 222, 277, 157, 228, 174, 189, 74, 490, 100, 173, 174, 637, 581, 256, 346, 238, 336, 715, 89, 80, 110, 262, 222, 294, 186, 223, 174, 327, 499, 117, 133, 169, 618, 492, 329, 182, 216, 238, 160, 296, 114, 212, 343, 236, 493, 163, 168, 280, 334, 246, 506, 252, 481, 582, 233, 136, 351, 104, 461, 595, 293, 387, 365, 129, 711, 254, 186, 253, 294, 190, 141, 463, 53, 256, 503, 105, 209, 65, 169, 158, 492, 404, 380, 213, 319, 332, 92, 460, 283, 184, 237, 328, 276, 183, 382, 304, 706, 312, 234, 50, 343, 182, 330, 182, 384, 408, 118, 614, 165, 316, 235, 487, 374, 139, 283, 141, 639, 168, 246, 272, 172, 369, 86, 216, 870, 392, 257, 102, 557, 250, 747, 108, 230, 296, 247, 358, 79, 104, 378, 111, 432, 264, 604, 248, 126, 235, 501, 264, 62, 338, 151, 221, 749, 176, 216, 387, 108, 99, 307, 305, 524, 154, 368, 95, 539, 222, 238, 268, 308, 113, 212, 380, 300, 240, 987, 120, 159, 163, 199, 192, 236, 187, 66, 362, 274, 218, 209, 184, 98, 741, 505, 309, 153, 148, 150, 219, 367, 96, 399, 501, 711, 73, 401, 181, 111, 709, 172, 182, 606, 427, 453, 265, 82, 131, 418, 367, 186, 236, 270, 173, 239, 285, 141, 228, 163, 497, 256, 629, 102, 483, 178, 221, 97, 264, 123, 132, 249, 310, 246, 327, 66, 182, 302, 545, 653, 297, 158, 153, 156, 142, 573, 268, 77, 239, 158, 302, 262, 201, 229, 231, 409, 112, 196, 97, 227, 681, 152, 498, 380, 524, 168, 736, 236, 223, 167, 120, 321, 150, 328, 395, 86, 113, 923, 257, 69, 155, 444, 361, 205, 235, 332, 317, 199, 397, 595, 630, 472, 310, 125, 269, 601, 439, 755, 239, 247, 155, 150, 167, 202, 338, 613, 93, 443, 358, 87, 110, 376, 361, 299, 329, 367, 115, 140, 280, 486, 324, 233, 128, 244, 328, 861, 118, 355, 468, 259, 449, 98, 632, 218, 86, 171, 555, 251, 175, 903, 292, 217, 462, 951, 161, 214, 100, 804, 211, 289, 205, 234, 682, 340, 483, 308, 473, 501, 143, 72, 116, 421, 803, 501, 59, 231, 150, 434, 484, 258, 147, 141, 475, 190, 331, 157, 56, 195, 95, 249, 217, 377, 257, 197, 110, 635, 539, 267, 228, 626, 175, 487, 406, 174, 423, 171, 89, 284, 91, 194, 359, 451, 286, 168, 241, 283, 176, 286, 65, 289, 263, 557, 107, 176, 857, 366, 279, 165, 40, 269, 429, 100, 198, 238, 109, 371, 184, 35, 90, 181, 627, 434, 151, 432, 500, 63, 211, 169, 896, 585, 187, 282, 166, 145, 285, 466, 376, 253, 457, 266, 88, 399, 297, 83, 239, 152, 133, 117, 135, 143, 556, 571, 522, 178, 136, 67, 198, 209, 68, 87, 223, 201, 900, 484, 112, 148, 154, 133, 168, 282, 450, 96, 384, 211, 226, 191, 117, 212, 221, 913, 161, 52, 200, 182, 218, 351, 315, 199, 127, 549, 354, 181, 362, 592, 364, 719, 622, 350, 324, 495, 497, 273, 322, 156, 183, 105, 89, 854, 318, 1292, 431, 248, 375, 307, 472, 252, 141, 505, 679, 190, 705, 666, 384, 348, 107, 60, 251, 484, 231, 250, 119, 534, 247, 212, 94, 335, 105, 523, 623, 666, 179, 523, 358, 1012, 557, 1214, 390, 593, 695, 113, 340, 108, 391, 1092, 309, 756, 426, 679, 92, 807, 829, 94, 370, 70, 424, 199, 273, 695, 88, 404, 296, 613, 606, 254, 67, 275, 360, 676, 1340, 404, 363, 171, 98, 196, 282, 264, 592, 941, 250, 223, 1081, 59, 613, 195, 475, 231, 144, 336, 52, 423, 347, 213, 570, 94, 109, 228, 593, 514, 1110, 171, 190, 213, 301, 242, 360, 999, 490, 163, 780, 355, 124, 423, 565, 586, 157, 220, 196, 313, 711, 192, 698, 83, 279, 251, 405, 71, 55, 595, 313, 110, 231, 891, 716, 990, 1089, 716, 815, 305, 601, 339, 435, 93, 133, 567, 153, 322, 872, 472, 255, 817, 364, 530, 23, 142, 89, 742, 360, 230, 548, 148, 496, 333, 95, 132, 567, 133, 391, 180, 261, 181, 200, 161, 702, 43, 1743, 342, 200, 181, 107, 457, 295, 541, 552, 163, 972, 722, 173, 264, 398, 180, 633, 371, 117, 126, 97, 29, 276, 173, 98, 533, 825, 439, 244, 52, 422, 1084, 980, 58, 258, 259, 96, 982, 317, 525, 446, 778, 644, 559, 119, 93, 191, 435, 146, 441, 312, 916, 419, 139, 646, 1503, 535, 538, 701, 169, 1229, 1378, 235, 172, 242, 528, 552, 595, 358, 875, 860, 293, 210, 321, 818, 276, 232, 53, 471, 211, 805, 807, 75, 529, 257, 453, 284, 179, 885, 486, 231, 350, 914, 300, 147, 821, 327, 532, 162, 200, 357, 599, 279, 515, 62, 503, 431, 176, 43, 321, 102, 279, 134, 786, 345, 157, 100, 786, 282, 550, 672, 361, 102, 139, 360, 557, 182, 68, 321, 282, 955, 240, 318, 94, 93, 650, 603, 260, 280, 319, 90, 230, 131, 185, 660, 74, 248, 281, 147, 510, 373, 228, 181, 484, 217, 1426, 131, 156, 631, 185, 401, 516, 515, 123, 1122, 215, 430, 561, 388, 628, 142, 420, 109, 114, 334, 1918, 404, 479, 195, 388, 433, 185, 403, 844, 65, 1471, 207, 670, 739, 1516, 284, 35, 313, 294, 225, 318, 531, 619, 407, 703, 452, 585, 519, 364, 481, 356, 333, 109, 364, 134, 870, 186, 513, 853, 228, 55, 653, 430, 441, 127, 424, 156, 239, 596, 1086, 69, 386, 1268, 467, 691, 272, 255, 318, 271, 698, 328, 347, 373, 344, 422, 541, 51, 545, 214, 207, 307, 642, 152, 136, 377, 764, 869, 231, 211, 438, 331, 403, 26, 733, 398, 214, 93, 610, 210, 516, 209, 850, 112, 277, 148, 171, 495, 113, 172, 673, 1376, 352, 264, 324, 776, 218, 295, 325, 443, 52, 210, 481, 198, 557, 883, 829, 432, 107, 772, 187, 430, 439, 445, 590, 589, 33, 267, 113, 278, 792, 435, 178, 130, 779, 982, 829, 403, 273, 763, 547, 500, 272, 733, 503, 488, 143, 188, 45, 260, 198, 1013, 382, 512, 268, 185, 152, 648, 446, 189, 920, 89, 443, 177, 1361, 303, 290, 548, 559, 143, 916, 128, 994, 220, 547, 244, 811, 462, 386, 105, 775, 193, 339, 209, 165, 530, 430, 478, 1015, 534, 537, 1831, 925, 78, 564, 376, 321, 153, 344, 666, 1133, 182, 207, 709, 494, 222, 220, 996, 553, 458, 175, 434, 680, 299, 526, 681, 947, 66, 958, 701, 912, 113, 368, 886, 555, 398, 698, 275, 276, 269, 480, 298, 526, 466, 308, 100, 874, 551, 250, 681, 311, 119, 219, 316, 66, 285, 299, 571, 426, 238, 343, 752, 423, 281, 510, 418, 521, 416, 121, 583, 189, 1185, 236, 130, 1019, 172, 264, 349, 287, 291, 701, 130, 526, 348, 198, 136, 1016, 369, 1044, 165, 548, 556, 541, 304, 231, 496, 121, 723, 531, 197, 43, 415, 845, 789, 833, 213, 141, 79, 578, 27, 242, 181, 422, 439, 166, 454, 195, 320, 644, 204, 548, 148, 150, 555, 1110, 414, 563, 660, 524, 380, 132, 307, 433, 376, 274, 51, 198, 281, 210, 78, 122, 153, 273, 156, 174, 88, 34, 138, 117, 137, 71, 202, 524, 184, 174, 259, 319, 106, 287, 186, 165, 203, 257, 146, 389, 174, 180, 47, 143, 34, 135, 185, 214, 130, 268, 190, 524, 84, 205, 271, 163, 70, 126, 140, 255, 41, 164, 142, 129, 197, 143, 171, 72, 109, 158, 331, 152, 253, 32, 573, 137, 105, 122, 88, 262, 159, 295, 140, 126, 121, 43, 53, 62, 171, 182, 136, 184, 270, 32, 175, 27, 82, 176, 196, 147, 133, 620, 208, 105, 166, 111, 461, 223, 38, 159, 366, 249, 87, 284, 434, 126, 49, 275, 122, 142, 88, 341, 28, 245, 56, 92, 321, 104, 145, 139, 188, 172, 126, 206, 110, 239, 231, 92, 71, 295, 24, 49, 69, 350, 82, 159, 276, 47, 71, 101, 51, 194, 42, 381, 144, 120, 313, 142, 132, 462, 135, 220, 95, 104, 82, 104, 132, 480, 144, 95, 201, 88, 170, 141, 312, 147, 167, 76, 131, 202, 68, 96, 184, 118, 105, 91, 363, 172, 243, 36, 158, 257, 130, 151, 56, 160, 261, 265, 113, 43, 46, 209, 107, 253, 144, 103, 39, 104, 335, 217, 68, 55, 120, 60, 243, 61, 53, 36, 80, 109, 185, 470, 287, 116, 319, 175, 515, 136, 190, 573, 28, 114, 158, 82, 282, 89, 267, 79, 101, 198, 358, 84, 102, 340, 296, 91, 201, 380, 90, 172, 209, 123, 90, 523, 119, 167, 197, 150, 49, 149, 110, 131, 337, 184, 79, 196, 591, 141, 146, 70, 79, 134, 265, 346, 192, 116, 108, 84, 140, 94, 161, 133, 342, 205, 300, 314, 191, 781, 137, 196, 67, 110, 109, 135, 149, 612, 145, 188, 406, 163, 832, 335, 957, 108, 47, 113, 78, 127, 182, 162, 146, 152, 171, 131, 162, 326, 277, 142, 105, 117, 100, 62, 75, 176, 261, 35, 298, 264, 79, 105, 205, 281, 170, 176, 212, 98, 34, 93, 85, 222, 255, 150, 200, 246, 57, 29, 154, 192, 337, 234, 206, 141, 192, 78, 207, 162, 180, 69, 337, 237, 133, 71, 703, 93, 104, 90, 419, 158, 251, 288, 226, 459, 310, 236, 115, 67, 96, 277, 120, 241, 124, 90, 171, 332, 369, 382, 186, 443, 237, 66, 145, 39, 139, 469, 262, 75, 238, 138, 163, 106, 93, 34, 114, 99, 45, 101, 105, 160, 166, 208, 325, 105, 134, 83, 46, 125, 197, 171, 240, 196, 93, 61, 99, 167, 62, 110, 192, 97, 196, 172, 113, 191, 103, 152, 112, 231, 137, 90, 276, 283, 211, 171, 445, 92, 82, 236, 131, 59, 181, 126, 112, 556, 651, 125, 90, 65, 43, 321, 47, 68, 90, 169, 346, 36, 267, 189, 105, 85, 201, 99, 65, 175, 48, 143, 184, 70, 114, 229, 98, 137, 173, 59, 30, 213, 101, 138, 60, 205, 244, 233, 166, 247, 348, 181, 231, 70, 194, 158, 163, 89, 181, 240, 128, 144, 261, 449, 173, 177, 154, 60, 188, 87, 254, 171, 422, 134, 124, 311, 195, 262, 182, 138, 419, 209, 185, 284, 208, 157, 97, 156, 140, 60, 166, 63, 212, 168, 113, 262, 51, 144, 314, 214, 139, 122, 176, 382, 56, 86, 164, 210, 187, 125, 133, 94, 150, 187, 243, 69, 64, 124, 56, 259, 276, 141, 137, 90, 119, 240, 68, 283, 27, 237, 364, 96, 496, 174, 170, 225, 127, 261, 341, 81, 216, 95, 281, 762, 89, 190, 273, 111, 99, 190, 38, 130, 87, 142, 74, 210, 389, 228, 88, 255, 77, 186, 96, 96, 336, 82, 119, 194, 64, 197, 175, 171, 347, 242, 89, 240, 240, 251, 39, 152, 72, 101, 209, 174, 35, 101, 90, 87, 108, 45, 78, 117, 262, 324, 61, 67, 125, 85, 134, 75, 140, 162, 34, 199, 106, 48, 85, 405, 128, 142, 85, 48, 74, 111, 297, 127, 182, 226, 94, 304, 133, 285, 106, 96, 114, 102, 398, 123, 122, 96, 145, 173, 79, 97, 302, 46, 234, 118, 93, 134, 187, 90, 113, 70, 246, 137, 184, 174, 184, 576, 50, 110, 164, 114, 229, 103, 262, 542, 623, 60, 313, 69, 172, 82, 94, 153, 323, 578, 333, 321, 358, 113, 224, 116, 247, 248, 175, 231, 380, 96, 188, 56, 69, 209, 221, 91, 125, 376, 160, 130, 88, 291, 132, 241, 249, 117, 225, 146, 114, 324, 151, 128, 34, 49, 96, 143, 88, 167, 241, 324, 140, 38, 360, 183, 182, 290, 432, 150, 122, 299, 212, 141, 247, 76, 98, 254, 179, 201, 186, 280, 187, 137, 55, 92, 86, 43, 127, 167, 325, 41, 130, 155, 163, 81, 428, 99, 46, 134, 360, 51, 74, 161, 126, 35, 147, 118, 179, 188, 218, 322, 288, 375, 111, 241, 208, 70, 259, 88, 86, 276, 344, 115, 56, 54, 221, 111, 187, 403, 306, 186, 110, 352, 75, 193, 720, 174, 323, 136, 126, 165, 107, 101, 235, 193, 138, 110, 223, 383, 155, 158, 223, 427, 615, 163, 816, 98, 118, 377, 418, 47, 187, 71, 236, 159, 44, 132, 158, 739, 138, 134, 629, 106, 40, 77, 197, 179, 96, 320, 46, 187, 168, 44, 196, 129, 293, 76, 206, 118, 71, 134, 201, 123, 93, 196, 79, 195, 257, 141, 236, 191, 380, 359, 64, 165, 52, 64, 37, 53, 192, 62, 225, 193, 40, 212, 170, 313, 161, 210, 699, 313, 92, 415, 123, 329, 116, 26, 73, 73, 227, 148, 46, 57, 177, 185, 106, 175, 68, 210, 65, 116, 103, 67, 117, 190, 252, 36, 257, 222, 146, 163, 120, 210, 343, 80, 65, 136, 90, 461, 110, 72, 246, 114, 63, 195, 179, 352, 64, 133, 87, 126, 62, 103, 107, 140, 115, 226, 59, 74, 188, 230, 126, 52, 187, 191, 220, 179, 63, 211, 67, 73, 236, 193, 132, 211, 58, 212, 313, 165, 179, 101, 172, 308, 143, 277, 113, 216, 106, 212, 80, 205, 225, 214, 194, 139, 262, 132, 169, 109, 135, 293, 133, 140, 318, 122, 415, 73, 183, 227, 63, 168, 134, 200, 254, 192, 89, 97, 51, 166, 286, 137, 53, 478, 170, 246, 160, 163, 141, 72, 91, 348, 234, 76, 209, 139, 72, 98, 188, 142, 158, 123, 247, 232, 235, 41, 53, 134, 193, 61, 48, 94, 93, 402, 378, 140, 140, 63, 217, 145, 182, 216, 130, 215, 328, 365, 178, 151, 323, 157, 204, 57, 190, 328, 317, 176, 65, 118, 137, 205, 261, 99, 195, 224, 210, 123, 66, 56, 130, 328, 155, 173, 37, 78, 617, 219, 528, 126, 129, 378, 145, 88, 219, 333, 198, 123, 179, 242, 179, 241, 91, 79, 92, 158, 190, 142, 139, 154, 196, 327, 240, 66, 292, 98, 116, 368, 236, 99, 87, 119, 92, 41, 248, 70, 489, 141, 165, 233, 269, 77, 248, 666, 263, 403, 106, 121, 142, 194, 766, 70, 184, 378, 536, 538, 160, 92, 261, 293, 384, 139, 544, 990, 484, 332, 162, 145, 661, 470, 237, 386, 202, 83, 273, 625, 282, 278, 686, 213, 94, 195, 648, 146, 434, 463, 75, 1225, 190, 46, 76, 654, 91, 132, 557, 146, 186, 263, 170, 233, 498, 190, 228, 212, 200, 239, 84, 461, 133, 491, 604, 1718, 242, 446, 45, 381, 145, 175, 272, 139, 455, 482, 304, 294, 58, 123, 77, 146, 603, 290, 340, 946, 177, 150, 99, 167, 272, 387, 279, 133, 356, 294, 403, 442, 669, 508, 892, 100, 868, 327, 423, 186, 196, 224, 286, 801, 70, 339, 217, 980, 148, 861, 61, 172, 244, 227, 187, 536, 168, 696, 532, 281, 99, 741, 85, 395, 65, 253, 354, 689, 116, 885, 124, 349, 362, 158, 230, 179, 154, 373, 153, 442, 386, 208, 325, 108, 74, 249, 441, 172, 375, 709, 506, 87, 109, 79, 352, 88, 383, 393, 161, 480, 286, 248, 402, 372, 265, 218, 90, 388, 511, 547, 322, 402, 494, 482, 484, 85, 198, 873, 75, 484, 244, 542, 539, 378, 261, 1255, 189, 1067, 640, 128, 607, 540, 1039, 342, 270, 134, 200, 1240, 827, 366, 478, 151, 105, 903, 773, 173, 589, 248, 364, 651, 1094, 86, 59, 513, 183, 534, 51, 459, 673, 99, 337, 98, 342, 122, 126, 127, 620, 569, 192, 616, 324, 566, 79, 98, 243, 174, 606, 685, 1161, 1122, 213, 332, 418, 447, 232, 1304, 620, 245, 729, 53, 255, 467, 152, 683, 176, 232, 329, 57, 308, 536, 592, 370, 319, 337, 278, 243, 651, 143, 384, 624, 151, 334, 454, 625, 487, 459, 135, 259, 69, 319, 438, 485, 487, 316, 121, 450, 634, 1155, 415, 474, 599, 28, 450, 623, 494, 248, 90, 155, 185, 254, 689, 106, 476, 117, 76, 489, 264, 217, 109, 238, 245, 339, 427, 227, 80, 541, 143, 107, 286, 401, 435, 109, 156, 120, 221, 259, 79, 685, 183, 289, 490, 559, 94, 473, 242, 100, 377, 154, 690, 57, 691, 496, 277, 102, 261, 695, 295, 72, 286, 461, 877, 826, 132, 421, 457, 402, 149, 204, 236, 90, 568, 587, 154, 205, 616, 42, 475, 353, 458, 486, 174, 211, 167, 476, 599, 103, 377, 144, 883, 252, 721, 628, 411, 559, 490, 141, 791, 287, 544, 90, 77, 141, 77, 514, 383, 135, 176, 780, 107, 170, 217, 360, 95, 159, 354, 310, 96, 397, 554, 342, 376, 247, 801, 166, 196, 362, 112, 486, 521, 355, 156, 364, 58, 348, 294, 512, 92, 465, 404, 59, 60, 135, 355, 139, 116, 209, 649, 307, 166, 215, 292, 166, 377, 452, 275, 75, 161, 733, 463, 166, 624, 348, 193, 1584, 284, 387, 125, 283, 403, 369, 841, 340, 258, 1081, 459, 260, 301, 491, 142, 352, 296, 290, 276, 96, 778, 541, 755, 353, 269, 593, 248, 81, 164, 225, 62, 202, 454, 71, 209, 414, 617, 443, 235, 165, 401, 187, 368, 1446, 133, 273, 71, 288, 88, 855, 483, 518, 279, 99, 739, 352, 406, 242, 614, 205, 673, 368, 97, 407, 1033, 79, 777, 365, 471, 285, 157, 471, 157, 171, 212, 112, 296, 85, 265, 128, 433, 109, 529, 235, 563, 267, 99, 918, 83, 460, 473, 219, 503, 98, 554, 596, 582, 375, 490, 132, 251, 336, 892, 294, 181, 733, 129, 97, 133, 399, 121, 202, 164, 696, 415, 213, 315, 266, 226, 138, 386, 252, 266, 319, 536, 113, 272, 505, 113, 86, 202, 252, 102, 341, 185, 164, 372, 92, 501, 442, 360, 47, 239, 201, 540, 389, 455, 854, 149, 206, 238, 188, 196, 996, 109, 162, 467, 410, 267, 707, 815, 795, 500, 90, 57, 294, 1200, 441, 143, 655, 119, 650, 163, 338, 799, 326, 394, 267, 266, 511, 267, 435, 416, 288, 308, 355, 306, 77, 69, 368, 496, 126, 187, 633, 204, 381, 372, 104, 426, 480, 261, 397, 549, 105, 617, 209, 419, 458, 418, 60, 498, 840, 272, 363, 129, 152, 188, 468, 685, 582, 275, 141, 405, 468, 209, 679, 362, 588, 93, 145, 534, 873, 275, 219, 124, 127, 76, 284, 408, 172, 76, 82, 265, 49, 474, 418, 516, 363, 321, 180, 131, 492, 281, 120, 714, 580, 1010, 161, 564, 563, 205, 74, 198, 166, 373, 381, 132, 393, 844, 60, 75, 391, 260, 201, 700, 171, 316, 666, 633, 41, 551, 562, 380, 183, 546, 173, 110, 512, 283, 104, 215, 294, 218, 687, 383, 528, 354, 684, 1318, 201, 260, 583, 881, 100, 451, 101, 414, 133, 727, 443, 358, 417, 155, 212, 686, 194, 628, 125, 598, 446, 240, 382, 407, 104, 170, 90, 394, 92, 659, 302, 351, 71, 648, 317, 429, 148, 202, 380, 331, 141, 433, 336, 567, 332, 199, 281, 196, 78, 172, 71, 638, 129, 52, 195, 509, 54, 102, 446, 201, 813, 155, 339, 406, 66, 212, 247, 208, 121, 214, 288, 321, 433, 79, 261, 202, 209, 198, 168, 150, 149, 332, 134, 84, 152, 288, 109, 1176, 154, 174, 276, 192, 276, 235, 176, 296, 320, 79, 514, 119, 276, 147, 381, 59, 156, 384, 69, 127, 583, 246, 153, 186, 100, 152, 242, 136, 219, 61, 222, 182, 238, 203, 130, 49, 70, 159, 99, 89, 131, 175, 218, 144, 476, 84, 259, 169, 300, 317, 280, 131, 201, 310, 115, 155, 92, 158, 219, 183, 287, 113, 214, 150, 104, 157, 119, 49, 182, 232, 246, 169, 269, 175, 104, 641, 171, 104, 130, 125, 182, 222, 153, 132, 240, 186, 63, 79, 349, 95, 97, 221, 255, 454, 62, 142, 33, 254, 178, 362, 255, 121, 321, 51, 156, 592, 423, 298, 615, 341, 213, 113, 285, 257, 192, 685, 123, 70, 58, 909, 149, 734, 218, 83, 164, 200, 246, 137, 143, 237, 167, 56, 54, 231, 249, 202, 105, 108, 161, 354, 108, 301, 125, 303, 176, 289, 162, 328, 193, 157, 238, 274, 282, 211, 163, 88, 217, 159, 412, 193, 130, 121, 215, 56, 125, 505, 172, 349, 152, 276, 252, 453, 186, 104, 86, 400, 387, 106, 395, 253, 23, 64, 1067, 155, 86, 73, 201, 168, 126, 213, 161, 312, 150, 159, 470, 133, 126, 315, 184, 171, 238, 160, 591, 153, 324, 69, 117, 699, 92, 117, 186, 294, 200, 202, 115, 399, 129, 199, 173, 198, 192, 217, 334, 58, 205, 95, 104, 264, 373, 153, 246, 318, 245, 146, 259, 79, 116, 358, 341, 233, 248, 157, 337, 102, 194, 110, 90, 308, 259, 104, 271, 174, 577, 160, 403, 198, 70, 265, 185, 152, 86, 154, 328, 116, 217, 84, 103, 101, 143, 72, 304, 78, 252, 239, 153, 139, 84, 195, 324, 168, 108, 468, 333, 220, 301, 245, 533, 217, 177, 137, 183, 421, 277, 328, 712, 240, 176, 137, 326, 366, 96, 331, 161, 188, 271, 1243, 165, 129, 147, 398, 118, 170, 226, 126, 121, 189, 140, 91, 98, 90, 282, 341, 111, 233, 69, 158, 259, 282, 187, 54, 265, 95, 77, 323, 353, 173, 399, 96, 619, 257, 301, 176, 220, 336, 266, 91, 178, 186, 61, 188, 303, 237, 161, 263, 277, 94, 216, 26, 258, 347, 119, 142, 327, 230, 273, 297, 383, 87, 107, 154, 453, 246, 183, 238, 354, 241, 214, 87, 108, 160, 180, 228, 139, 148, 280, 100, 295, 237, 69, 386, 273, 70, 148, 269, 287, 88, 129, 188, 297, 81, 124, 49, 46, 56, 148, 557, 192, 208, 87, 357, 258, 349, 189, 462, 215, 277, 277, 401, 451, 224, 118, 456, 336, 259, 170, 436, 176, 629, 236, 171, 107, 54, 88, 470, 274, 514, 337, 109, 569, 528, 235, 144, 265, 37, 179, 218, 345, 83, 399, 284, 248, 77, 174, 452, 358, 313, 79, 198, 282, 288, 279, 211, 263, 250, 60, 171, 130, 109, 109, 103, 203, 26, 89, 582, 258, 36, 186, 131, 182, 80, 61, 469, 536, 403, 170, 330, 795, 322, 222, 469, 180, 129, 82, 193, 96, 381, 97, 154, 301, 178, 331, 228, 169, 165, 95, 182, 202, 627, 193, 261, 135, 344, 119, 890, 385, 328, 251, 268, 109, 49, 314, 69, 144, 166, 88, 244, 328, 98, 347, 152, 105, 176, 283, 278, 110, 75, 303, 314, 102, 191, 159, 564, 251, 159, 337, 131, 139, 253, 164, 222, 112, 48, 231, 89, 173, 194, 380, 166, 131, 151, 85, 158, 140, 284, 286, 87, 376, 173, 108, 222, 134, 416, 567, 94, 146, 122, 60, 85, 167, 191, 481, 1022, 201, 464, 203, 38, 146, 286, 405, 352, 274, 139, 188, 246, 67, 77, 177, 342, 124, 384, 219, 240, 266, 465, 198, 130, 208, 108, 81, 265, 353, 280, 16, 179, 219, 218, 168, 176, 215, 59, 32, 181, 236, 149, 75, 52, 130, 156, 268, 165, 93, 297, 214, 297, 278, 660, 186, 144, 254, 157, 298, 64, 46, 177, 151, 121, 114, 242, 185, 282, 40, 436, 208, 155, 170, 135, 229, 125, 256, 72, 238, 61, 216, 260, 277, 182, 111, 404, 209, 56, 142, 239, 154, 568, 273, 171, 29, 89, 186, 376, 289, 203, 199, 355, 88, 469, 109, 195, 156, 328, 464, 249, 161, 118, 195, 111, 78, 135, 344, 473, 183, 59, 71, 41, 144, 264, 384, 121, 120, 114, 459, 208, 215, 158, 199, 182, 417, 136, 129, 144, 321, 161, 321, 183, 258, 640, 154, 91, 191, 290, 153, 139, 149, 189, 267, 88, 232, 381, 282, 225, 144, 290, 126, 249, 368, 146, 108, 146, 415, 218, 303, 81, 59, 82, 179, 98, 390, 186, 236, 37, 194, 294, 217, 260, 254, 115, 162, 60, 121, 196, 116, 221, 229, 475, 637, 128, 202, 176, 118, 269, 176, 232, 127, 47, 146, 229, 155, 325, 444, 110, 76, 322, 155, 146, 207, 200, 144, 231, 96, 230, 692, 217, 284, 529, 177, 231, 208, 159, 238, 208, 226, 35, 168, 61, 926, 194, 565, 59, 171, 217, 84, 152, 371, 204, 215, 101, 227, 449, 142, 106, 51, 198, 290, 62, 202, 245, 366, 275, 99, 298, 327, 74, 733, 83, 109, 187, 211, 53, 95, 248, 129, 538, 272, 169, 150, 236, 85, 192, 70, 41, 76, 55, 282, 136, 152, 60, 94, 187, 152, 202, 195, 229, 160, 264, 260, 325, 181, 165, 546, 282, 101, 38, 153, 488, 301, 97, 248, 87, 59, 143, 104, 81, 70, 208, 159, 104, 153, 488, 244, 250, 119, 148, 211, 368, 373, 215, 82, 246, 471, 344, 188, 91, 223, 180, 171, 179, 178, 97, 81, 190, 52, 236, 60, 142, 351, 275, 218, 284, 92, 254, 210, 173, 320, 310, 96, 101, 834, 129, 208, 391, 314, 333, 265, 118, 99, 120, 100, 338, 232, 131, 215, 409, 472, 193, 250, 79, 104, 174, 274, 304, 81, 498, 124, 110, 87, 132, 272, 135, 122, 508, 397, 156, 263, 214, 508, 91, 101, 70, 339, 174, 121, 271, 104, 164, 347, 138, 64, 447, 206, 106, 76, 91, 131, 178, 357, 316, 317, 61, 209, 44, 112, 126, 172, 94, 121, 217, 308, 80, 630, 65, 250, 53, 327, 88, 268, 214, 74, 290, 240, 77, 172, 87, 127, 365, 108, 104, 114, 196, 482, 321, 273, 457, 864, 217, 492, 216, 531, 32, 568, 136, 372, 156, 261, 85, 80, 90, 241, 181, 218, 380, 263, 350, 262, 341, 77, 207, 41, 112, 569, 117, 405, 335, 416, 91, 188, 259, 247, 194, 122, 156, 60, 264, 126, 591, 103, 229, 199, 178, 142, 181, 22, 96, 210, 158, 240, 101, 182, 245, 101, 126, 87, 272, 644, 166, 228, 542, 215, 173, 259, 59, 329, 158, 143, 209, 458, 40, 467, 113, 43, 318, 339, 301, 221, 288, 117, 74, 19, 44, 243, 233, 157, 158, 633, 157, 243, 257, 601, 287, 143, 241, 117, 497, 153, 174, 142, 254, 295, 539, 525, 124, 104, 155, 292, 225, 559, 117, 171, 957, 214, 212, 494, 186, 249, 47, 227, 336, 233, 68, 78, 103, 133, 42, 333, 115, 153, 231, 201, 199, 214, 58, 202, 88, 85, 279, 341, 108, 302, 240, 184, 262, 32, 92, 448, 389, 163, 105, 311, 319, 272, 148, 83, 110, 186, 464, 348, 73, 201, 200, 179, 168, 249, 281, 238, 87, 277, 148, 218, 155, 236, 171, 111, 211, 76, 178, 149, 116, 147, 283, 58, 27, 605, 275, 178, 152, 116, 226, 58, 222, 62, 182, 320, 473, 92, 385, 147, 234, 447, 321, 143, 167, 280, 113, 310, 327, 105, 713, 193, 51, 151, 277, 359, 112, 121, 53, 222, 234, 239, 156, 372, 520, 308, 682, 146, 187, 142, 215, 97, 85, 264, 290, 245, 129, 91, 199, 107, 131, 80, 133, 115, 392, 238, 286, 189, 155, 130, 111, 48, 163, 165, 56, 153, 156, 191, 338, 46, 80, 172, 230, 87, 209, 67, 80, 179, 553, 327, 145, 59, 222, 279, 261, 238, 140, 292, 107, 72, 300, 1369, 28, 523, 174, 161, 83, 94, 267, 127, 171, 84, 377, 200, 209, 590, 185, 365, 211, 139, 591, 298, 108, 186, 260, 113, 169, 147, 128, 223, 657, 440, 79, 351, 189, 407, 91, 108, 129, 59, 280, 80, 234, 105, 271, 210, 191, 78, 101, 148, 134, 78, 212, 446, 122, 125, 377, 56, 239, 192, 299, 456, 49, 226, 230, 87, 126, 212, 212, 176, 34, 257, 183, 72, 184, 458, 126, 292, 220, 109, 158, 597, 484, 164, 75, 75, 201, 358, 381, 102, 157, 340, 451, 138, 382, 160, 292, 42, 468, 145, 167, 264, 206, 132, 193, 105, 97, 543, 117, 96, 64, 84, 190, 313, 191, 285, 152, 107, 142, 306, 88, 84, 134, 362, 95, 189, 131, 299, 177, 529, 394, 242, 208, 99, 932, 158, 713, 87, 118, 112, 349, 290, 127, 436, 354, 310, 176, 55, 118, 188, 269, 127, 118, 234, 206, 103, 151, 64, 174, 282, 272, 120, 45, 144, 94, 136, 275, 82, 650, 350, 431, 254, 217, 159, 223, 156, 105, 191, 195, 362, 280, 184, 330, 217, 523, 106, 88, 422, 115, 412, 130, 99, 121, 293, 155, 383, 281, 375, 503, 142, 78, 129, 78, 275, 200, 180, 305, 301, 159, 207, 211, 142, 188, 171, 266, 167, 394, 127, 234, 55, 129, 88, 249, 204, 185, 473, 276, 51, 76, 61, 273, 172, 176, 149, 59, 286, 115, 88, 292, 272, 190, 470, 228, 90, 540, 550, 319, 233, 104, 287, 142, 102, 289, 98, 201, 50, 142, 130, 478, 169, 244, 205, 266, 83, 141, 112, 169, 487, 99, 119, 164, 209, 88, 218, 124, 60, 82, 138, 131, 116, 93, 184, 313, 547, 227, 313, 113, 207, 471, 359, 176, 369, 94, 298, 303, 148, 144, 618, 170, 306, 425, 228, 103, 60, 168, 144, 472, 257, 294, 123, 163, 197, 143, 213, 100, 43, 343, 130, 192, 59, 95, 145, 64, 142, 531, 201, 260, 174, 104, 175, 84, 257, 61, 557, 55, 186, 182, 200, 200, 51, 148, 109, 105, 73, 176, 29, 170, 265, 125, 87, 215, 88, 108, 333, 392, 124, 86, 193, 335, 364, 129, 106, 283, 167, 130, 187, 58, 245, 328, 518, 53, 66, 215, 45, 187, 197, 439, 62, 216, 134, 87, 217, 201, 182, 480, 655, 77, 100, 222, 135, 114, 182, 163, 248, 144, 225, 177, 563, 274, 316, 214, 60, 125, 129, 309, 206, 116, 348, 155, 128, 364, 334, 427, 169, 228, 162, 137, 191, 110, 122, 94, 66, 307, 150, 188, 327, 240, 85, 57, 154, 73, 89, 267, 99, 106, 74, 160, 293, 159, 123, 131, 240, 236, 56, 136, 195, 367, 105, 244, 376, 122, 120, 188, 606, 126, 243, 216, 347, 205, 215, 345, 175, 232, 242, 195, 179, 74, 50, 182, 105, 421, 365, 605, 81, 210, 501, 296, 263, 348, 691, 114, 399, 168, 96, 137, 188, 219, 154, 190, 147, 89, 303, 384, 150, 391, 113, 189, 113, 146, 509, 250, 255, 72, 201, 146, 107, 225, 223, 294, 412, 223, 180, 124, 152, 96, 162, 97, 110, 111, 257, 181, 163, 124, 157, 63, 213, 69, 590, 210, 211, 42, 70, 232, 327, 68, 190, 41, 421, 119, 260, 262, 188, 77, 366, 86, 209, 115, 204, 282, 145, 161, 223, 212, 142, 183, 261, 142, 150, 49, 276, 144, 33, 49, 29, 463, 169, 174, 140, 68, 234, 214, 269, 215, 522, 98, 96, 82, 362, 169, 94, 356, 405, 175, 204, 241, 156, 340, 111, 147, 400, 130, 140, 193, 276, 119, 31, 304, 262, 122, 199, 47, 65, 92, 820, 182, 99, 202, 353, 90, 115, 166, 114, 54, 191, 345, 176, 216, 97, 228, 186, 58, 250, 108, 318, 108, 142, 30, 175, 301, 155, 408, 195, 227, 74, 758, 133, 47, 107, 494, 202, 173, 281, 188, 50, 87, 114, 185, 432, 38, 117, 106, 45, 300, 196, 432, 130, 150, 55, 311, 166, 319, 88, 384, 195, 405, 270, 302, 144, 345, 44, 266, 234, 64, 129, 157, 121, 269, 293, 249, 144, 279, 236, 173, 610, 220, 84, 255, 55, 310, 256, 177, 340, 327, 134, 56, 661, 207, 259, 143, 586, 594, 256, 240, 466, 457, 841, 236, 599, 139, 256, 401, 846, 328, 92, 162, 200, 719, 349, 827, 558, 149, 439, 527, 316, 458, 344, 389, 390, 710, 594, 125, 461, 368, 556, 633, 508, 803, 338, 281, 260, 581, 587, 203, 237, 239, 241, 387, 197, 473, 256, 419, 68, 113, 94, 184, 873, 172, 585, 317, 272, 72, 181, 1769, 523, 340, 340, 490, 704, 325, 810, 705, 301, 183, 88, 511, 441, 606, 1006, 356, 424, 399, 124, 181, 230, 240, 330, 353, 437, 167, 504, 366, 529, 74, 388, 269, 491, 537, 361, 306, 342, 43, 190, 240, 356, 650, 760, 193, 115, 744, 359, 843, 302, 599, 24, 180, 1034, 153, 679, 877, 145, 112, 199, 452, 85, 667, 295, 415, 643, 256, 249, 360, 299, 219, 1387, 228, 295, 202, 291, 571, 614, 377, 80, 425, 321, 316, 547, 178, 246, 493, 420, 103, 109, 161, 338, 364, 388, 578, 353, 401, 339, 430, 196, 309, 568, 141, 1121, 340, 441, 424, 1626, 308, 113, 457, 85, 144, 167, 359, 216, 292, 676, 319, 153, 270, 937, 235, 527, 610, 511, 737, 121, 104, 294, 280, 154, 149, 180, 222, 152, 532, 563, 1112, 407, 151, 317, 486, 132, 453, 386, 330, 509, 573, 105, 323, 222, 336, 368, 623, 712, 348, 197, 536, 186, 471, 227, 516, 103, 67, 189, 1076, 371, 353, 280, 200, 388, 913, 325, 430, 594, 458, 71, 476, 371, 73, 670, 197, 793, 466, 175, 218, 1028, 608, 179, 741, 575, 255, 604, 101, 540, 353, 304, 262, 451, 366, 335, 276, 249, 218, 474, 240, 796, 325, 267, 338, 474, 110, 439, 153, 620, 406, 1779, 274, 137, 264, 218, 838, 432, 496, 373, 443, 30, 500, 294, 279, 463, 835, 350, 253, 294, 173, 168, 247, 717, 714, 320, 40, 652, 625, 450, 312, 813, 607, 128, 710, 156, 149, 349, 310, 660, 208, 143, 840, 215, 323, 361, 375, 41, 617, 384, 319, 782, 402, 113, 224, 570, 153, 350, 300, 297, 205, 784, 97, 852, 203, 438, 306, 114, 554, 376, 296, 259, 308, 155, 490, 248, 108, 821, 78, 278, 828, 477, 593, 360, 47, 308, 212, 272, 467, 509, 142, 746, 216, 390, 155, 287, 125, 513, 99, 68, 220, 130, 610, 283, 87, 41, 389, 120, 78, 133, 174, 327, 599, 384, 385, 343, 397, 363, 629, 559, 114, 1171, 368, 43, 124, 217, 851, 198, 557, 620, 346, 792, 575, 616, 600, 178, 127, 625, 68, 233, 347, 220, 179, 286, 210, 613, 181, 674, 143, 424, 745, 540, 132, 288, 159, 52, 275, 170, 458, 200, 641, 394, 576, 95, 574, 123, 336, 978, 257, 136, 1044, 131, 473, 382, 310, 359, 138, 435, 631, 1050, 263, 289, 356, 314, 160, 297, 532, 392, 1170, 236, 436, 366, 186, 420, 447, 500, 198, 118, 217, 324, 59, 450, 243, 175, 244, 244, 426, 287, 295, 345, 187, 677, 236, 486, 125, 798, 318, 451, 1053, 175, 309, 299, 61, 752, 360, 565, 647, 294, 545, 427, 604, 260, 152, 440, 242, 470, 257, 376, 181, 472, 459, 175, 843, 619, 345, 119, 302, 148, 916, 246, 363, 313, 763, 298, 546, 315, 335, 557, 666, 247, 539, 148, 184, 172, 122, 582, 362, 192, 206, 124, 663, 99, 46, 728, 429, 835, 277, 545, 45, 540, 170, 191, 190, 329, 80, 356, 475, 126, 590, 183, 449, 667, 203, 204, 214, 290, 949, 490, 213, 613, 317, 670, 533, 996, 271, 594, 336, 316, 160, 139, 452, 293, 232, 375, 523, 775, 379, 419, 1009, 280, 415, 420, 413, 351, 851, 530, 377, 618, 816, 274, 181, 654, 220, 47, 294, 298, 813, 129, 330, 355, 266, 288, 471, 486, 123, 114, 276, 90, 516, 28, 254, 68, 380, 501, 26, 494, 371, 197, 469, 297, 345, 129, 208, 774, 127, 189, 422, 128, 96, 495, 89, 330, 386, 339, 761, 177, 1004, 561, 257, 239, 676, 427, 114, 227, 213, 424, 352, 44, 159, 361, 882, 547, 210, 161, 395, 93, 173, 112, 337, 659, 889, 304, 565, 421, 162, 318, 746, 297, 439, 46, 802, 192, 147, 112, 310, 231, 305, 780, 510, 175, 186, 81, 126, 289, 622, 144, 269, 639, 202, 37, 425, 360, 533, 428, 309, 407, 58, 206, 363, 1066, 277, 490, 71, 620, 730, 288, 89, 111, 595, 698, 953, 298, 980, 363, 310, 512, 192, 685, 1242, 94, 383, 232, 191, 557, 657, 631, 246, 130, 280, 290, 258, 265, 387, 371, 167, 330, 434, 419, 227, 937, 435, 368, 361, 159, 320, 161, 279, 519, 576, 265, 1113, 909, 235, 332, 322, 839, 249, 415, 262, 717, 367, 452, 401, 198, 474, 346, 637, 946, 291, 214, 432, 391, 563, 280, 583, 824, 829, 115, 181, 665, 545, 167, 214, 221, 221, 570, 480, 477, 180, 131, 208, 546, 798, 282, 180, 193, 240, 355, 347, 772, 360, 394, 315, 637, 134, 295, 96, 412, 32, 849, 240, 41, 223, 404, 352, 485, 243, 466, 104, 578, 351, 202, 124, 367, 386, 562, 287, 48, 1095, 371, 219, 50, 295, 109, 190, 362, 97, 195, 539, 65, 263, 403, 188, 442, 508, 202, 135, 262, 500, 111, 359, 227, 226, 261, 119, 257, 227, 164, 455, 97, 303, 353, 546, 515, 427, 282, 182, 339, 284, 318, 616, 122, 183, 166, 304, 211, 372, 479, 137, 156, 232, 415, 694, 93, 417, 816, 115, 52, 225, 336, 319, 274, 232, 382, 176, 398, 364, 276, 153, 83, 143, 207, 503, 378, 454, 196, 408, 138, 205, 411, 626, 383, 166, 249, 299, 217, 432, 184, 496, 196, 437, 282, 180, 206, 51, 371, 261, 479, 190, 930, 130, 651, 109, 91, 457, 114, 350, 324, 223, 559, 246, 323, 199, 181, 102, 415, 329, 752, 481, 120, 533, 852, 178, 248, 151, 709, 271, 384, 330, 366, 228, 333, 660, 124, 160, 144, 144, 369, 183, 404, 294, 455, 411, 320, 762, 234, 346, 201, 186, 601, 69, 248, 521, 570, 125, 511, 150, 117, 272, 335, 173, 149, 363, 232, 343, 224, 204, 93, 237, 87, 306, 170, 476, 266, 651, 360, 331, 289, 103, 153, 124, 72, 81, 183, 177, 268, 92, 334, 536, 551, 138, 262, 351, 588, 228, 141, 216, 514, 138, 360, 52, 163, 101, 125, 294, 764, 159, 419, 92, 147, 535, 414, 101, 195, 324, 122, 467, 293, 264, 164, 202, 126, 174, 177, 632, 293, 138, 351, 128, 201, 213, 546, 223, 218, 120, 224, 185, 479, 235, 206, 319, 337, 530, 252, 130, 280, 319, 153, 164, 201, 230, 525, 70, 431, 478, 63, 219, 259, 90, 117, 265, 252, 366, 97, 92, 250, 105, 150, 255, 194, 192, 279, 335, 319, 123, 277, 381, 340, 283, 680, 334, 150, 113, 176, 176, 170, 302, 255, 695, 208, 534, 74, 218, 864, 391, 267, 181, 508, 322, 230, 310, 627, 130, 97, 177, 741, 355, 599, 290, 188, 248, 260, 53, 240, 372, 222, 218, 81, 547, 159, 208, 86, 283, 247, 248, 113, 119, 65, 136, 271, 292, 41, 86, 493, 388, 150, 249, 162, 339, 525, 152, 191, 658, 54, 276, 246, 260, 208, 151, 177, 266, 139, 263, 212, 234, 87, 388, 504, 100, 410, 200, 35, 144, 224, 143, 198, 349, 259, 46, 424, 775, 118, 45, 444, 342, 423, 443, 158, 117, 162, 190, 164, 722, 227, 165, 183, 265, 428, 202, 78, 403, 479, 386, 128, 330, 295, 275, 284, 207, 455, 108, 329, 163, 102, 231, 188, 209, 779, 398, 422, 157, 330, 824, 353, 182, 369, 554, 301, 398, 422, 261, 308, 105, 910, 400, 165, 148, 329, 246, 490, 103, 251, 224, 204, 558, 466, 723, 181, 538, 136, 96, 186, 367, 290, 378, 277, 376, 595, 419, 346, 415, 232, 416, 538, 269, 161, 162, 291, 147, 425, 209, 153, 122, 38, 169, 182, 198, 369, 362, 213, 85, 121, 738, 162, 93, 363, 325, 33, 157, 134, 216, 103, 188, 259, 417, 603, 135, 284, 398, 653, 450, 497, 589, 488, 247, 152, 107, 887, 579, 492, 172, 279, 104, 110, 65, 304, 557, 384, 333, 339, 455, 564, 1313, 216, 249, 561, 56, 54, 641, 58, 131, 205, 99, 798, 212, 68, 268, 456, 646, 91, 236, 728, 1167, 305, 117, 538, 287, 155, 218, 478, 469, 193, 93, 247, 736, 949, 771, 636, 491, 413, 482, 78, 477, 622, 236, 436, 226, 123, 235, 103, 175, 397, 667, 498, 207, 211, 172, 332, 148, 314, 51, 289, 56, 526, 331, 429, 395, 364, 492, 113, 282, 56, 905, 470, 166, 145, 65, 327, 433, 71, 594, 340, 627, 114, 624, 176, 208, 180, 228, 317, 636, 1105, 298, 330, 448, 851, 351, 672, 179, 177, 495, 748, 236, 771, 275, 692, 257, 45, 442, 285, 586, 258, 277, 712, 66, 254, 405, 319, 745, 613, 170, 982, 295, 117, 400, 273, 340, 100, 554, 518, 460, 20, 114, 255, 294, 238, 570, 447, 643, 350, 259, 622, 320, 558, 211, 522, 212, 468, 705, 87, 668, 446, 139, 89, 52, 96, 361, 544, 352, 212, 95, 131, 549, 139, 346, 483, 616, 831, 357, 610, 446, 911, 348, 505, 382, 476, 273, 417, 322, 324, 198, 720, 565, 61, 604, 952, 531, 558, 522, 256, 272, 832, 578, 383, 649, 492, 512, 257, 177, 151, 205, 465, 678, 485, 1199, 579, 303, 596, 436, 563, 440, 607, 790, 152, 641, 226, 157, 367, 775, 640, 345, 546, 575, 159, 388, 265, 347, 758, 637, 663, 284, 98, 32, 487, 915, 238, 243, 275, 242, 557, 559, 302, 58, 265, 735, 194, 370, 144, 268, 49, 637, 646, 337, 438, 115, 507, 338, 302, 403, 183, 430, 391, 179, 517, 165, 212, 143, 491, 42, 117, 1061, 216, 501, 711, 308, 356, 347, 171, 756, 797, 222, 329, 490, 366, 398, 432, 165, 508, 1602, 713, 407, 1284, 1859, 615, 545, 304, 102, 210, 105, 362, 362, 134, 393, 116, 1168, 656, 282, 697, 243, 92, 78, 730, 22, 219, 62, 449, 161, 260, 362, 312, 298, 502, 157, 638, 282, 57, 360, 934, 545, 1012, 570, 120, 686, 282, 674, 96, 153, 333, 219, 384, 329, 421, 360, 470, 931, 955, 371, 478, 309, 174, 1094, 424, 509, 51, 203, 256, 735, 226, 99, 389, 381, 213, 49, 979, 152, 660, 308, 684, 179, 990, 648, 111, 164, 694, 270, 899, 622, 505, 820, 43, 636, 163, 188, 34, 305, 254, 439, 420, 614, 153, 306, 347, 95, 709, 197, 444, 570, 219, 191, 106, 195, 344, 186, 977, 160, 165, 129, 483, 467, 410, 202, 524, 389, 53, 220, 300, 72, 162, 222, 81, 67, 89, 193, 120, 90, 68, 35, 70, 204, 156, 281, 42, 210, 146, 148, 68, 326, 60, 106, 120, 129, 80, 160, 128, 38, 235, 168, 277, 246, 178, 91, 118, 182, 472, 319, 110, 138, 111, 224, 141, 135, 360, 94, 29, 94, 227, 313, 51, 261, 52, 209, 204, 295, 56, 289, 129, 224, 226, 97, 62, 70, 97, 134, 340, 389, 78, 108, 191, 116, 168, 184, 230, 65, 149, 213, 141, 229, 263, 471, 201, 135, 268, 118, 209, 169, 52, 106, 85, 68, 133, 224, 54, 116, 118, 78, 181, 532, 266, 216, 97, 175, 128, 231, 83, 300, 359, 169, 522, 127, 203, 369, 342, 60, 191, 183, 195, 425, 109, 130, 270, 92, 113, 182, 91, 134, 516, 135, 197, 438, 136, 103, 356, 91, 91, 111, 423, 92, 428, 343, 115, 128, 204, 71, 66, 109, 190, 132, 110, 62, 74, 167, 303, 202, 159, 185, 65, 189, 215, 118, 134, 167, 241, 81, 281, 130, 92, 179, 535, 213, 321, 121, 292, 65, 125, 147, 113, 142, 125, 137, 67, 256, 49, 37, 392, 222, 295, 668, 102, 177, 130, 90, 509, 93, 172, 52, 50, 399, 144, 82, 219, 67, 43, 103, 188, 99, 185, 245, 115, 156, 74, 110, 120, 549, 38, 171, 113, 223, 62, 528, 253, 147, 143, 75, 203, 206, 152, 351, 156, 129, 325, 211, 354, 178, 368, 74, 88, 44, 398, 746, 109, 105, 194, 72, 52, 243, 46, 100, 142, 395, 90, 128, 295, 143, 169, 390, 197, 145, 148, 157, 185, 109, 444, 54, 105, 194, 55, 68, 154, 180, 242, 98, 52, 79, 200, 299, 187, 83, 227, 185, 126, 164, 84, 179, 80, 130, 149, 196, 90, 74, 342, 125, 134, 294, 132, 256, 163, 88, 365, 118, 176, 150, 179, 658, 244, 352, 79, 109, 178, 238, 242, 280, 70, 44, 123, 212, 67, 172, 168, 81, 180, 161, 322, 149, 366, 287, 58, 224, 279, 184, 82, 164, 225, 360, 202, 116, 98, 147, 228, 231, 187, 137, 304, 192, 298, 175, 188, 81, 103, 220, 124, 101, 80, 253, 81, 70, 222, 372, 170, 57, 87, 280, 187, 236, 49, 381, 257, 152, 135, 210, 234, 166, 111, 102, 189, 77, 108, 111, 151, 212, 145, 145, 373, 120, 187, 53, 225, 120, 129, 104, 68, 260, 149, 37, 85, 371, 50, 68, 73, 324, 349, 116, 97, 67, 90, 253, 48, 48, 281, 112, 132, 215, 318, 123, 64, 270, 424, 168, 209, 48, 179, 74, 194, 151, 135, 52, 176, 189, 128, 129, 121, 71, 269, 158, 222, 193, 89, 55, 51, 576, 81, 75, 83, 83, 322, 365, 347, 148, 142, 177, 172, 191, 127, 74, 285, 183, 64, 96, 120, 223, 263, 66, 218, 273, 90, 308, 135, 142, 196, 70, 105, 227, 76, 169, 143, 129, 208, 616, 91, 223, 446, 156, 174, 85, 229, 185, 210, 61, 213, 84, 240, 272, 289, 185, 193, 93, 98, 107, 262, 76, 199, 56, 142, 401, 322, 345, 274, 330, 150, 198, 297, 101, 169, 80, 240, 33, 340, 169, 222, 225, 60, 220, 204, 262, 287, 157, 61, 187, 353, 407, 559, 205, 110, 162, 103, 74, 114, 193, 86, 235, 164, 98, 121, 172, 71, 237, 191, 132, 124, 64, 94, 123, 151, 129, 268, 201, 61, 52, 275, 170, 323, 122, 93, 181, 67, 108, 102, 151, 203, 231, 138, 241, 88, 96, 458, 158, 80, 120, 143, 334, 334, 364, 58, 28, 133, 202, 128, 228, 151, 151, 742, 304, 20, 293, 127, 213, 64, 153, 145, 106, 201, 150, 55, 177, 63, 253, 313, 257, 58, 264, 122, 123, 67, 210, 133, 143, 141, 33, 199, 77, 252, 169, 204, 404, 67, 286, 119, 286, 204, 108, 262, 166, 60, 165, 89, 453, 104, 135, 397, 99, 162, 93, 100, 195, 181, 374, 93, 199, 51, 140, 186, 183, 567, 118, 88, 178, 368, 44, 51, 70, 123, 89, 85, 47, 112, 304, 299, 372, 296, 112, 162, 161, 191, 133, 168, 340, 143, 137, 127, 112, 148, 91, 199, 134, 56, 282, 192, 41, 193, 134, 386, 132, 141, 293, 150, 353, 348, 240, 300, 25, 214, 135, 532, 198, 235, 191, 37, 111, 247, 394, 323, 284, 237, 156, 287, 210, 34, 133, 180, 191, 291, 71, 218, 225, 496, 216, 82, 183, 119, 280, 229, 160, 202, 161, 127, 143, 122, 489, 74, 206, 77, 90, 193, 316, 170, 161, 211, 707, 723, 303, 134, 369, 234, 256, 325, 357, 143, 295, 57, 111, 187, 133, 288, 441, 224, 216, 1028, 89, 696, 421, 178, 733, 108, 138, 507, 331, 435, 193, 275, 356, 255, 100, 104, 598, 311, 341, 286, 207, 136, 604, 606, 205, 287, 107, 328, 314, 247, 65, 331, 31, 1114, 231, 127, 129, 878, 82, 107, 185, 376, 1160, 963, 636, 171, 430, 319, 227, 446, 274, 99, 302, 152, 196, 59, 103, 201, 968, 111, 88, 213, 441, 173, 191, 327, 146, 401, 183, 386, 259, 518, 391, 451, 99, 510, 237, 319, 443, 229, 540, 206, 87, 81, 370, 172, 146, 281, 443, 161, 123, 532, 88, 130, 158, 134, 416, 155, 128, 284, 302, 557, 208, 416, 150, 272, 641, 57, 997, 275, 136, 118, 122, 437, 198, 572, 341, 404, 639, 579, 419, 846, 28, 50, 584, 367, 362, 238, 100, 162, 260, 432, 254, 102, 235, 1334, 378, 588, 386, 100, 365, 183, 91, 67, 365, 73, 557, 46, 184, 709, 82, 165, 100, 261, 740, 377, 555, 359, 90, 733, 248, 393, 182, 808, 215, 203, 709, 800, 115, 134, 163, 322, 611, 128, 85, 315, 415, 640, 744, 103, 328, 525, 236, 308, 224, 291, 297, 366, 343, 98, 104, 254, 689, 121, 375, 58, 431, 362, 149, 259, 146, 364, 84, 171, 80, 257, 174, 288, 240, 38, 214, 86, 155, 319, 184, 397, 188, 445, 225, 128, 276, 450, 559, 1028, 159, 82, 118, 147, 652, 295, 183, 636, 261, 761, 160, 316, 380, 108, 86, 234, 47, 190, 469, 305, 109, 322, 189, 586, 347, 107, 118, 86, 245, 161, 746, 313, 453, 273, 362, 320, 85, 151, 413, 577, 696, 107, 145, 134, 651, 102, 661, 160, 770, 111, 216, 180, 553, 1461, 616, 331, 337, 557, 125, 361, 300, 112, 222, 326, 108, 181, 695, 79, 189, 66, 321, 277, 182, 381, 205, 200, 129, 503, 872, 850, 79, 259, 234, 537, 338, 233, 139, 284, 463, 632, 514, 637, 220, 394, 32, 72, 323, 150, 845, 215, 540, 454, 194, 184, 165, 120, 505, 216, 595, 655, 161, 152, 233, 77, 70, 198, 449, 402, 742, 173, 202, 759, 973, 82, 157, 481, 89, 433, 392, 99, 442, 490, 133, 177, 91, 377, 374, 235, 237, 233, 161, 1501, 740, 114, 76, 61, 226, 169, 263, 409, 550, 491, 865, 636, 627, 281, 118, 280, 201, 66, 299, 966, 487, 437, 354, 125, 64, 79, 265, 305, 223, 182, 187, 387, 298, 465, 187, 252, 235, 73, 97, 217, 68, 183, 188, 103, 156, 303, 247, 866, 118, 111, 308, 154, 233, 600, 70, 125, 130, 111, 336, 544, 81, 83, 224, 101, 298, 52, 357, 164, 111, 182, 103, 79, 150, 76, 452, 149, 107, 133, 169, 30, 128, 356, 221, 528, 273, 131, 282, 68, 192, 490, 366, 397, 230, 201, 845, 177, 266, 83, 129, 354, 338, 624, 282, 83, 301, 133, 208, 139, 45, 668, 251, 120, 122, 175, 186, 530, 289, 289, 126, 212, 41, 407, 268, 360, 255, 102, 189, 262, 104, 179, 192, 209, 235, 87, 217, 1515, 143, 284, 278, 417, 397, 537, 201, 184, 190, 125, 162, 74, 521, 406, 205, 235, 117, 406, 80, 112, 317, 340, 123, 183, 162, 137, 158, 150, 348, 577, 177, 209, 181, 292, 315, 344, 189, 107, 210, 115, 83, 282, 234, 231, 71, 278, 544, 169, 137, 322, 56, 240, 195, 80, 244, 215, 283, 171, 308, 360, 561, 245, 301, 171, 417, 378, 187, 312, 96, 443, 195, 349, 172, 266, 322, 57, 96, 83, 204, 202, 326, 112, 194, 297, 152, 226, 215, 121, 356, 188, 297, 225, 234, 140, 440, 183, 254, 178, 277, 185, 307, 33, 152, 289, 660, 283, 92, 122, 79, 138, 137, 386, 214, 170, 214, 140, 591, 707, 249, 156, 214, 404, 107, 223, 49, 137, 337, 480, 974, 73, 132, 420, 263, 235, 531, 229, 295, 157, 368, 199, 176, 82, 172, 74, 127, 157, 478, 207, 262, 413, 252, 231, 118, 76, 189, 98, 187, 83, 136, 69, 181, 247, 401, 76, 176, 128, 201, 190, 222, 234, 187, 156, 211, 225, 58, 216, 164, 355, 326, 273, 95, 302, 238, 68, 211, 149, 64, 56, 159, 697, 164, 192, 202, 190, 609, 238, 212, 116, 150, 240, 665, 233, 184, 62, 294, 640, 211, 154, 312, 223, 436, 360, 453, 73, 165, 68, 218, 235, 258, 321, 283, 76, 395, 254, 84, 126, 149, 149, 140, 269, 586, 166, 95, 380, 140, 102, 69, 51, 71, 215, 347, 290, 255, 154, 285, 111, 213, 99, 95, 367, 85, 225, 168, 167, 284, 197, 151, 356, 119, 328, 116, 148, 129, 194, 864, 347, 537, 238, 227, 338, 221, 71, 153, 61, 234, 253, 219, 349, 203, 242, 193, 432, 377, 60, 70, 162, 106, 75, 326, 99, 74, 52, 521, 115, 280, 350, 190, 104, 182, 549, 221, 293, 137, 345, 269, 99, 190, 55, 752, 140, 206, 125, 206, 402, 262, 188, 428, 209, 665, 277, 103, 395, 142, 220, 275, 154, 231, 133, 261, 572, 220, 99, 145, 377, 184, 695, 178, 142, 215, 306, 43, 109, 111, 84, 85, 577, 229, 267, 83, 127, 358, 178, 196, 432, 156, 260, 106, 299, 247, 97, 197, 84, 96, 102, 194, 313, 242, 253, 206, 42, 88, 204, 64, 89, 250, 383, 178, 95, 162, 20, 54, 88, 107, 508, 215, 470, 188, 220, 196, 133, 238, 190, 193, 190, 89, 271, 418, 174, 99, 394, 197, 309, 200, 332, 71, 157, 288, 228, 505, 119, 84, 101, 423, 388, 153, 146, 459, 398, 215, 270, 214, 134, 240, 32, 86, 332, 256, 85, 222, 132, 531, 378, 227, 182, 42, 342, 90, 198, 217, 279, 226, 561, 142, 305, 331, 235, 142, 157, 375, 117, 56, 673, 364, 131, 119, 87, 231, 178, 231, 58, 195, 301, 273, 279, 276, 252, 237, 205, 362, 124, 151, 164, 114, 294, 228, 132, 166, 314, 265, 96, 185, 234, 160, 319, 239, 83, 96, 278, 659, 190, 155, 129, 178, 418, 121, 64, 209, 299, 246, 515, 159, 225, 165, 336, 423, 143, 306, 158, 174, 252, 177, 186, 286, 69, 93, 130, 170, 36, 135, 291, 199, 148, 131, 110, 696, 356, 527, 516, 264, 836, 376, 297, 213, 310, 118, 59, 216, 291, 126, 74, 661, 292, 386, 301, 415, 235, 186, 259, 87, 467, 130, 165, 106, 119, 98, 159, 139, 290, 145, 60, 110, 67, 255, 116, 51, 118, 224, 732, 185, 132, 202, 434, 341, 229, 514, 95, 233, 144, 113, 415, 189, 258, 895, 184, 309, 452, 369, 60, 95, 213, 259, 181, 171, 197, 89, 233, 242, 345, 227, 155, 92, 292, 244, 237, 140, 194, 109, 167, 212, 224, 128, 93, 168, 215, 137, 121, 120, 142, 89, 85, 232, 765, 278, 103, 167, 116, 260, 173, 238, 69, 50, 86, 163, 167, 177, 299, 168, 225, 229, 312, 174, 203, 184, 174, 684, 143, 264, 141, 596, 325, 175, 143, 168, 302, 84, 209, 99, 195, 185, 17, 340, 98, 126, 63, 331, 420, 97, 149, 196, 206, 61, 141, 263, 100, 74, 493, 719, 290, 135, 171, 145, 66, 173, 147, 175, 315, 190, 227, 160, 96, 208, 143, 178, 152, 181, 361, 106, 544, 122, 288, 121, 61, 193, 118, 135, 226, 172, 204, 60, 207, 181, 219, 88, 307, 200, 519, 211, 174, 204, 47, 244, 295, 172, 324, 333, 134, 169, 237, 187, 136, 106, 51, 429, 147, 32, 177, 340, 370, 611, 273, 46, 173, 297, 106, 63, 453, 92, 117, 68, 67, 352, 287, 369, 115, 123, 85, 59, 131, 213, 263, 348, 191, 240, 445, 106, 76, 288, 185, 220, 344, 94, 153, 394, 165, 259, 434, 309, 166, 464, 266, 138, 393, 529, 189, 160, 154, 256, 211, 323, 173, 271, 511, 358, 71, 275, 379, 94, 274, 353, 276, 228, 81, 377, 305, 655, 88, 87, 69, 239, 190, 191, 300, 246, 160, 233, 288, 90, 129, 165, 82, 224, 134, 345, 185, 229, 92, 185, 187, 190, 255, 361, 166, 136, 238, 239, 152, 211, 446, 164, 280, 264, 142, 190, 297, 161, 359, 63, 440, 122, 77, 100, 222, 87, 204, 187, 162, 547, 111, 262, 201, 265, 302, 165, 213, 403, 174, 436, 95, 190, 468, 290, 170, 257, 240, 126, 617, 59, 202, 289, 382, 152, 147, 370, 371, 240, 200, 142, 132, 131, 87, 119, 150, 201, 175, 158, 262, 369, 283, 196, 145, 124, 197, 1050, 89, 203, 126, 174, 237, 231, 213, 99, 261, 130, 171, 171, 430, 195, 239, 169, 48, 151, 52, 211, 199, 326, 481, 219, 381, 147, 360, 287, 102, 341, 664, 153, 133, 346, 370, 473, 889, 237, 390, 466, 438, 520, 398, 346, 675, 145, 140, 225, 301, 273, 230, 431, 181, 659, 228, 286, 86, 245, 342, 216, 136, 603, 166, 222, 100, 931, 305, 188, 190, 298, 127, 80, 93, 62, 141, 98, 157, 74, 168, 66, 159, 1, 1, 1, 1, 139, 307, 64, 61, 192, 278, 119, 130, 105, 74, 152, 101, 27, 62, 105, 53, 62, 52, 131, 126, 215, 159, 52, 310, 160, 119, 62, 64, 57, 61, 100, 196, 133, 1055, 276, 328, 32, 595, 721, 437, 854, 495, 180, 268, 573, 369, 1048, 1155, 445, 214, 556, 88, 563, 1274, 541, 464, 77, 20, 194, 219, 621, 574, 390, 488, 490, 426, 35, 489, 415, 260, 635, 110, 573, 405, 195, 183, 249, 476, 612, 224, 526, 54, 469, 548, 84, 73, 585, 222, 408, 36, 549, 297, 485, 64, 1195, 579, 180, 624, 285, 362, 379, 540, 260, 212, 552, 68, 161, 231, 78, 203, 80, 103, 63, 192, 99, 92, 101, 135, 84, 143, 188, 165, 91, 63, 198, 74, 56, 59, 70, 68, 89, 103, 87, 151, 172, 202, 100, 55, 102, 62, 87, 96, 131, 64, 81, 68, 165, 50, 189, 55, 207, 169, 65, 72, 80, 72, 143, 62, 56, 68, 101, 216, 56, 73, 71, 60, 156, 66, 202, 90, 76, 91, 69, 64, 139, 49, 92, 60, 186, 194, 195, 216, 73, 53, 75, 51, 77, 60, 68, 216, 137, 61, 84, 56, 61, 71, 213, 156, 98, 136, 56, 75, 72, 124, 70, 72, 58, 81, 75, 71, 88, 76, 75, 187, 70, 93, 66, 115, 67, 235, 64, 64, 56, 205, 209, 136, 56, 97, 69, 51, 129, 86, 221, 104, 100, 74, 76, 74, 58, 108, 63, 181, 116, 61, 194, 149, 149, 100, 110, 125, 84, 76, 150, 56, 80, 52, 79, 55, 200, 69, 70, 86, 211, 71, 69, 65, 92, 56, 58, 120, 75, 62, 91, 76, 181, 86, 62, 57, 65, 65, 52, 192, 60, 204, 68, 110, 124, 94, 93, 51, 91, 213, 98, 64, 69, 78, 297, 63, 111, 124, 74, 99, 205, 180, 163, 52, 97, 82, 141, 140, 90, 118, 64, 69, 61, 212, 99, 115, 102, 64, 57, 56, 72, 104, 80, 65, 127, 61, 72, 177, 151, 67, 69, 58, 95, 82, 64, 213, 137, 94, 86, 189, 78, 183, 234, 59, 79, 205, 59, 185, 100, 124, 145, 56, 115, 82, 61, 152, 78, 177, 118, 84, 119, 206, 77, 51, 73, 67, 72, 77, 90, 65, 49, 67, 60, 79, 125, 86, 107, 139, 72, 120, 56, 141, 68, 88, 58, 100, 62, 107, 68, 76, 54, 107, 60, 78, 60, 132, 111, 83, 185, 205, 81, 162, 105, 64, 82, 197, 111, 75, 123, 91, 86, 61, 56, 130, 71, 95, 64, 74, 83, 65, 66, 97, 96, 105, 76, 218, 94, 88, 100, 79, 78, 91, 80, 73, 56, 163, 56, 60, 196, 74, 246, 70, 179, 56, 74, 68, 58, 124, 72, 165, 230, 92, 163, 78, 150, 57, 90, 209, 78, 227, 71, 193, 66, 148, 75, 179, 210, 63, 55, 86, 71, 80, 70, 100, 232, 213, 52, 105, 84, 190, 62, 132, 75, 66, 193, 81, 56, 168, 84, 88, 66, 100, 82, 87, 58, 69, 69, 102, 75, 62, 73, 131, 64, 149, 69, 75, 135, 57, 68, 175, 82, 216, 54, 209, 58, 56, 53, 92, 194, 210, 77, 79, 174, 48, 203, 60, 60, 116, 60, 52, 104, 259, 70, 209, 70, 103, 139, 220, 136, 120, 127, 118, 95, 213, 163, 50, 178, 71, 208, 79, 80, 92, 131, 262, 76, 79, 71, 60, 157, 71, 245, 53, 68, 116, 121, 205, 66, 139, 237, 78, 60, 205, 70, 107, 77, 73, 65, 216, 160, 51, 184, 89, 94, 106, 190, 76, 77, 62, 75, 75, 64, 74, 70, 174, 68, 129, 192, 140, 74, 54, 74, 63, 182, 111, 71, 84, 64, 78, 141, 109, 168, 80, 85, 216, 60, 201, 67, 104, 119, 60, 74, 100, 89, 69, 102, 73, 75, 103, 104, 59, 50, 72, 65, 60, 167, 102, 56, 60, 59, 75, 105, 104, 89, 65, 64, 112, 74, 126, 233, 101, 50, 213, 76, 77, 52, 72, 97, 83, 216, 154, 138, 68, 78, 71, 68, 94, 56, 111, 169, 60, 145, 185, 56, 155, 77, 78, 60, 93, 109, 63, 91, 145, 89, 64, 85, 57, 214, 109, 87, 68, 55, 64, 202, 93, 92, 66, 91, 83, 58, 105, 97, 69, 179, 95, 103, 190, 55, 103, 113, 55, 212, 67, 110, 197, 237, 66, 65, 148, 71, 145, 224, 103, 111, 188, 61, 75, 189, 92, 74, 82, 165, 105, 228, 72, 143, 111, 76, 72, 122, 64, 107, 149, 182, 88, 59, 213, 144, 75, 89, 83, 132, 224, 72, 87, 54, 68, 72, 75, 78, 69, 80, 125, 60, 71, 70, 80, 59, 65, 65, 202, 137, 80, 106, 95, 185, 134, 116, 112, 78, 61, 66, 123, 56, 104, 59, 57, 174, 184, 114, 65, 69, 182, 54, 77, 116, 98, 150, 90, 59, 91, 52, 204, 66, 106, 79, 230, 63, 231, 108, 50, 65, 91, 76, 185, 57, 54, 247, 185, 59, 159, 57, 93, 96, 66, 63, 150, 57, 89, 71, 107, 201, 203, 74, 57, 69, 93, 63, 202, 60, 105, 159, 191, 164, 78, 60, 52, 63, 198, 143, 86, 69, 200, 199, 79, 90, 170, 83, 67, 81, 57, 72, 50, 64, 103, 177, 59, 68, 188, 63, 128, 60, 63, 82, 61, 63, 67, 79, 60, 54, 52, 50, 88, 102, 67, 91, 89, 77, 68, 61, 68, 59, 99, 173, 63, 57, 70, 73, 67, 93, 107, 52, 78, 94, 86, 55, 69, 59, 67, 91, 54, 90, 93, 62, 197, 156, 64, 190, 75, 237, 75, 76, 59, 58, 131, 206, 56, 108, 65, 75, 122, 87, 71, 66, 83, 120, 71, 59, 52, 127, 79, 70, 153, 63, 117, 90, 87, 55, 106, 70, 144, 52, 219, 111, 56, 74, 61, 80, 74, 136, 135, 138, 111, 165, 87, 217, 293, 112, 157, 76, 192, 56, 83, 210, 60, 53, 61, 125, 69, 56, 77, 76, 79, 200, 66, 151, 143, 84, 75, 69, 78, 123, 70, 101, 55, 71, 68, 50, 155, 145, 60, 170, 70, 75, 77, 86, 118, 241, 70, 83, 65, 119, 100, 56, 95, 54, 90, 63, 116, 199, 120, 154, 125, 56, 68, 87, 137, 196, 68, 163, 68, 198, 46, 50, 110, 98, 57, 124, 173, 50, 171, 67, 56, 88, 92, 69, 80, 62, 87, 61, 75, 55, 59, 72, 67, 58, 78, 80, 196, 202, 141, 100, 70, 72, 60, 63, 140, 88, 72, 163, 65, 67, 182, 85, 197, 69, 60, 92, 103, 212, 60, 79, 77, 108, 71, 65, 142, 123, 147, 128, 150, 61, 52, 69, 70, 128, 168, 115, 69, 212, 166, 97, 50, 166, 209, 56, 58, 206, 101, 86, 80, 63, 83, 65, 181, 92, 133, 72, 163, 63, 178, 66, 54, 78, 66, 202, 74, 56, 82, 59, 99, 111, 64, 83, 197, 106, 89, 78, 82, 174, 120, 84, 69, 69, 99, 84, 79, 67, 91, 113, 177, 69, 96, 67, 195, 79, 86, 148, 93, 239, 64, 85, 182, 115, 89, 105, 93, 91, 115, 95, 94, 50, 58, 157, 126, 100, 155, 66, 56, 184, 82, 67, 93, 64, 145, 81, 58, 96, 67, 94, 204, 81, 90, 60, 52, 59, 208, 168, 125, 57, 148, 65, 67, 93, 52, 69, 60, 109, 61, 109, 85, 77, 78, 143, 70, 66, 141, 86, 174, 209, 94, 233, 68, 56, 53, 112, 66, 81, 110, 74, 75, 180, 96, 201, 78, 73, 89, 52, 105, 115, 68, 69, 96, 137, 60, 75, 134, 121, 84, 56, 55, 56, 62, 60, 130, 485, 332, 368, 369, 441, 215, 505, 747, 697, 334, 5, 6, 7, 5, 8, 5, 7, 3, 4, 7, 7, 5, 5, 8, 8, 2, 6, 10, 2, 7, 10, 8, 7, 7, 2, 6, 5, 5, 7, 7, 9, 8, 5, 8, 7, 6, 8, 2, 6, 7, 8, 4, 4, 6, 5, 4, 4, 4, 4, 14, 11, 9, 12, 24, 19, 17, 10, 11, 16, 20, 17, 5, 19, 10, 29, 10, 26, 17, 11, 23, 6, 24, 12, 5, 3, 5, 10, 4, 4, 11, 8, 12, 12, 18, 12, 18, 26, 20, 12, 24, 31, 9, 21, 13, 10, 25, 15, 21, 19, 10, 18, 10, 15, 28, 17, 21, 169, 423, 227, 619, 178, 441, 480, 6, 5, 10, 4, 5, 2, 6, 4, 2, 6, 4, 7, 2, 6, 5, 4, 5, 6, 4, 5, 4, 5, 5, 3, 4, 5, 5, 6, 8, 4, 6, 5, 6, 4, 3, 2, 5, 4, 4, 4, 4, 5, 7, 5, 4, 6, 5, 3, 6, 4, 5, 4, 4, 5, 6, 3, 5, 6, 3, 4, 7, 3, 4, 4, 8, 7, 7, 7, 7, 7, 3, 3, 4, 5, 3, 5, 3, 5, 6, 4, 5, 3, 5, 5, 3, 4, 5, 7, 7, 4, 5, 4, 5, 5, 6, 4, 5, 5, 5, 6, 5, 6, 3, 4, 6, 5, 5, 5, 5, 3, 4, 3, 4, 3, 4, 5, 6, 4, 3, 6, 4, 5, 5, 6, 4, 4, 4, 6, 3, 5, 5, 4, 5, 6, 5, 5, 4, 5, 3, 5, 5, 6, 5, 4, 6, 4, 5, 5, 5, 5, 5, 5, 3, 4, 5, 6, 7, 5, 6, 5, 4, 5, 3, 6, 5, 5, 6, 5, 4, 4, 4, 5, 6, 4, 5, 4, 5, 4, 5, 4, 5, 6, 5, 457, 363, 1131, 467, 720, 1045, 391, 225, 226, 194, 122, 325, 252, 543, 281, 283, 5, 12, 12, 4, 13, 5, 9, 3, 11, 5, 13, 6, 3, 2, 4, 5, 4, 13, 5, 5, 5, 5, 12, 5, 2, 4, 5, 5, 5, 5, 3, 2, 12, 4, 5, 7, 5, 3, 5, 6, 5, 6, 7, 5, 5, 9, 6, 5, 5, 7, 6, 7, 5, 5, 12, 6, 5, 5, 7, 7, 6, 4, 7, 7, 4, 5, 6, 7, 7, 7, 7, 7, 6, 3, 7, 5, 5, 7, 4, 6, 4, 7, 7, 2, 7, 4, 12, 13, 5, 5, 13, 5, 11, 5, 8, 5, 13, 4, 14, 546, 415, 576, 488, 474, 444, 679, 163, 161, 517, 188, 104, 33, 76, 107, 235, 451, 72, 34, 37, 172, 129, 128, 63, 127, 166, 44, 78, 482, 319, 463, 391, 262, 544, 334, 340, 219, 398, 286, 329, 697, 175, 91, 380, 1120, 179, 5, 14, 6, 5, 6, 4, 5, 14, 14, 4, 7, 8, 5, 9, 6, 5, 14, 14, 14, 8, 2, 3, 3, 4, 5, 405, 372, 939, 477, 390, 556, 641, 293, 454, 615, 649, 492, 231, 630, 205, 372, 717, 324, 442, 466, 793, 314, 4, 1, 8, 4, 5, 1, 6, 5, 6, 9, 6, 6, 3, 4, 10, 9, 3, 4, 5, 6, 1, 1, 3, 8, 7, 5, 5, 6, 4, 4, 5, 4, 4, 1, 1, 6, 21, 6, 7, 5, 20, 14, 3, 3, 4, 7, 7, 1, 5, 8, 6, 7, 7, 4, 5, 6, 5, 6, 12, 1, 28, 27, 5, 4, 6, 3, 7, 9, 7, 6, 9, 3, 8, 5, 1, 5, 3, 1, 3, 7, 6, 6, 3, 3, 1, 7, 6, 5, 4, 6, 7, 6, 1, 9, 7, 18, 6, 2, 5, 7, 7, 5, 6, 6, 11, 8, 1, 6, 4, 5, 7, 1, 1, 5, 12, 6, 7, 4, 6, 5, 6, 3, 5, 8, 7, 6, 7, 4, 5, 7, 1, 6, 4, 6, 6, 3, 6, 6, 4, 4, 4, 8, 3, 5, 11, 5, 5, 5, 8, 5, 5, 6, 5, 5, 5, 6, 11, 5, 11, 6, 1, 5, 6, 1, 6, 8, 8, 4, 6, 6, 3, 5, 4, 8, 4, 7, 39, 1, 5, 6, 1, 5, 5, 6, 4, 12, 5, 5, 5, 8, 4, 13, 6, 6, 6, 4, 4, 7, 8, 3, 7, 17, 5, 4, 6, 4, 5, 7, 7, 5, 3, 11, 9, 6, 3, 6, 14, 5, 1, 1, 22, 5, 3, 4, 14, 11, 5, 5, 5, 4, 5, 1, 1, 5, 6, 4, 5, 7, 7, 6, 3, 9, 1, 1, 5, 5, 4, 1, 3, 11, 5, 3, 3, 5, 5, 4, 4, 3, 7, 5, 12, 4, 4, 9, 8, 5, 5, 6, 3, 4, 5, 6, 6, 10, 5, 5, 6, 8, 9, 6, 6, 6, 12, 5, 5, 5, 1, 4, 4, 7, 7, 5, 21, 9, 6, 6, 5, 222, 337, 319, 593, 387, 336, 285, 364, 291, 594, 249, 253, 298, 556, 412, 230, 517, 259, 293, 372, 365, 190, 229, 430, 546, 365, 308, 363, 537, 261, 288, 439, 273, 454, 452, 281, 365, 254, 204, 307, 504, 247, 349, 290, 289, 340, 299, 321, 300, 340, 263, 283, 568, 239, 197, 242, 524, 332, 314, 407, 541, 317, 204, 402, 252, 340, 421, 317, 376, 179, 444, 449, 341, 466, 435, 313, 319, 146, 604, 294, 297, 227, 422, 362, 176, 207, 216, 376, 227, 516, 403, 348, 322, 402, 429, 401, 181, 427, 353, 233, 358, 283, 317, 383, 308, 274, 313, 327, 378, 393, 212, 311, 292, 272, 308, 416, 263, 285, 208, 369, 213, 241, 479, 253, 227, 228, 196, 197, 229, 198, 303, 381, 193, 356, 308, 296, 267, 359, 455, 310, 235, 369, 426, 280, 370, 320, 427, 332, 309, 337, 319, 312, 291, 311, 200, 319, 326, 368, 331, 300, 541, 310, 287, 335, 155, 404, 350, 277, 258, 475, 193, 286, 137, 726, 297, 558, 186, 455, 272, 294, 339, 430, 686, 273, 326, 453, 313, 449, 473, 308, 199, 244, 450, 250, 350, 372, 322, 311, 596, 512, 455, 176, 405, 404, 368, 368, 340, 339, 292, 370, 466, 401, 477, 298, 492, 369, 222, 277, 344, 307, 351, 394, 348, 205, 352, 247, 188, 261, 252, 265, 475, 233, 680, 479, 614, 266, 632, 238, 286, 565, 235, 594, 445, 360, 405, 360, 258, 408, 302, 282, 365, 392, 335, 363, 323, 501, 478, 273, 301, 331, 560, 351, 227, 417, 120, 307, 510, 283, 336, 393, 272, 201, 247, 530, 332, 285, 274, 303, 373, 242, 300, 389, 291, 254, 228, 413, 520, 315, 278, 335, 351, 202, 607, 302, 468, 410, 469, 276, 461, 552, 406, 358, 150, 207, 422, 247, 183, 166, 309, 252, 315, 430, 193, 284, 255, 264, 330, 490, 290, 246, 295, 220, 367, 440, 297, 310, 532, 461, 396, 219, 362, 405, 360, 262, 293, 376, 364, 367, 360, 230, 306, 463, 615, 369, 497, 317, 368, 353, 264, 529, 390, 202, 291, 480, 423, 275, 270, 327, 220, 225, 259, 263, 200, 270, 366, 272, 474, 238, 156, 257, 228, 341, 386, 417, 503, 144, 109, 156, 105, 88, 72, 473, 114, 80, 96, 147, 134, 80, 128, 84, 256, 205, 72, 110, 24, 133, 141, 74, 111, 128, 200, 54, 121, 81, 115, 99, 96, 72, 282, 121, 102, 202, 119, 70, 88, 178, 176, 70, 76, 62, 234, 36, 179, 95, 75, 70, 97, 133, 89, 75, 325, 234, 103, 135, 204, 174, 191, 396, 221, 249, 242, 270, 136, 126, 177, 44, 202, 192, 43, 126, 63, 161, 71, 173, 62, 167, 134, 78, 244, 135, 218, 382, 203, 79, 225, 151, 54, 224, 229, 169, 292, 75, 151, 110, 99, 69, 157, 109, 193, 127, 85, 89, 101, 136, 62, 93, 94, 79, 114, 165, 302, 119, 214, 59, 221, 32, 107, 86, 178, 53, 213, 169, 81, 239, 61, 149, 58, 64, 79, 126, 283, 187, 113, 225, 187, 118, 73, 84, 69, 117, 260, 160, 278, 89, 109, 169, 119, 154, 81, 202, 182, 82, 146, 195, 136, 161, 133, 175, 52, 381, 263, 174, 172, 172, 227, 160, 79, 146, 181, 171, 99, 160, 93, 166, 229, 227, 98, 73, 102, 100, 200, 150, 362, 179, 34, 40, 154, 171, 166, 160, 107, 307, 196, 88, 311, 207, 63, 71, 170, 71, 132, 131, 107, 123, 96, 254, 138, 105, 182, 48, 99, 157, 31, 118, 114, 173, 75, 47, 92, 113, 149, 131, 74, 97, 301, 115, 112, 82, 100, 197, 170, 79, 111, 51, 54, 267, 280, 107, 104, 113, 102, 244, 110, 109, 122, 101, 62, 120, 249, 135, 123, 110, 175, 148, 110, 128, 127, 184, 57, 159, 46, 100, 137, 137, 114, 168, 64, 88, 135, 70, 162, 85, 112, 276, 299, 28, 181, 136, 194, 165, 124, 163, 219, 190, 103, 94, 179, 121, 38, 127, 214, 97, 115, 81, 78, 205, 132, 285, 257, 235, 111, 97, 144, 147, 131, 146, 208, 87, 77, 419, 89, 181, 140, 181, 39, 84, 127, 112, 97, 76, 122, 66, 91, 82, 51, 94, 123, 162, 77, 123, 297, 119, 67, 194, 66, 79, 323, 439, 301, 118, 34, 150, 118, 147, 79, 108, 305, 223, 50, 118, 237, 168, 79, 166, 135, 86, 78, 77, 220, 158, 80, 167, 122, 120, 324, 308, 143, 109, 244, 275, 247, 313, 94, 112, 42, 85, 177, 270, 85, 225, 81, 192, 134, 47, 265, 156, 92, 76, 181, 56, 83, 105, 179, 156, 215, 136, 89, 95, 69, 73, 31, 37, 115, 241, 103, 74, 80, 47, 207, 150, 207, 164, 135, 107, 104, 19, 83, 175, 90, 68, 282, 105, 231, 27, 120, 409, 277, 152, 128, 149, 143, 153, 129, 98, 260, 108, 54, 127, 145, 101, 129, 271, 145, 101, 104, 100, 55, 245, 172, 255, 149, 121, 200, 128, 160, 70, 103, 214, 167, 156, 196, 148, 158, 49, 171, 80, 117, 70, 135, 145, 223, 186, 134, 101, 74, 137, 158, 91, 311, 58, 22, 92, 167, 108, 175, 107, 136, 74, 181, 90, 105, 55, 140, 258, 133, 145, 136, 73, 279, 38, 249, 71, 101, 176, 68, 117, 160, 85, 311, 193, 58, 127, 148, 64, 80, 156, 139, 195, 163, 95, 151, 151, 112, 123, 110, 288, 114, 322, 268, 202, 80, 140, 128, 90, 141, 168, 169, 92, 65, 76, 41, 103, 256, 219, 302, 95, 82, 145, 58, 89, 293, 73, 51, 57, 80, 100, 275, 177, 104, 137, 145, 183, 185, 131, 240, 113, 61, 197, 159, 99, 90, 33, 302, 118, 465, 123, 141, 108, 67, 165, 182, 56, 97, 101, 70, 226, 108, 154, 134, 179, 103, 214, 84, 214, 41, 166, 186, 69, 127, 108, 94, 79, 33, 98, 58, 167, 213, 140, 125, 297, 154, 145, 172, 96, 147, 121, 170, 116, 262, 97, 356, 160, 135, 374, 92, 154, 93, 147, 143, 229, 94, 77, 86, 271, 154, 218, 173, 86, 166, 114, 60, 261, 102, 117, 100, 74, 70, 174, 50, 148, 202, 89, 63, 130, 130, 190, 82, 103, 168, 143, 166, 175, 199, 260, 202, 45, 81, 111, 195, 210, 186, 269, 145, 75, 291, 56, 123, 97, 199, 247, 44, 133, 28, 263, 82, 102, 316, 172, 106, 53, 63, 242, 122, 87, 60, 148, 184, 131, 104, 97, 214, 155, 17, 151, 80, 108, 83, 131, 58, 206, 101, 83, 181, 315, 286, 105, 51, 168, 133, 138, 110, 101, 189, 83, 126, 195, 90, 113, 73, 173, 175, 92, 451, 166, 88, 88, 218, 217, 124, 111, 134, 54, 278, 256, 33, 62, 101, 326, 99, 212, 178, 135, 84, 189, 84, 94, 313, 102, 164, 179, 114, 76, 85, 246, 421, 135, 186, 221, 188, 142, 66, 137, 94, 109, 189, 242, 89, 90, 143, 43, 72, 175, 182, 82, 80, 105, 113, 114, 127, 211, 191, 189, 94, 204, 126, 126, 43, 107, 247, 98, 73, 98, 98, 93, 101, 43, 130, 181, 71, 177, 250, 113, 231, 315, 217, 204, 219, 102, 121, 301, 154, 103, 93, 58, 119, 89, 88, 234, 43, 99, 81, 140, 269, 245, 157, 102, 321, 96, 191, 188, 102, 243, 81, 91, 225, 199, 85, 60, 114, 102, 231, 325, 265, 144, 166, 83, 42, 84, 113, 160, 124, 80, 200, 144, 70, 103, 102, 186, 119, 109, 224, 104, 54, 260, 104, 299, 126, 117, 60, 138, 145, 57, 194, 54, 120, 213, 143, 166, 36, 141, 191, 103, 100, 135, 99, 35, 264, 62, 305, 83, 205, 160, 83, 221, 87, 160, 164, 148, 183, 66, 38, 240, 182, 84, 99, 78, 96, 126, 113, 148, 102, 93, 67, 93, 122, 125, 125, 327, 94, 182, 89, 236, 107, 109, 129, 128, 307, 143, 85, 172, 87, 322, 81, 256, 76, 150, 45, 237, 234, 102, 235, 149, 132, 156, 151, 92, 159, 179, 113, 70, 32, 60, 127, 55, 21, 71, 227, 164, 342, 250, 153, 147, 102, 75, 108, 142, 91, 178, 50, 194, 157, 115, 84, 188, 369, 163, 101, 107, 162, 64, 108, 81, 177, 192, 120, 65, 88, 20, 73, 65, 156, 185, 388, 235, 426, 363, 692, 206, 451, 355, 661, 451, 381, 400, 246, 192, 158, 48, 361, 1157, 150, 231, 538, 909, 142, 469, 152, 232, 84, 410, 20, 167, 113, 942, 513, 238, 1158, 260, 742, 120, 567, 203, 990, 520, 64, 380, 957, 4, 41, 279, 305, 302, 146, 430, 1019, 626, 1855, 1194, 90, 107, 2, 498, 201, 764, 636, 971, 235, 189, 429, 178, 584, 144, 69, 1256, 661, 199, 5, 947, 328, 285, 1080, 224, 184, 443, 633, 450, 460, 996, 399, 323, 454, 489, 706, 477, 656, 292, 16, 1453, 526, 1059, 4, 830, 371, 463, 527, 274, 5, 620, 622, 219, 271, 487, 147, 376, 784, 310, 805, 1060, 1302, 38, 428, 48, 205, 282, 138, 709, 129, 184, 37, 1573, 74, 708, 253, 183, 470, 435, 284, 263, 185, 445, 1472, 477, 665, 572, 488, 977, 164, 265, 141, 687, 593, 1932, 190, 1318, 1196, 870, 361, 717, 626, 165, 1526, 285, 386, 148, 1107, 36, 5, 769, 300, 833, 1461, 184, 194, 294, 147, 242, 326, 257, 154, 714, 194, 289, 203, 691, 465, 478, 195, 458, 351, 903, 612, 377, 182, 393, 87, 388, 260, 248, 462, 342, 1103, 1161, 1070, 1439, 424, 22, 24, 153, 1177, 285, 206, 140, 182, 546, 618, 615, 721, 279, 638, 150, 375, 134, 216, 803, 223, 947, 112, 136, 193, 471, 50, 159, 188, 350, 273, 775, 727, 1562, 30, 552, 347, 700, 230, 419, 72, 562, 660, 802, 8, 461, 795, 455, 567, 130, 368, 1180, 32, 276, 180, 1038, 850, 1444, 269, 137, 4, 277, 227, 1422, 184, 495, 1079, 1307, 771, 664, 586, 222, 229, 524, 92, 374, 527, 219, 20, 183, 219, 255, 290, 215, 88, 568, 389, 455, 204, 524, 63, 198, 143, 1147, 539, 254, 340, 93, 529, 129, 84, 910, 1268, 316, 219, 189, 537, 302, 579, 306, 232, 952, 82, 565, 242, 311, 332, 300, 255, 468, 425, 927, 213, 539, 153, 218, 261, 221, 461, 50, 623, 133, 421, 857, 387, 508, 352, 276, 323, 869, 183, 344, 31, 791, 1664, 97, 69, 1026, 281, 500, 207, 398, 332, 187, 7, 6, 1084, 299, 3, 256, 241, 156, 508, 612, 583, 254, 772, 333, 348, 511, 229, 236, 689, 427, 193, 185, 672, 645, 121, 794, 1742, 533, 120, 182, 169, 163, 226, 404, 620, 261, 214, 251, 114, 187, 294, 367, 755, 197, 385, 731, 1608, 198, 1056, 215, 311, 251, 580, 191, 322, 54, 889, 384, 275, 6, 286, 5, 440, 1428, 154, 232, 1267, 820, 172, 89, 193, 726, 647, 529, 421, 829, 1269, 274, 355, 350, 285, 807, 157, 825, 152, 635, 1064, 655, 375, 465, 1052, 289, 577, 648, 1814, 217, 360, 106, 396, 326, 52, 210, 4, 424, 713, 139, 1069, 740, 431, 266, 287, 145, 4, 534, 309, 273, 856, 131, 622, 922, 552, 13, 115, 210, 4, 804, 1476, 605, 261, 1518, 746, 217, 391, 134, 35, 252, 117, 1084, 339, 577, 84, 914, 386, 1555, 398, 922, 256, 12, 12, 108, 735, 374, 65, 849, 245, 330, 600, 297, 196, 833, 820, 240, 393, 93, 768, 447, 3, 1312, 526, 221, 329, 128, 177, 805, 749, 66, 510, 3, 568, 540, 852, 360, 252, 1070, 986, 273, 510, 366, 474, 233, 184, 512, 267, 542, 1052, 305, 441, 307, 40, 536, 112, 464, 546, 376, 319, 6, 906, 227, 421, 31, 300, 98, 80, 227, 595, 102, 406, 360, 578, 58, 123, 260, 174, 51, 276, 26, 59, 1310, 19, 16, 842, 782, 1084, 444, 706, 524, 1109, 318, 696, 231, 468, 4, 184, 137, 1104, 332, 319, 300, 470, 224, 138, 4, 618, 179, 446, 778, 143, 3, 362, 299, 1453, 233, 169, 119, 353, 200, 120, 363, 928, 41, 1154, 510, 631, 5, 468, 1743, 504, 597, 303, 193, 432, 861, 2, 862, 1035, 972, 941, 181, 457, 705, 3, 256, 177, 556, 1049, 749, 256, 949, 192, 748, 12, 422, 241, 472, 368, 208, 948, 354, 1029, 116, 58, 146, 21, 163, 261, 360, 390, 244, 1256, 850, 225, 1745, 1686, 155, 662, 396, 645, 305, 886, 85, 515, 724, 202, 336, 596, 672, 4, 986, 580, 1122, 354, 598, 588, 293, 127, 144, 646, 317, 448, 849, 373, 548, 1372, 126, 37, 545, 549, 239, 607, 351, 242, 125, 88, 226, 41, 542, 44, 242, 737, 928, 500, 1149, 1170, 1437, 201, 930, 917, 117, 499, 93, 603, 180, 583, 168, 59, 241, 220, 253, 253, 799, 162, 325, 489, 78, 500, 346, 351, 827, 193, 702, 176, 652, 116, 201, 193, 379, 413, 116, 286, 264, 66, 37, 221, 230, 509, 556, 20, 320, 752, 189, 675, 875, 186, 224, 4, 1543, 349, 265, 613, 785, 40, 540, 557, 477, 376, 146, 301, 291, 333, 581, 780, 781, 832, 686, 391, 121, 1120, 575, 3, 358, 881, 543, 966, 22, 502, 38, 622, 15, 425, 20, 260, 1304, 273, 246, 101, 197, 350, 82, 19, 669, 732, 183, 133, 186, 685, 315, 828, 976, 80, 455, 229, 655, 1426, 246, 182, 268, 743, 679, 147, 605, 55, 917, 197, 526, 57, 546, 690, 732, 181, 561, 211, 5, 628, 510, 254, 602, 557, 1049, 759, 917, 411, 118, 151, 34, 652, 1086, 366, 356, 240, 378, 313, 759, 946, 40, 371, 1047, 359, 428, 509, 874, 5, 1281, 307, 320, 1308, 991, 82, 703, 636, 877, 317, 352, 363, 113, 991, 618, 425, 235, 97, 368, 186, 770, 566, 1243, 741, 106, 326, 721, 202, 95, 56, 156, 1622, 289, 14, 314, 802, 358, 204, 263, 1094, 922, 656, 176, 304, 287, 233, 680, 737, 960, 706, 442, 73, 253, 241, 384, 101, 382, 1, 15, 515, 348, 158, 166, 228, 519, 813, 307, 61, 225, 673, 609, 592, 387, 1074, 1081, 920, 6, 319, 313, 181, 260, 249, 462, 898, 424, 455, 596, 299, 769, 1164, 355, 532, 488, 604, 274, 1246, 274, 855, 907, 3, 127, 516, 5, 1413, 69, 671, 272, 7, 106, 172, 5, 580, 1188, 524, 253, 303, 3, 342, 186, 154, 375, 56, 222, 82, 390, 331, 422, 998, 207, 361, 72, 393, 523, 897, 738, 282, 545, 125, 768, 730, 629, 722, 82, 128, 216, 609, 489, 561, 150, 779, 519, 1303, 579, 513, 215, 893, 1183, 118, 881, 1050, 297, 610, 77, 142, 1293, 505, 24, 207, 202, 461, 355, 604, 1132, 359, 149, 393, 508, 304, 314, 743, 427, 255, 255, 439, 378, 1151, 954, 22, 308, 380, 331, 1162, 467, 18, 930, 398, 805, 988, 779, 1135, 512, 209, 25, 610, 143, 87, 631, 756, 2, 900, 174, 938, 308, 695, 855, 32, 19, 586, 36, 159, 493, 6, 334, 1728, 321, 212, 2, 160, 771, 146, 5, 339, 50, 180, 627, 710, 961, 66, 198, 1162, 23, 73, 599, 615, 890, 550, 341, 426, 1500, 271, 201, 349, 758, 719, 3, 909, 684, 937, 265, 698, 38, 684, 301, 398, 356, 339, 1706, 164, 178, 1766, 1346, 687, 306, 3, 99, 376, 333, 316, 804, 242, 49, 534, 699, 490, 1715, 466, 107, 164, 1015, 397, 1141, 150, 120, 333, 268, 4, 539, 677, 120, 194, 336, 183, 384, 435, 344, 341, 152, 1233, 211, 444, 448, 420, 202, 758, 484, 1005, 76, 705, 758, 986, 194, 356, 1016, 1260, 376, 581, 628, 299, 45, 336, 762, 164, 394, 213, 813, 772, 489, 205, 206, 546, 539, 2, 209, 322, 1459, 150, 435, 430, 919, 939, 963, 79, 119, 217, 363, 1169, 236, 34, 902, 607, 589, 719, 708, 67, 216, 707, 239, 5, 1285, 1417, 430, 46, 793, 285, 309, 279, 605, 154, 454, 297, 712, 158, 634, 1040, 163, 870, 1383, 374, 582, 216, 252, 1024, 361, 559, 213, 160, 158, 660, 402, 491, 675, 169, 577, 762, 789, 524, 589, 88, 74, 210, 771, 201, 813, 526, 714, 957, 77, 498, 273, 13, 804, 271, 199, 480, 661, 949, 165, 1596, 161, 449, 229, 290, 72, 293, 552, 5, 709, 210, 133, 859, 199, 317, 1047, 561, 266, 1356, 201, 299, 3, 852, 244, 953, 241, 369, 736, 658, 322, 248, 516, 312, 764, 1049, 643, 1174, 464, 345, 665, 662, 674, 547, 1364, 290, 382, 58, 648, 141, 24, 624, 281, 53, 150, 619, 92, 113, 213, 214, 557, 911, 745, 276, 809, 6, 793, 242, 720, 552, 1198, 388, 745, 2, 473, 696, 277, 147, 831, 369, 15, 253, 752, 918, 67, 948, 483, 89, 583, 145, 4, 568, 204, 190, 154, 1352, 407, 474, 14, 1060, 911, 305, 918, 424, 229, 6, 245, 512, 369, 278, 87, 309, 517, 337, 224, 622, 501, 344, 548, 575, 555, 500, 255, 833, 349, 366, 681, 201, 75, 390, 284, 724, 76, 270, 1410, 114, 131, 152, 543, 207, 595, 520, 57, 177, 39, 104, 159, 128, 151, 191, 165, 389, 582, 164, 1205, 246, 286, 86, 829, 7, 550, 86, 252, 628, 190, 467, 87, 380, 639, 1034, 227, 348, 121, 365, 536, 15, 531, 600, 561, 358, 47, 5, 283, 707, 66, 389, 351, 318, 534, 363, 849, 397, 531, 193, 889, 75, 31, 172, 228, 77, 564, 97, 1193, 218, 1128, 694, 659, 631, 133, 410, 581, 60, 802, 337, 41, 206, 240, 780, 250, 156, 65, 1330, 285, 229, 84, 6, 246, 691, 464, 676, 28, 737, 245, 508, 494, 701, 278, 1268, 488, 315, 233, 642, 74, 6, 466, 202, 70, 255, 185, 454, 275, 157, 122, 168, 565, 745, 448, 1164, 246, 169, 794, 670, 1015, 460, 1855, 303, 233, 470, 89, 868, 1376, 348, 609, 1083, 594, 1699, 1047, 869, 142, 152, 855, 491, 406, 110, 1203, 194, 583, 282, 5, 563, 371, 837, 19, 369, 140, 450, 309, 1057, 466, 276, 127, 55, 525, 4, 246, 611, 391, 277, 364, 529, 552, 558, 131, 361, 794, 617, 249, 137, 200, 145, 175, 474, 325, 152, 499, 624, 171, 313, 350, 1215, 401, 113, 460, 342, 296, 132, 401, 39, 5, 180, 690, 800, 936, 757, 592, 1676, 415, 4, 971, 322, 444, 295, 1079, 1061, 543, 1, 626, 210, 857, 734, 313, 81, 6, 281, 1099, 158, 86, 3, 3, 645, 967, 272, 157, 474, 506, 496, 880, 377, 278, 204, 179, 79, 143, 282, 415, 1053, 224, 143, 265, 816, 44, 266, 154, 639, 258, 1020, 566, 38, 114, 93, 367, 412, 371, 227, 205, 809, 1062, 380, 228, 643, 17, 192, 310, 715, 1609, 267, 932, 210, 314, 311, 494, 322, 645, 286, 254, 958, 254, 801, 646, 949, 782, 366, 112, 830, 938, 468, 211, 102, 268, 464, 158, 367, 423, 392, 349, 1207, 903, 212, 239, 60, 222, 264, 311, 35, 320, 804, 240, 438, 335, 216, 682, 1066, 180, 852, 981, 3, 149, 684, 146, 132, 198, 815, 1142, 540, 430, 211, 262, 740, 685, 208, 1197, 779, 267, 206, 376, 140, 675, 1153, 285, 238, 172, 244, 772, 198, 237, 830, 157, 231, 209, 45, 4, 369, 584, 44, 622, 316, 126, 726, 243, 675, 130, 147, 711, 487, 498, 246, 1677, 415, 331, 764, 273, 540, 148, 4, 972, 556, 480, 2, 908, 1893, 344, 178, 1007, 272, 187, 217, 692, 82, 975, 847, 897, 715, 81, 386, 170, 181, 79, 681, 662, 812, 754, 793, 578, 613, 1329, 216, 69, 568, 94, 537, 27, 558, 344, 202, 620, 390, 803, 219, 266, 287, 541, 303, 954, 1264, 174, 164, 113, 116, 55, 20, 758, 6, 695, 120, 90, 178, 372, 519, 4, 145, 166, 176, 612, 680, 1521, 245, 324, 429, 12, 324, 41, 261, 4, 1181, 409, 1100, 208, 806, 203, 206, 643, 215, 56, 817, 78, 890, 761, 7, 101, 863, 182, 98, 154, 284, 689, 144, 720, 574, 333, 409, 1071, 689, 39, 802, 325, 322, 736, 1086, 155, 1253, 1387, 174, 281, 66, 84, 36, 166, 342, 224, 3, 285, 294, 183, 49, 252, 1088, 379, 716, 299, 94, 48, 109, 302, 405, 3, 658, 322, 809, 896, 139, 626, 207, 627, 276, 24, 421, 532, 482, 366, 497, 184, 122, 513, 617, 301, 176, 174, 3, 329, 21, 889, 998, 774, 180, 266, 976, 278, 7, 94, 452, 473, 51, 298, 481, 797, 125, 463, 630, 424, 9, 74, 225, 292, 286, 2, 172, 982, 217, 83, 694, 509, 443, 127, 284, 850, 1, 594, 93, 3, 404, 860, 721, 44, 72, 179, 174, 930, 123, 69, 186, 316, 182, 848, 116, 371, 77, 333, 14, 1195, 181, 509, 100, 273, 911, 531, 605, 219, 325, 662, 259, 786, 159, 407, 199, 341, 633, 77, 686, 53, 586, 220, 233, 122, 214, 140, 300, 246, 7, 954, 69, 317, 724, 388, 146, 839, 145, 774, 641, 334, 1166, 5, 397, 489, 239, 159, 167, 634, 432, 463, 470, 51, 235, 450, 105, 321, 518, 789, 177, 323, 179, 187, 242, 850, 88, 1002, 790, 169, 289, 908, 588, 502, 215, 171, 59, 411, 360, 592, 172, 739, 231, 145, 1049, 678, 223, 313, 630, 141, 114, 347, 592, 1237, 182, 963, 753, 169, 707, 536, 184, 642, 139, 1155, 70, 976, 301, 1486, 1035, 86, 344, 962, 30, 1353, 109, 382, 1044, 429, 559, 10, 3, 22, 27, 433, 262, 140, 1031, 202, 43, 250, 522, 8, 225, 392, 332, 125, 5, 269, 2, 108, 40, 188, 693, 530, 520, 355, 12, 171, 312, 984, 314, 675, 52, 850, 96, 14, 864, 254, 354, 134, 427, 86, 312, 671, 7, 367, 729, 401, 534, 199, 345, 605, 164, 18, 5, 275, 429, 254, 255, 217, 375, 750, 312, 130, 738, 546, 56, 245, 73, 393, 307, 103, 132, 644, 393, 86, 27, 240, 17, 460, 230, 512, 625, 201, 52, 918, 813, 334, 93, 639, 723, 550, 34, 882, 133, 880, 483, 77, 227, 274, 244, 204, 246, 283, 409, 174, 239, 810, 468, 5, 870, 281, 45, 269, 264, 260, 49, 200, 45, 383, 530, 472, 144, 39, 777, 348, 552, 142, 246, 284, 382, 1440, 845, 152, 302, 1220, 211, 824, 627, 531, 558, 185, 113, 51, 597, 51, 237, 5, 255, 102, 114, 614, 246, 826, 695, 195, 411, 774, 780, 860, 521, 7, 913, 236, 99, 300, 866, 676, 185, 894, 1007, 241, 288, 871, 952, 128, 417, 127, 90, 223, 832, 567, 72, 185, 323, 236, 97, 627, 2, 161, 968, 101, 351, 716, 176, 199, 24, 346, 64, 276, 506, 386, 74, 615, 782, 256, 573, 1128, 257, 4, 371, 615, 321, 398, 381, 60, 298, 311, 197, 96, 137, 718, 37, 747, 316, 434, 147, 777, 817, 346, 237, 313, 738, 320, 463, 1143, 245, 491, 305, 794, 436, 295, 110, 549, 368, 357, 641, 216, 369, 420, 458, 406, 421, 212, 351, 720, 138, 321, 211, 749, 324, 21, 282, 327, 65, 277, 659, 373, 329, 394, 127, 431, 153, 107, 277, 964, 466, 87, 251, 987, 392, 305, 204, 134, 478, 358, 503, 461, 140, 410, 246, 105, 126, 623, 525, 69, 380, 460, 79, 113, 518, 474, 70, 64, 367, 30, 246, 490, 285, 480, 714, 593, 267, 22, 315, 437, 251, 50, 437, 335, 404, 290, 289, 236, 208, 355, 556, 447, 438, 187, 522, 380, 358, 258, 335, 395, 702, 492, 1006, 647, 389, 96, 492, 1032, 89, 181, 228, 526, 455, 463, 451, 654, 514, 688, 585, 57, 233, 572, 836, 440, 400, 447, 377, 53, 39, 444, 490, 258, 1058, 691, 695, 920, 555, 872, 842, 545, 68, 93, 471, 385, 482, 426, 513, 779, 412, 129, 525, 495, 546, 1027, 379, 986, 338, 265, 336, 130, 308, 433, 825, 1009, 222, 1042, 471, 1390, 115, 512, 178, 743, 655, 1562, 88, 755, 269, 697, 780, 930, 526, 465, 351, 349, 554, 324, 656, 525, 765, 371, 219, 357, 262, 1136, 803, 726, 1189, 688, 703, 1624, 376, 395, 104, 289, 340, 403, 400, 126, 273, 377, 502, 393, 133, 450, 217, 229, 800, 425, 448, 371, 350, 153, 668, 147, 352, 290, 405, 1098, 54, 636, 533, 294, 272, 741, 723, 61, 247, 181, 448, 955, 144, 1346, 920, 1401, 523, 651, 165, 425, 153, 105, 271, 187, 106, 1452, 625, 147, 329, 164, 295, 27, 338, 234, 522, 232, 365, 420, 347, 54, 672, 107, 316, 880, 501, 491, 798, 542, 130, 308, 1263, 653, 208, 837, 374, 404, 958, 261, 651, 448, 366, 443, 95, 158, 363, 134, 678, 151, 482, 393, 363, 153, 352, 561, 283, 483, 561, 186, 361, 717, 46, 155, 556, 292, 412, 537, 1047, 140, 510, 322, 384, 278, 266, 425, 464, 680, 513, 454, 885, 549, 1079, 235, 875, 492, 875, 351, 562, 347, 298, 207, 318, 307, 293, 1224, 591, 987, 89, 540, 290, 1093, 585, 439, 690, 126, 125, 506, 775, 830, 193, 1066, 664, 393, 662, 454, 436, 387, 462, 142, 781, 39, 272, 652, 480, 413, 233, 311, 611, 993, 890, 567, 636, 252, 621, 807, 594, 145, 121, 463, 163, 656, 275, 386, 1422, 262, 280, 334, 1200, 159, 63, 232, 361, 228, 382, 362, 231, 236, 501, 422, 118, 301, 444, 336, 151, 338, 708, 216, 79, 285, 249, 256, 179, 141, 217, 43, 212, 325, 120, 608, 210, 585, 30, 435, 172, 451, 805, 552, 767, 457, 338, 109, 583, 154, 508, 318, 557, 342, 117, 554, 63, 941, 270, 1033, 268, 288, 660, 564, 434, 457, 530, 136, 504, 321, 300, 560, 458, 491, 40, 249, 719, 712, 554, 437, 126, 23, 803, 365, 778, 184, 292, 197, 405, 466, 192, 383, 783, 349, 392, 254, 541, 718, 799, 926, 170, 709, 96, 617, 1046, 607, 274, 578, 538, 394, 511, 747, 901, 524, 239, 986, 756, 514, 147, 95, 1482, 688, 207, 65, 262, 435, 677, 87, 235, 780, 264, 24, 314, 25, 751, 772, 982, 896, 419, 442, 383, 1314, 252, 389, 1073, 836, 773, 57, 922, 520, 710, 794, 587, 399, 538, 593, 657, 548, 210, 1010, 11, 814, 1728, 306, 388, 551, 43, 605, 61, 871, 807, 600, 196, 630, 553, 199, 460, 77, 164, 514, 358, 245, 325, 446, 351, 225, 274, 209, 169, 337, 62, 66, 81, 253, 271, 136, 509, 466, 203, 964, 566, 570, 1110, 691, 280, 219, 618, 183, 768, 366, 347, 405, 352, 434, 137, 254, 1509, 283, 991, 645, 122, 276, 259, 178, 284, 878, 209, 220, 113, 278, 99, 80, 89, 175, 700, 220, 386, 379, 183, 192, 357, 153, 355, 229, 498, 930, 579, 378, 270, 341, 556, 1187, 222, 143, 1142, 273, 908, 702, 756, 302, 205, 461, 368, 653, 145, 340, 435, 164, 366, 440, 417, 420, 395, 927, 134, 162, 380, 528, 414, 582, 1299, 623, 217, 629, 474, 102, 135, 223, 30, 986, 162, 91, 248, 593, 690, 701, 707, 387, 143, 411, 354, 111, 320, 136, 352, 300, 582, 355, 678, 579, 881, 129, 444, 174, 264, 205, 297, 323, 155, 387, 810, 441, 235, 122, 321, 253, 334, 298, 537, 621, 183, 290, 611, 75, 456, 267, 557, 87, 754, 296, 148, 774, 537, 615, 386, 161, 1257, 95, 771, 1792, 183, 507, 182, 490, 458, 712, 97, 75, 392, 31, 295, 376, 983, 479, 726, 431, 342, 360, 1044, 233, 142, 519, 213, 628, 796]\n", "Length of the Output Tokens Count 18188\n", "Combine Tokens Count [308, 158, 268, 182, 522, 247, 370, 116, 368, 308, 154, 296, 285, 214, 184, 1090, 262, 113, 308, 263, 279, 258, 427, 208, 490, 682, 681, 210, 182, 478, 217, 256, 237, 224, 267, 357, 277, 329, 235, 260, 61, 596, 258, 340, 185, 516, 293, 352, 212, 213, 686, 480, 632, 198, 412, 157, 612, 522, 164, 126, 166, 218, 131, 54, 342, 248, 164, 216, 518, 150, 672, 626, 567, 453, 177, 380, 474, 176, 348, 202, 410, 138, 607, 218, 31, 189, 544, 448, 375, 1110, 358, 380, 385, 406, 300, 138, 124, 101, 153, 594, 427, 243, 312, 257, 262, 224, 206, 369, 352, 314, 228, 175, 215, 156, 388, 157, 354, 286, 597, 357, 710, 291, 131, 289, 202, 233, 130, 221, 228, 284, 235, 209, 972, 220, 279, 261, 317, 340, 572, 253, 263, 165, 251, 300, 247, 160, 372, 253, 113, 401, 285, 116, 137, 212, 405, 285, 236, 1097, 330, 156, 440, 124, 349, 319, 239, 583, 113, 515, 216, 117, 264, 474, 145, 558, 337, 266, 223, 184, 289, 682, 238, 568, 457, 174, 351, 416, 90, 697, 275, 441, 84, 172, 401, 249, 259, 329, 329, 213, 175, 259, 296, 168, 185, 451, 423, 450, 71, 327, 142, 82, 1825, 136, 266, 581, 234, 160, 214, 942, 175, 367, 268, 246, 471, 250, 309, 659, 396, 151, 185, 798, 1210, 249, 301, 190, 628, 101, 275, 249, 260, 108, 246, 212, 494, 165, 231, 258, 263, 520, 266, 136, 104, 258, 248, 120, 453, 346, 371, 253, 385, 137, 571, 556, 131, 557, 246, 366, 141, 313, 230, 183, 272, 248, 115, 221, 137, 89, 99, 303, 120, 78, 353, 318, 335, 140, 347, 382, 1106, 426, 612, 278, 721, 188, 325, 177, 165, 201, 90, 283, 495, 251, 540, 199, 299, 204, 155, 190, 329, 784, 326, 326, 172, 104, 339, 203, 741, 138, 346, 710, 181, 307, 289, 329, 724, 342, 230, 256, 97, 262, 923, 175, 491, 239, 290, 94, 335, 715, 143, 226, 230, 395, 796, 332, 141, 245, 90, 136, 125, 508, 169, 265, 99, 229, 267, 101, 208, 267, 210, 555, 234, 210, 392, 295, 337, 159, 315, 345, 694, 309, 684, 216, 407, 91, 220, 368, 200, 238, 248, 307, 229, 489, 73, 880, 185, 414, 729, 212, 295, 181, 215, 506, 173, 246, 746, 129, 186, 208, 346, 972, 413, 116, 793, 211, 696, 113, 230, 188, 380, 126, 75, 278, 612, 301, 221, 83, 305, 284, 299, 513, 146, 228, 308, 697, 124, 242, 199, 266, 568, 180, 210, 276, 199, 266, 160, 434, 239, 239, 240, 171, 206, 206, 598, 402, 512, 59, 203, 328, 511, 243, 230, 178, 317, 230, 212, 678, 214, 487, 218, 101, 322, 467, 273, 363, 566, 211, 255, 273, 428, 971, 211, 640, 137, 168, 277, 445, 199, 1176, 283, 251, 1533, 285, 326, 268, 712, 421, 329, 1232, 199, 94, 358, 1358, 210, 93, 208, 464, 394, 256, 177, 463, 86, 218, 394, 168, 352, 166, 326, 492, 407, 354, 219, 417, 229, 554, 566, 595, 262, 116, 405, 235, 201, 224, 164, 108, 451, 225, 337, 430, 541, 760, 368, 273, 304, 367, 1596, 488, 426, 163, 305, 323, 315, 973, 164, 264, 553, 392, 344, 312, 96, 427, 294, 303, 338, 435, 245, 365, 246, 186, 387, 151, 586, 314, 355, 293, 240, 195, 246, 357, 171, 292, 405, 141, 362, 155, 408, 390, 328, 234, 343, 149, 210, 416, 191, 391, 292, 595, 236, 831, 820, 135, 476, 214, 224, 714, 154, 189, 327, 136, 162, 300, 849, 307, 511, 272, 356, 425, 130, 1652, 481, 356, 257, 252, 689, 203, 370, 441, 378, 212, 238, 300, 202, 322, 313, 317, 358, 187, 118, 368, 435, 394, 201, 441, 257, 347, 492, 184, 268, 151, 229, 72, 269, 544, 229, 450, 533, 469, 358, 222, 225, 157, 207, 194, 250, 767, 374, 459, 221, 377, 120, 355, 46, 407, 237, 69, 84, 329, 181, 229, 172, 267, 285, 484, 160, 198, 267, 719, 218, 158, 219, 255, 219, 380, 389, 335, 247, 172, 430, 346, 417, 137, 347, 308, 405, 296, 340, 141, 232, 344, 63, 186, 207, 208, 557, 120, 240, 286, 187, 383, 223, 280, 380, 166, 470, 721, 869, 628, 178, 340, 469, 307, 113, 180, 271, 309, 825, 1039, 211, 309, 316, 455, 624, 297, 195, 667, 1083, 750, 163, 763, 183, 254, 979, 953, 479, 595, 537, 914, 1446, 376, 999, 1350, 106, 136, 480, 272, 397, 366, 1205, 927, 564, 421, 331, 983, 167, 585, 124, 135, 307, 301, 1032, 1068, 982, 91, 209, 600, 270, 549, 226, 372, 403, 284, 299, 192, 337, 381, 679, 569, 464, 641, 508, 335, 137, 186, 278, 376, 339, 842, 664, 674, 550, 135, 1319, 204, 707, 330, 1910, 498, 929, 331, 860, 400, 222, 238, 296, 417, 639, 90, 270, 947, 351, 217, 698, 211, 240, 290, 517, 495, 397, 454, 291, 456, 382, 347, 816, 363, 340, 2038, 376, 188, 352, 842, 786, 372, 371, 898, 608, 359, 367, 108, 724, 244, 316, 627, 511, 770, 207, 138, 512, 1250, 356, 848, 211, 388, 776, 655, 383, 612, 163, 162, 1149, 795, 345, 342, 676, 470, 289, 241, 802, 256, 402, 264, 778, 564, 569, 133, 155, 537, 473, 378, 272, 753, 969, 956, 335, 326, 596, 394, 321, 415, 81, 500, 561, 269, 565, 242, 132, 114, 203, 381, 441, 454, 252, 135, 218, 457, 284, 343, 832, 203, 201, 254, 341, 1372, 283, 592, 423, 395, 628, 480, 502, 154, 695, 608, 249, 280, 400, 662, 994, 439, 362, 901, 331, 181, 1085, 758, 323, 586, 154, 432, 791, 242, 813, 572, 331, 617, 541, 401, 155, 367, 555, 209, 387, 235, 345, 285, 735, 291, 1104, 139, 311, 338, 255, 843, 616, 691, 338, 420, 572, 282, 982, 432, 619, 592, 576, 424, 212, 255, 379, 261, 428, 232, 165, 424, 159, 270, 626, 657, 466, 151, 363, 226, 754, 123, 414, 627, 208, 282, 283, 93, 214, 172, 1226, 348, 396, 212, 377, 397, 172, 357, 142, 169, 363, 258, 171, 493, 576, 235, 438, 128, 641, 464, 273, 283, 157, 374, 273, 406, 744, 276, 362, 423, 369, 411, 188, 708, 285, 187, 585, 417, 145, 647, 381, 602, 629, 555, 482, 378, 589, 479, 593, 461, 729, 250, 204, 277, 613, 356, 300, 427, 157, 812, 345, 207, 615, 131, 1093, 513, 736, 278, 417, 733, 995, 216, 82, 362, 570, 275, 338, 422, 638, 516, 325, 292, 746, 268, 156, 341, 107, 551, 391, 704, 440, 1037, 318, 597, 128, 183, 185, 555, 288, 488, 461, 291, 413, 124, 288, 144, 339, 594, 195, 240, 144, 699, 505, 337, 499, 457, 696, 317, 736, 465, 945, 828, 183, 531, 820, 401, 259, 316, 607, 853, 396, 214, 214, 513, 275, 674, 457, 417, 213, 757, 285, 473, 287, 172, 836, 528, 262, 355, 176, 392, 360, 972, 143, 220, 276, 379, 169, 211, 580, 366, 585, 249, 601, 637, 596, 355, 446, 344, 166, 231, 660, 545, 730, 285, 659, 470, 837, 449, 377, 361, 210, 301, 316, 877, 137, 258, 183, 117, 92, 355, 160, 235, 373, 486, 193, 242, 223, 562, 150, 234, 378, 142, 214, 279, 674, 378, 546, 336, 504, 208, 283, 680, 477, 539, 325, 566, 210, 245, 902, 530, 203, 350, 353, 185, 242, 254, 668, 144, 318, 811, 169, 511, 163, 362, 518, 116, 1140, 473, 413, 262, 290, 437, 441, 371, 179, 415, 809, 735, 944, 364, 420, 78, 428, 817, 323, 314, 332, 207, 305, 137, 578, 253, 808, 756, 485, 358, 381, 904, 290, 325, 479, 225, 270, 242, 330, 754, 321, 698, 303, 148, 271, 612, 194, 469, 835, 564, 362, 672, 420, 430, 590, 285, 336, 414, 594, 655, 271, 393, 249, 151, 489, 351, 635, 428, 416, 222, 543, 267, 540, 384, 457, 238, 560, 557, 213, 595, 241, 785, 520, 551, 275, 433, 493, 595, 507, 586, 688, 139, 437, 708, 503, 325, 760, 582, 771, 661, 337, 560, 798, 456, 340, 464, 349, 718, 529, 110, 150, 247, 272, 263, 966, 838, 119, 287, 688, 262, 922, 228, 530, 133, 553, 327, 964, 506, 536, 679, 251, 265, 933, 594, 315, 159, 377, 418, 522, 416, 392, 422, 204, 391, 761, 295, 225, 264, 294, 210, 1045, 699, 697, 668, 340, 317, 488, 446, 618, 1030, 600, 313, 434, 1175, 268, 506, 863, 399, 625, 850, 257, 1240, 218, 527, 453, 535, 440, 310, 181, 162, 396, 58, 394, 330, 510, 891, 368, 449, 538, 578, 305, 488, 524, 736, 569, 123, 514, 326, 487, 347, 356, 865, 377, 513, 255, 111, 285, 386, 188, 429, 752, 613, 156, 216, 364, 607, 526, 425, 309, 355, 249, 568, 832, 420, 297, 1292, 583, 596, 316, 421, 194, 269, 160, 536, 347, 625, 622, 707, 579, 94, 415, 278, 528, 176, 313, 191, 1133, 887, 265, 346, 612, 323, 286, 307, 193, 451, 543, 430, 291, 236, 423, 484, 224, 824, 2029, 696, 605, 222, 490, 424, 248, 591, 601, 459, 316, 371, 601, 272, 457, 244, 128, 327, 320, 337, 189, 286, 251, 232, 511, 1059, 265, 150, 236, 418, 150, 325, 267, 302, 1057, 340, 270, 336, 1024, 304, 304, 451, 452, 286, 274, 310, 899, 495, 372, 459, 120, 1088, 341, 326, 449, 833, 901, 530, 176, 431, 263, 321, 614, 451, 463, 619, 150, 480, 373, 369, 294, 734, 502, 236, 671, 156, 1041, 154, 534, 969, 393, 428, 213, 209, 526, 245, 296, 572, 650, 350, 510, 284, 298, 180, 217, 273, 343, 198, 493, 648, 96, 1907, 497, 205, 340, 831, 151, 516, 493, 285, 723, 1570, 301, 386, 1063, 458, 249, 294, 700, 372, 391, 1087, 307, 530, 93, 279, 915, 436, 339, 254, 546, 177, 119, 133, 639, 439, 248, 212, 428, 496, 539, 473, 889, 104, 1087, 389, 839, 1029, 607, 527, 290, 421, 340, 735, 614, 811, 284, 901, 679, 678, 318, 1053, 712, 433, 443, 585, 452, 224, 446, 379, 171, 304, 826, 614, 597, 168, 462, 480, 179, 162, 260, 519, 368, 316, 116, 306, 341, 154, 265, 401, 842, 378, 498, 302, 457, 1064, 315, 532, 719, 444, 519, 516, 221, 237, 429, 382, 374, 429, 91, 384, 213, 243, 825, 232, 490, 367, 367, 318, 337, 783, 516, 996, 396, 364, 219, 674, 799, 1369, 415, 329, 364, 278, 638, 144, 237, 397, 258, 431, 664, 306, 446, 460, 268, 470, 282, 379, 164, 199, 626, 519, 386, 268, 489, 416, 161, 274, 275, 1033, 239, 537, 306, 285, 439, 419, 492, 512, 891, 139, 364, 1104, 560, 442, 422, 576, 82, 338, 264, 175, 418, 590, 824, 728, 832, 182, 286, 427, 285, 246, 418, 241, 508, 289, 201, 372, 133, 477, 526, 338, 547, 200, 304, 593, 194, 484, 299, 343, 604, 853, 217, 233, 311, 143, 176, 588, 685, 355, 594, 367, 267, 193, 281, 805, 441, 442, 1581, 192, 520, 414, 1240, 251, 481, 495, 633, 268, 871, 396, 420, 376, 210, 1529, 579, 262, 173, 196, 745, 321, 173, 533, 535, 305, 241, 530, 512, 502, 369, 219, 265, 118, 417, 563, 594, 216, 599, 321, 220, 372, 237, 702, 627, 197, 369, 91, 225, 433, 93, 259, 446, 286, 601, 923, 299, 507, 375, 778, 138, 512, 254, 163, 366, 1086, 431, 430, 365, 743, 302, 261, 374, 766, 521, 286, 299, 479, 525, 281, 364, 364, 884, 680, 574, 149, 525, 545, 840, 227, 386, 126, 274, 506, 653, 499, 1056, 739, 324, 1093, 366, 191, 451, 493, 715, 450, 323, 303, 649, 236, 187, 577, 324, 372, 342, 653, 1043, 1163, 249, 399, 900, 197, 125, 269, 364, 274, 218, 359, 943, 308, 212, 368, 705, 222, 656, 338, 194, 455, 353, 644, 249, 620, 731, 360, 539, 607, 195, 481, 165, 105, 209, 549, 245, 306, 211, 577, 269, 228, 355, 153, 399, 188, 176, 315, 60, 240, 445, 478, 386, 285, 168, 492, 385, 581, 334, 301, 100, 130, 357, 316, 141, 271, 210, 692, 216, 407, 422, 458, 218, 210, 348, 176, 187, 94, 387, 496, 328, 215, 408, 235, 347, 390, 133, 162, 224, 467, 407, 383, 128, 341, 302, 297, 116, 116, 283, 308, 817, 412, 172, 371, 288, 429, 280, 352, 755, 385, 314, 378, 217, 351, 202, 593, 466, 155, 499, 792, 320, 357, 467, 144, 265, 344, 48, 77, 382, 207, 133, 200, 182, 223, 350, 260, 423, 180, 140, 529, 620, 153, 343, 277, 568, 500, 298, 367, 164, 541, 361, 308, 269, 600, 148, 720, 319, 345, 261, 376, 160, 272, 114, 112, 105, 281, 138, 801, 172, 234, 666, 402, 452, 666, 236, 362, 375, 179, 365, 360, 181, 319, 284, 563, 457, 313, 214, 333, 598, 490, 236, 215, 303, 394, 163, 576, 272, 578, 223, 258, 289, 150, 479, 284, 329, 189, 581, 504, 174, 425, 788, 169, 425, 180, 241, 282, 346, 140, 148, 995, 344, 453, 278, 407, 338, 177, 443, 147, 477, 411, 237, 213, 328, 290, 190, 254, 829, 61, 517, 125, 200, 169, 242, 253, 312, 236, 387, 163, 329, 119, 139, 251, 580, 288, 124, 74, 101, 419, 475, 571, 456, 373, 189, 373, 344, 195, 154, 230, 240, 283, 530, 140, 226, 275, 112, 356, 458, 572, 610, 227, 403, 312, 280, 97, 215, 204, 202, 431, 295, 250, 162, 171, 171, 154, 199, 383, 435, 196, 228, 297, 347, 457, 148, 400, 397, 410, 534, 452, 243, 311, 744, 519, 709, 351, 96, 300, 247, 226, 273, 239, 249, 188, 206, 354, 408, 554, 507, 224, 88, 219, 333, 167, 231, 266, 179, 262, 100, 465, 224, 367, 189, 156, 123, 268, 255, 214, 271, 396, 750, 580, 301, 193, 403, 510, 728, 251, 340, 55, 348, 166, 947, 265, 110, 340, 377, 452, 502, 279, 227, 471, 146, 714, 237, 322, 170, 252, 214, 336, 87, 529, 113, 215, 200, 654, 624, 277, 383, 268, 367, 797, 134, 95, 142, 355, 242, 322, 207, 243, 217, 419, 538, 168, 169, 230, 642, 546, 355, 200, 289, 268, 188, 357, 142, 256, 373, 312, 564, 190, 212, 314, 362, 295, 561, 300, 528, 610, 265, 163, 369, 133, 531, 624, 330, 417, 383, 179, 737, 283, 217, 290, 382, 208, 240, 546, 75, 300, 521, 118, 252, 90, 191, 185, 704, 469, 406, 285, 371, 360, 105, 511, 324, 212, 259, 378, 298, 240, 463, 328, 760, 349, 268, 98, 381, 198, 353, 300, 417, 480, 155, 643, 190, 378, 294, 571, 446, 158, 309, 158, 658, 307, 379, 313, 212, 510, 101, 295, 971, 420, 313, 262, 748, 272, 830, 123, 246, 431, 264, 504, 102, 122, 456, 145, 500, 298, 646, 270, 238, 272, 531, 361, 110, 364, 186, 238, 785, 212, 233, 415, 172, 122, 346, 370, 577, 219, 466, 126, 574, 243, 307, 300, 324, 129, 228, 408, 332, 384, 1037, 133, 276, 242, 241, 258, 278, 202, 84, 394, 296, 328, 226, 260, 123, 790, 546, 338, 186, 173, 190, 230, 397, 181, 428, 523, 753, 91, 443, 205, 171, 747, 233, 222, 636, 450, 492, 320, 211, 151, 452, 414, 282, 257, 329, 274, 265, 306, 217, 255, 219, 563, 299, 656, 144, 565, 206, 301, 136, 330, 159, 175, 290, 383, 281, 385, 97, 231, 338, 598, 691, 334, 279, 261, 266, 166, 594, 292, 108, 308, 175, 395, 277, 263, 297, 288, 449, 145, 252, 122, 248, 723, 189, 514, 450, 549, 189, 796, 260, 249, 249, 143, 354, 185, 376, 435, 142, 153, 1111, 316, 102, 233, 502, 418, 228, 323, 345, 358, 229, 537, 700, 680, 515, 324, 141, 367, 691, 509, 1001, 257, 270, 190, 170, 217, 256, 374, 661, 170, 527, 445, 124, 159, 399, 410, 373, 374, 490, 179, 173, 346, 505, 395, 258, 162, 274, 352, 967, 180, 407, 487, 299, 487, 228, 676, 260, 179, 197, 613, 275, 224, 995, 302, 264, 513, 991, 201, 251, 158, 923, 230, 303, 253, 267, 782, 389, 712, 331, 495, 546, 162, 114, 146, 498, 818, 522, 83, 252, 175, 452, 505, 285, 173, 175, 509, 273, 386, 199, 78, 213, 169, 347, 234, 486, 272, 233, 141, 670, 569, 301, 337, 643, 190, 666, 522, 189, 439, 250, 135, 405, 111, 211, 398, 466, 351, 218, 265, 309, 189, 399, 81, 388, 351, 678, 183, 195, 919, 398, 364, 199, 80, 350, 534, 123, 241, 384, 189, 402, 221, 53, 128, 209, 718, 459, 293, 537, 586, 82, 265, 234, 933, 607, 227, 297, 194, 195, 307, 524, 406, 286, 476, 307, 138, 479, 317, 110, 291, 168, 156, 136, 159, 162, 583, 662, 564, 220, 168, 83, 263, 251, 82, 104, 243, 229, 938, 535, 137, 294, 196, 161, 223, 310, 475, 145, 435, 258, 311, 236, 148, 239, 247, 975, 182, 98, 212, 277, 257, 390, 347, 258, 206, 783, 368, 439, 427, 716, 401, 993, 652, 393, 345, 757, 568, 363, 352, 206, 201, 120, 342, 920, 380, 1391, 458, 275, 411, 336, 528, 295, 483, 597, 739, 236, 755, 721, 428, 405, 149, 274, 323, 565, 350, 599, 181, 578, 333, 233, 199, 367, 177, 588, 671, 758, 301, 548, 410, 1043, 636, 1337, 438, 621, 778, 133, 394, 160, 475, 1141, 369, 792, 509, 761, 129, 848, 1183, 128, 488, 99, 441, 484, 303, 754, 113, 432, 352, 675, 650, 337, 95, 304, 423, 730, 1391, 462, 433, 215, 169, 231, 369, 282, 651, 1249, 429, 315, 1225, 104, 701, 208, 563, 275, 402, 346, 72, 561, 387, 242, 653, 107, 176, 268, 937, 596, 1229, 247, 226, 246, 614, 295, 427, 1097, 587, 297, 796, 434, 206, 443, 690, 680, 213, 252, 258, 405, 891, 207, 775, 111, 318, 309, 500, 116, 78, 718, 439, 153, 296, 940, 819, 1066, 1163, 811, 841, 350, 732, 374, 552, 140, 143, 619, 177, 408, 986, 553, 334, 930, 543, 581, 236, 160, 148, 868, 430, 314, 736, 191, 540, 443, 160, 308, 636, 367, 459, 225, 336, 441, 231, 284, 802, 67, 1838, 397, 242, 230, 195, 532, 311, 588, 629, 200, 1051, 796, 224, 329, 482, 276, 708, 470, 160, 153, 108, 282, 337, 208, 140, 597, 863, 506, 278, 86, 575, 1179, 1046, 109, 380, 324, 149, 1048, 387, 639, 494, 875, 713, 672, 173, 153, 255, 546, 170, 493, 349, 992, 455, 210, 675, 1608, 608, 563, 1119, 234, 1305, 1468, 339, 203, 308, 617, 677, 646, 398, 1155, 1212, 406, 275, 380, 845, 393, 329, 80, 562, 538, 853, 1220, 104, 891, 308, 506, 342, 313, 1319, 558, 312, 448, 1021, 426, 213, 912, 373, 642, 213, 286, 450, 639, 336, 565, 112, 560, 463, 246, 67, 334, 145, 370, 187, 839, 417, 213, 199, 871, 360, 574, 729, 426, 136, 171, 422, 614, 220, 78, 369, 356, 1229, 324, 377, 129, 126, 697, 672, 331, 323, 410, 166, 324, 177, 235, 753, 98, 302, 323, 170, 529, 426, 280, 213, 520, 294, 1448, 201, 256, 717, 254, 535, 638, 540, 189, 1173, 254, 476, 633, 461, 902, 179, 519, 149, 154, 445, 1995, 439, 516, 242, 434, 971, 282, 486, 930, 94, 1537, 262, 810, 1239, 1600, 383, 60, 409, 327, 302, 336, 626, 723, 478, 755, 631, 685, 597, 443, 511, 422, 397, 210, 395, 167, 1110, 332, 570, 913, 275, 77, 709, 440, 546, 151, 610, 224, 270, 652, 1162, 129, 446, 1344, 521, 725, 316, 308, 398, 308, 816, 401, 384, 407, 394, 485, 577, 455, 607, 270, 294, 353, 688, 185, 173, 469, 856, 953, 383, 319, 495, 436, 550, 51, 809, 425, 279, 130, 712, 229, 579, 290, 1505, 155, 334, 186, 196, 551, 215, 376, 799, 1426, 405, 328, 358, 817, 270, 410, 376, 480, 69, 238, 624, 220, 642, 995, 904, 527, 126, 1621, 392, 543, 515, 537, 667, 647, 55, 378, 167, 325, 860, 541, 249, 158, 855, 1076, 885, 444, 308, 895, 850, 832, 347, 848, 585, 622, 209, 416, 62, 349, 233, 1140, 494, 630, 329, 294, 199, 759, 502, 254, 1188, 99, 538, 229, 1530, 342, 364, 644, 612, 256, 1034, 149, 1042, 243, 722, 284, 887, 502, 430, 115, 864, 255, 411, 303, 231, 575, 462, 488, 1065, 598, 578, 1925, 1218, 165, 713, 416, 352, 194, 396, 709, 1218, 242, 218, 756, 862, 294, 319, 1077, 595, 747, 222, 493, 751, 329, 586, 713, 989, 83, 1006, 775, 943, 174, 522, 922, 656, 472, 741, 312, 320, 320, 560, 348, 609, 530, 367, 117, 1002, 614, 290, 728, 496, 154, 286, 413, 109, 306, 334, 650, 457, 292, 389, 795, 490, 305, 595, 468, 595, 498, 166, 626, 244, 1228, 289, 161, 1512, 212, 332, 416, 403, 349, 790, 159, 684, 396, 284, 236, 1737, 414, 1093, 238, 590, 603, 745, 422, 276, 745, 135, 749, 604, 255, 130, 545, 952, 941, 877, 253, 168, 145, 635, 36, 315, 252, 491, 499, 231, 477, 254, 434, 693, 238, 622, 229, 187, 623, 1180, 536, 640, 716, 574, 462, 308, 332, 480, 432, 331, 80, 230, 305, 226, 125, 230, 432, 297, 188, 188, 120, 46, 203, 160, 185, 102, 217, 601, 201, 205, 302, 390, 115, 384, 200, 214, 256, 284, 171, 443, 219, 210, 93, 210, 1138, 184, 246, 274, 190, 285, 211, 800, 134, 249, 297, 316, 88, 172, 154, 339, 79, 200, 174, 141, 229, 179, 197, 136, 192, 272, 352, 184, 315, 54, 605, 207, 121, 135, 151, 281, 193, 318, 219, 156, 132, 60, 76, 84, 229, 199, 155, 233, 357, 75, 193, 52, 129, 197, 224, 168, 144, 914, 245, 121, 198, 123, 479, 384, 48, 203, 391, 327, 837, 320, 727, 181, 58, 413, 160, 181, 119, 390, 41, 301, 346, 145, 560, 170, 187, 200, 211, 340, 185, 287, 241, 271, 281, 148, 92, 370, 38, 79, 107, 498, 111, 185, 313, 271, 117, 138, 96, 233, 73, 470, 165, 222, 368, 161, 171, 540, 222, 273, 106, 979, 99, 135, 304, 746, 199, 132, 264, 134, 194, 182, 494, 168, 233, 112, 163, 221, 85, 127, 206, 294, 121, 287, 424, 185, 276, 72, 264, 301, 147, 171, 220, 211, 291, 331, 184, 191, 209, 277, 162, 265, 165, 121, 65, 247, 378, 250, 446, 71, 157, 93, 279, 93, 227, 220, 142, 139, 272, 495, 306, 159, 474, 227, 531, 302, 252, 616, 69, 161, 183, 124, 317, 151, 299, 278, 113, 223, 398, 112, 128, 378, 358, 127, 1255, 394, 145, 191, 248, 242, 135, 564, 261, 211, 268, 173, 81, 195, 152, 145, 524, 197, 127, 257, 647, 755, 202, 105, 96, 150, 296, 371, 221, 163, 157, 104, 163, 118, 403, 195, 362, 261, 352, 345, 236, 1235, 163, 219, 83, 140, 145, 333, 189, 678, 156, 202, 686, 230, 900, 679, 1444, 156, 82, 149, 92, 163, 215, 194, 167, 338, 226, 190, 202, 388, 315, 192, 145, 164, 147, 224, 111, 240, 288, 144, 328, 306, 296, 129, 239, 336, 221, 245, 256, 124, 61, 123, 158, 274, 287, 177, 216, 412, 223, 39, 170, 246, 383, 278, 250, 208, 253, 128, 239, 207, 270, 121, 371, 284, 196, 161, 745, 125, 208, 164, 434, 237, 286, 475, 657, 503, 334, 293, 189, 85, 125, 328, 287, 422, 150, 265, 213, 518, 576, 559, 201, 472, 291, 77, 216, 90, 177, 755, 322, 117, 295, 173, 201, 141, 175, 80, 670, 139, 60, 142, 260, 178, 464, 221, 366, 120, 356, 134, 932, 163, 261, 241, 270, 213, 356, 76, 185, 186, 97, 144, 231, 117, 210, 217, 159, 397, 128, 169, 164, 280, 347, 293, 312, 314, 277, 249, 637, 105, 132, 261, 181, 241, 293, 213, 127, 990, 672, 144, 132, 316, 160, 366, 86, 163, 106, 210, 395, 61, 336, 266, 345, 102, 240, 139, 93, 210, 85, 398, 284, 230, 223, 605, 110, 159, 564, 115, 86, 238, 130, 165, 740, 242, 265, 255, 360, 272, 435, 297, 305, 300, 210, 176, 179, 119, 205, 822, 150, 157, 330, 501, 335, 223, 177, 83, 229, 113, 286, 200, 601, 213, 873, 486, 242, 301, 213, 161, 486, 245, 226, 361, 247, 390, 109, 169, 424, 95, 200, 599, 238, 266, 185, 277, 70, 184, 327, 273, 168, 149, 201, 427, 77, 683, 206, 257, 226, 151, 157, 109, 518, 481, 284, 106, 78, 136, 89, 325, 457, 213, 185, 443, 191, 263, 357, 322, 224, 266, 390, 142, 534, 189, 221, 269, 147, 291, 722, 101, 249, 177, 331, 849, 122, 230, 352, 365, 120, 224, 211, 146, 125, 162, 92, 225, 430, 257, 98, 333, 97, 228, 129, 111, 451, 118, 177, 222, 89, 266, 197, 186, 606, 273, 240, 258, 263, 341, 68, 182, 242, 219, 421, 241, 102, 122, 109, 145, 145, 59, 101, 167, 296, 425, 94, 85, 281, 194, 161, 116, 185, 185, 62, 254, 132, 80, 217, 474, 168, 269, 96, 176, 114, 198, 333, 177, 207, 268, 174, 349, 375, 349, 168, 110, 135, 125, 439, 135, 216, 150, 194, 242, 125, 143, 340, 76, 257, 131, 147, 153, 388, 116, 134, 247, 277, 155, 330, 236, 255, 590, 66, 128, 223, 144, 262, 131, 286, 651, 666, 225, 339, 81, 202, 116, 135, 190, 367, 1142, 372, 394, 390, 143, 241, 402, 314, 283, 360, 293, 610, 110, 216, 71, 104, 267, 236, 235, 444, 398, 360, 170, 453, 311, 153, 298, 283, 188, 273, 194, 192, 436, 173, 203, 69, 70, 409, 232, 131, 186, 266, 353, 223, 63, 396, 197, 203, 329, 504, 215, 146, 314, 279, 261, 301, 131, 133, 301, 249, 217, 206, 349, 216, 160, 86, 144, 290, 220, 155, 250, 454, 65, 281, 177, 185, 113, 473, 114, 67, 150, 417, 198, 560, 200, 161, 250, 170, 140, 451, 241, 278, 360, 307, 402, 143, 345, 235, 239, 296, 836, 105, 453, 391, 132, 90, 107, 273, 147, 212, 417, 336, 206, 242, 532, 130, 243, 751, 234, 346, 177, 201, 200, 139, 131, 292, 228, 154, 133, 250, 719, 256, 240, 254, 709, 717, 186, 879, 272, 133, 428, 449, 196, 284, 106, 301, 244, 197, 224, 205, 771, 166, 349, 992, 246, 206, 91, 209, 190, 282, 413, 226, 253, 181, 88, 218, 158, 353, 102, 237, 163, 920, 333, 214, 260, 114, 275, 516, 232, 290, 186, 320, 215, 532, 653, 413, 193, 79, 96, 577, 108, 268, 374, 265, 208, 524, 267, 188, 380, 246, 246, 1026, 358, 782, 448, 144, 380, 133, 64, 99, 119, 433, 256, 88, 364, 231, 211, 145, 197, 91, 241, 109, 154, 806, 258, 148, 227, 303, 63, 278, 261, 184, 195, 149, 243, 421, 110, 103, 194, 103, 831, 129, 340, 296, 151, 91, 245, 209, 402, 128, 176, 127, 150, 97, 163, 332, 215, 154, 276, 334, 742, 224, 264, 138, 433, 200, 280, 272, 240, 90, 235, 126, 104, 253, 263, 153, 250, 285, 278, 354, 228, 272, 156, 325, 323, 158, 311, 131, 305, 152, 246, 98, 224, 253, 251, 222, 161, 362, 188, 193, 130, 150, 315, 255, 186, 413, 145, 637, 94, 208, 306, 126, 197, 200, 229, 304, 209, 344, 139, 97, 199, 358, 154, 196, 518, 234, 567, 212, 180, 178, 271, 164, 647, 297, 91, 232, 166, 108, 283, 490, 161, 209, 155, 447, 280, 331, 314, 92, 197, 258, 134, 304, 308, 110, 427, 421, 165, 172, 245, 243, 180, 247, 265, 518, 341, 391, 405, 498, 232, 456, 211, 263, 70, 218, 503, 331, 193, 246, 450, 213, 283, 279, 135, 218, 249, 231, 305, 276, 68, 299, 385, 170, 194, 59, 230, 731, 240, 790, 159, 188, 435, 212, 153, 267, 346, 217, 175, 199, 273, 234, 276, 134, 237, 150, 229, 208, 191, 154, 197, 232, 347, 275, 149, 307, 134, 154, 388, 360, 129, 111, 150, 132, 169, 323, 116, 636, 221, 472, 268, 394, 102, 463, 842, 319, 413, 320, 159, 363, 218, 934, 104, 219, 526, 942, 1004, 200, 245, 316, 329, 434, 243, 605, 1250, 768, 656, 411, 429, 921, 630, 297, 426, 243, 294, 331, 740, 612, 492, 931, 320, 441, 263, 692, 187, 510, 524, 151, 1756, 308, 332, 514, 734, 135, 180, 635, 348, 793, 302, 249, 373, 543, 243, 277, 1212, 239, 280, 197, 563, 165, 566, 933, 1832, 276, 526, 204, 454, 400, 233, 328, 206, 467, 737, 462, 596, 135, 159, 187, 220, 653, 707, 766, 1344, 286, 401, 165, 375, 998, 567, 416, 383, 459, 359, 414, 615, 1174, 559, 1011, 363, 1034, 361, 694, 267, 240, 528, 1638, 894, 217, 363, 235, 1092, 202, 1009, 131, 243, 540, 297, 334, 601, 195, 1044, 914, 457, 676, 856, 257, 484, 210, 381, 442, 842, 374, 996, 169, 951, 598, 231, 561, 330, 331, 430, 438, 795, 438, 256, 385, 152, 222, 273, 496, 315, 680, 784, 541, 243, 163, 344, 404, 281, 670, 529, 429, 647, 343, 543, 413, 423, 348, 779, 127, 399, 830, 815, 385, 515, 893, 562, 532, 352, 306, 1026, 120, 592, 293, 604, 646, 483, 359, 1427, 231, 1149, 1056, 184, 660, 640, 1303, 640, 339, 246, 278, 1393, 917, 422, 609, 202, 192, 1053, 849, 386, 680, 424, 448, 1091, 1541, 290, 69, 674, 221, 878, 97, 579, 840, 161, 588, 279, 531, 213, 164, 256, 730, 980, 241, 685, 408, 691, 122, 150, 332, 325, 752, 942, 1351, 1380, 327, 366, 481, 478, 299, 1408, 775, 291, 962, 170, 337, 797, 192, 825, 435, 295, 673, 106, 351, 641, 658, 465, 461, 367, 479, 588, 909, 613, 437, 705, 175, 387, 509, 757, 1104, 687, 172, 309, 276, 375, 527, 529, 507, 418, 303, 514, 845, 1534, 468, 688, 984, 67, 552, 683, 649, 314, 213, 353, 235, 299, 1104, 150, 557, 291, 244, 631, 329, 285, 145, 322, 496, 386, 586, 658, 270, 629, 188, 459, 618, 515, 491, 278, 212, 371, 293, 521, 202, 811, 268, 336, 539, 607, 119, 776, 338, 109, 434, 178, 791, 127, 799, 874, 485, 266, 315, 1124, 657, 123, 403, 563, 953, 964, 371, 466, 770, 457, 371, 384, 561, 124, 639, 683, 241, 242, 865, 81, 677, 641, 517, 751, 395, 251, 243, 830, 677, 208, 478, 208, 1043, 559, 1191, 758, 483, 619, 535, 226, 938, 452, 617, 397, 212, 227, 508, 594, 636, 246, 539, 949, 345, 303, 301, 501, 237, 410, 580, 322, 431, 531, 706, 664, 635, 274, 929, 232, 394, 697, 162, 838, 913, 410, 516, 497, 100, 395, 372, 548, 115, 648, 439, 215, 247, 387, 449, 374, 162, 554, 957, 550, 177, 690, 571, 450, 774, 514, 390, 429, 309, 841, 538, 256, 671, 390, 543, 1874, 327, 679, 535, 522, 502, 520, 1061, 393, 325, 1193, 523, 557, 587, 595, 180, 524, 379, 373, 315, 158, 880, 707, 823, 446, 348, 724, 332, 126, 417, 321, 272, 317, 534, 134, 478, 638, 744, 511, 329, 200, 412, 479, 464, 1588, 346, 371, 214, 341, 390, 1261, 564, 883, 322, 166, 891, 389, 456, 366, 811, 328, 784, 490, 144, 469, 1246, 332, 1977, 625, 517, 628, 457, 729, 204, 222, 300, 273, 570, 149, 371, 173, 545, 165, 782, 276, 612, 332, 299, 967, 272, 639, 658, 252, 588, 336, 630, 690, 619, 425, 500, 327, 582, 385, 984, 515, 255, 835, 562, 146, 352, 570, 280, 501, 209, 1087, 448, 551, 475, 378, 291, 422, 397, 404, 636, 420, 616, 192, 643, 770, 154, 135, 233, 366, 248, 390, 234, 175, 702, 146, 686, 848, 566, 319, 461, 559, 696, 438, 558, 1068, 388, 251, 280, 338, 207, 1209, 166, 339, 759, 691, 340, 768, 856, 981, 555, 394, 308, 610, 1379, 484, 521, 713, 200, 711, 200, 599, 995, 389, 452, 350, 781, 599, 454, 481, 530, 413, 648, 413, 363, 153, 219, 440, 590, 137, 895, 749, 444, 415, 466, 416, 476, 575, 280, 407, 853, 162, 1083, 251, 461, 633, 586, 190, 562, 968, 359, 1004, 151, 197, 299, 755, 774, 935, 342, 150, 657, 506, 353, 827, 489, 784, 167, 551, 566, 973, 494, 256, 215, 181, 229, 353, 867, 427, 197, 349, 375, 187, 700, 568, 568, 428, 379, 241, 340, 585, 324, 335, 845, 901, 1578, 435, 770, 678, 241, 174, 224, 217, 544, 698, 176, 448, 988, 200, 128, 443, 412, 273, 1171, 301, 535, 762, 752, 50, 688, 613, 438, 235, 1128, 414, 356, 645, 328, 226, 262, 542, 295, 789, 609, 664, 365, 790, 1441, 229, 324, 804, 934, 440, 545, 155, 458, 194, 810, 494, 663, 555, 267, 223, 750, 237, 674, 208, 765, 538, 636, 604, 457, 365, 254, 136, 705, 166, 935, 587, 877, 217, 750, 413, 766, 233, 259, 430, 375, 288, 577, 607, 682, 494, 371, 326, 393, 131, 237, 230, 817, 467, 91, 243, 581, 115, 373, 552, 249, 890, 465, 647, 706, 112, 295, 325, 235, 158, 282, 358, 349, 469, 94, 294, 229, 271, 228, 314, 174, 208, 367, 161, 114, 210, 315, 125, 1707, 179, 230, 309, 350, 359, 288, 207, 355, 369, 97, 544, 151, 317, 238, 441, 83, 247, 420, 97, 148, 619, 282, 179, 392, 175, 182, 283, 157, 278, 81, 266, 218, 265, 240, 180, 77, 87, 218, 120, 246, 156, 238, 288, 165, 525, 119, 285, 212, 316, 364, 328, 156, 225, 348, 216, 184, 127, 172, 289, 222, 354, 143, 230, 179, 150, 198, 157, 83, 222, 263, 276, 245, 392, 200, 146, 688, 252, 132, 166, 163, 199, 238, 219, 173, 320, 231, 90, 107, 382, 109, 127, 255, 278, 530, 129, 173, 93, 296, 248, 454, 303, 138, 373, 66, 180, 682, 603, 334, 732, 390, 250, 141, 346, 307, 248, 778, 158, 118, 95, 1001, 222, 757, 277, 126, 231, 301, 287, 178, 263, 257, 224, 85, 86, 272, 330, 265, 146, 137, 186, 384, 590, 345, 183, 332, 199, 334, 219, 370, 240, 184, 264, 318, 348, 248, 221, 113, 246, 181, 436, 275, 153, 146, 240, 73, 171, 556, 199, 401, 215, 329, 286, 513, 238, 136, 97, 472, 417, 240, 504, 296, 32, 85, 1142, 196, 107, 111, 229, 202, 151, 271, 210, 354, 192, 196, 510, 211, 161, 360, 224, 235, 259, 188, 636, 184, 514, 97, 152, 783, 262, 146, 214, 370, 226, 237, 153, 488, 191, 268, 208, 242, 248, 265, 366, 80, 221, 124, 179, 300, 409, 179, 280, 389, 283, 179, 310, 90, 150, 434, 384, 356, 294, 189, 378, 132, 240, 123, 112, 338, 289, 135, 352, 208, 654, 189, 456, 238, 98, 329, 264, 203, 135, 537, 367, 164, 277, 144, 137, 138, 164, 101, 333, 109, 298, 272, 174, 204, 124, 233, 446, 198, 145, 521, 400, 317, 324, 286, 607, 276, 207, 159, 481, 475, 329, 387, 1217, 305, 231, 210, 367, 407, 121, 382, 177, 239, 378, 1327, 198, 158, 232, 444, 165, 195, 273, 160, 147, 236, 168, 114, 113, 147, 329, 383, 125, 308, 93, 189, 339, 307, 242, 72, 314, 115, 117, 397, 417, 198, 440, 686, 707, 328, 342, 221, 317, 410, 285, 122, 207, 212, 76, 208, 376, 376, 193, 310, 315, 135, 241, 542, 309, 385, 129, 237, 361, 661, 322, 510, 399, 118, 174, 179, 508, 281, 258, 257, 379, 273, 287, 116, 147, 207, 247, 277, 168, 202, 315, 116, 357, 281, 116, 439, 381, 92, 250, 332, 394, 150, 152, 203, 369, 148, 166, 68, 89, 82, 191, 622, 226, 240, 126, 381, 297, 382, 220, 532, 229, 318, 304, 469, 524, 339, 146, 552, 405, 293, 192, 487, 251, 686, 269, 189, 147, 80, 129, 585, 342, 556, 383, 152, 600, 613, 317, 200, 386, 50, 211, 252, 384, 121, 456, 334, 335, 122, 231, 482, 416, 379, 130, 281, 323, 338, 353, 243, 320, 287, 88, 203, 187, 145, 123, 138, 235, 37, 107, 633, 315, 67, 213, 165, 242, 105, 149, 506, 656, 483, 218, 440, 842, 362, 250, 501, 212, 195, 281, 278, 133, 418, 123, 225, 365, 215, 395, 289, 185, 197, 114, 294, 326, 682, 225, 366, 213, 399, 156, 991, 693, 406, 308, 381, 142, 77, 354, 120, 201, 200, 104, 270, 361, 113, 381, 179, 138, 212, 302, 323, 129, 137, 373, 334, 140, 243, 180, 642, 278, 222, 399, 218, 163, 305, 184, 256, 147, 108, 264, 139, 248, 246, 425, 201, 176, 173, 117, 213, 166, 319, 331, 108, 448, 198, 181, 271, 162, 453, 626, 180, 171, 175, 114, 430, 216, 245, 519, 1899, 232, 486, 226, 54, 206, 328, 503, 402, 323, 161, 279, 293, 90, 110, 222, 360, 169, 422, 238, 296, 368, 562, 256, 163, 249, 147, 108, 309, 386, 371, 55, 226, 283, 259, 209, 192, 242, 97, 266, 201, 281, 245, 86, 912, 191, 216, 311, 207, 117, 327, 251, 333, 347, 713, 218, 155, 311, 202, 335, 174, 83, 230, 1123, 147, 171, 301, 240, 298, 65, 506, 226, 202, 214, 177, 255, 150, 273, 102, 271, 89, 264, 316, 325, 203, 139, 470, 252, 100, 179, 282, 226, 631, 308, 202, 54, 157, 234, 419, 347, 246, 279, 447, 120, 526, 158, 283, 182, 356, 558, 315, 191, 152, 228, 138, 112, 627, 369, 511, 241, 94, 105, 56, 177, 341, 455, 139, 142, 147, 514, 271, 342, 232, 241, 198, 478, 180, 154, 185, 384, 202, 399, 236, 312, 754, 167, 188, 232, 350, 180, 187, 182, 201, 307, 142, 306, 471, 320, 260, 186, 364, 159, 299, 407, 218, 134, 187, 440, 241, 378, 107, 91, 113, 256, 135, 445, 242, 307, 64, 255, 320, 273, 345, 370, 152, 209, 121, 146, 214, 139, 252, 259, 532, 766, 166, 231, 219, 176, 332, 249, 270, 164, 69, 173, 252, 225, 358, 522, 195, 103, 358, 188, 195, 243, 223, 165, 317, 113, 251, 744, 364, 326, 555, 198, 253, 234, 228, 1132, 292, 258, 47, 263, 80, 958, 248, 638, 143, 192, 242, 101, 184, 446, 224, 239, 135, 265, 490, 163, 144, 78, 229, 322, 94, 294, 318, 411, 311, 120, 1183, 351, 139, 784, 131, 130, 202, 252, 99, 111, 311, 162, 575, 328, 202, 196, 264, 119, 238, 115, 73, 115, 86, 321, 172, 178, 93, 187, 236, 183, 218, 255, 286, 213, 338, 285, 363, 204, 180, 596, 355, 128, 57, 202, 518, 402, 132, 306, 152, 73, 173, 143, 94, 157, 267, 217, 138, 207, 566, 273, 340, 153, 174, 271, 401, 405, 242, 110, 278, 541, 386, 218, 139, 263, 212, 209, 279, 193, 127, 137, 231, 92, 275, 79, 165, 410, 459, 257, 321, 128, 286, 277, 1028, 350, 344, 121, 130, 885, 148, 234, 482, 379, 360, 318, 147, 131, 157, 122, 357, 294, 174, 265, 453, 544, 214, 303, 543, 200, 209, 313, 365, 98, 577, 168, 135, 119, 161, 386, 168, 162, 568, 482, 210, 300, 263, 540, 136, 143, 98, 383, 217, 137, 318, 154, 184, 389, 177, 104, 472, 242, 163, 142, 131, 183, 213, 386, 365, 360, 438, 226, 88, 127, 184, 189, 150, 140, 241, 399, 140, 671, 97, 270, 76, 374, 126, 316, 233, 104, 381, 269, 102, 299, 111, 162, 411, 161, 116, 145, 227, 529, 371, 309, 528, 966, 262, 526, 261, 573, 59, 638, 155, 424, 177, 286, 109, 272, 144, 285, 655, 238, 444, 291, 399, 295, 581, 91, 247, 66, 162, 632, 663, 438, 395, 489, 106, 237, 275, 271, 281, 170, 210, 104, 305, 415, 682, 143, 277, 257, 246, 175, 213, 503, 180, 292, 214, 302, 144, 198, 268, 139, 203, 114, 324, 723, 193, 283, 588, 236, 198, 322, 135, 375, 192, 216, 260, 502, 57, 488, 125, 63, 352, 373, 335, 255, 312, 154, 113, 48, 56, 285, 272, 208, 225, 680, 203, 293, 303, 641, 317, 168, 272, 162, 578, 194, 249, 181, 297, 335, 580, 570, 150, 157, 169, 323, 260, 620, 136, 202, 1854, 256, 248, 538, 232, 274, 64, 266, 395, 310, 113, 391, 162, 160, 80, 377, 145, 182, 263, 227, 225, 262, 88, 257, 98, 109, 338, 368, 149, 358, 281, 215, 291, 43, 120, 529, 429, 235, 198, 339, 359, 310, 199, 107, 147, 198, 511, 387, 106, 230, 243, 196, 230, 268, 319, 307, 104, 317, 192, 280, 177, 259, 208, 136, 257, 101, 220, 253, 156, 177, 310, 81, 62, 641, 293, 237, 189, 150, 272, 85, 243, 84, 226, 380, 659, 129, 429, 164, 255, 517, 354, 171, 224, 330, 135, 349, 360, 144, 782, 220, 97, 183, 308, 399, 129, 133, 75, 280, 1128, 290, 237, 391, 572, 339, 787, 179, 207, 259, 256, 133, 117, 306, 324, 304, 158, 109, 210, 138, 170, 114, 158, 191, 448, 304, 315, 269, 182, 178, 136, 63, 197, 201, 106, 658, 196, 236, 407, 75, 92, 196, 263, 103, 237, 132, 91, 208, 619, 366, 174, 102, 247, 314, 329, 309, 166, 320, 126, 97, 342, 1392, 38, 549, 199, 485, 115, 166, 330, 149, 225, 159, 429, 258, 231, 643, 213, 393, 243, 186, 650, 320, 145, 210, 307, 131, 223, 166, 147, 281, 674, 474, 102, 374, 231, 601, 112, 159, 158, 91, 346, 412, 278, 129, 320, 258, 221, 115, 130, 187, 159, 112, 277, 552, 167, 176, 444, 83, 277, 245, 364, 544, 78, 255, 311, 133, 152, 259, 262, 228, 85, 292, 223, 85, 220, 488, 205, 377, 251, 135, 184, 703, 549, 203, 109, 105, 213, 412, 413, 148, 179, 361, 486, 192, 416, 1028, 330, 308, 559, 229, 207, 305, 279, 210, 227, 165, 125, 612, 151, 131, 87, 100, 216, 400, 251, 324, 210, 154, 160, 337, 157, 126, 226, 387, 139, 231, 176, 326, 203, 580, 437, 296, 259, 120, 976, 204, 744, 110, 143, 152, 387, 310, 142, 501, 398, 406, 208, 74, 240, 238, 289, 199, 155, 283, 239, 121, 201, 83, 194, 313, 302, 154, 75, 176, 128, 183, 310, 112, 676, 406, 466, 292, 256, 203, 248, 198, 118, 223, 223, 415, 323, 245, 390, 249, 617, 166, 134, 456, 150, 524, 164, 137, 175, 352, 217, 420, 333, 488, 542, 166, 137, 142, 101, 322, 227, 206, 323, 339, 200, 285, 239, 198, 205, 215, 322, 224, 468, 218, 256, 90, 165, 122, 286, 235, 338, 503, 309, 77, 105, 80, 473, 205, 206, 201, 120, 314, 194, 126, 334, 387, 224, 555, 273, 143, 650, 591, 345, 290, 170, 376, 181, 121, 346, 260, 255, 85, 198, 193, 525, 226, 282, 393, 292, 119, 736, 160, 208, 554, 132, 165, 187, 260, 123, 492, 155, 79, 140, 154, 226, 180, 156, 239, 501, 597, 371, 399, 150, 235, 486, 439, 253, 435, 155, 337, 420, 198, 155, 671, 216, 384, 451, 275, 120, 468, 212, 376, 495, 944, 325, 162, 186, 227, 195, 233, 197, 207, 418, 205, 391, 89, 166, 182, 112, 193, 559, 228, 329, 682, 181, 235, 136, 289, 551, 587, 82, 247, 219, 251, 252, 118, 231, 180, 123, 142, 213, 49, 235, 316, 154, 114, 270, 132, 184, 417, 454, 271, 123, 247, 378, 388, 191, 129, 377, 206, 457, 249, 100, 257, 405, 633, 73, 131, 235, 439, 292, 244, 491, 97, 236, 275, 157, 238, 272, 251, 554, 709, 226, 149, 240, 166, 182, 228, 222, 298, 169, 286, 312, 620, 340, 379, 274, 102, 161, 155, 350, 287, 164, 391, 211, 166, 380, 389, 473, 201, 1670, 194, 177, 289, 195, 173, 152, 103, 367, 200, 199, 403, 267, 395, 205, 889, 348, 191, 317, 145, 124, 126, 311, 337, 185, 173, 152, 267, 276, 97, 232, 243, 394, 150, 349, 463, 164, 161, 221, 638, 148, 284, 268, 371, 277, 239, 422, 230, 275, 300, 226, 198, 99, 93, 253, 225, 472, 389, 649, 115, 269, 541, 345, 313, 438, 861, 142, 443, 831, 170, 201, 257, 283, 172, 250, 162, 124, 348, 456, 200, 467, 134, 223, 166, 283, 534, 284, 332, 121, 237, 204, 124, 242, 265, 429, 483, 271, 252, 205, 211, 399, 234, 178, 138, 264, 290, 360, 292, 417, 191, 394, 234, 228, 771, 230, 265, 200, 130, 263, 379, 106, 334, 61, 537, 180, 283, 312, 283, 208, 428, 286, 444, 151, 273, 340, 171, 200, 241, 360, 204, 296, 305, 253, 198, 78, 311, 180, 59, 95, 49, 552, 220, 191, 173, 228, 280, 232, 301, 248, 584, 112, 176, 231, 409, 221, 170, 617, 431, 245, 361, 272, 174, 386, 147, 159, 445, 183, 194, 267, 341, 157, 230, 350, 300, 313, 247, 85, 116, 122, 870, 215, 139, 220, 415, 148, 166, 218, 149, 74, 279, 375, 230, 261, 146, 314, 217, 96, 293, 148, 385, 121, 207, 64, 404, 499, 207, 504, 317, 294, 442, 860, 244, 108, 159, 538, 308, 242, 361, 218, 94, 144, 340, 241, 476, 73, 308, 132, 80, 363, 226, 474, 190, 200, 219, 340, 218, 338, 143, 416, 252, 446, 296, 319, 165, 400, 58, 310, 291, 94, 171, 226, 151, 294, 348, 393, 238, 334, 290, 222, 660, 275, 108, 302, 88, 922, 297, 238, 538, 348, 151, 104, 710, 243, 338, 229, 629, 641, 358, 295, 514, 492, 875, 302, 681, 183, 397, 514, 884, 380, 103, 216, 276, 785, 427, 886, 591, 205, 565, 616, 380, 572, 425, 477, 427, 983, 686, 162, 495, 468, 595, 680, 825, 887, 404, 323, 353, 734, 609, 230, 286, 281, 276, 448, 253, 511, 319, 459, 112, 174, 117, 205, 932, 218, 699, 359, 324, 97, 224, 1862, 580, 390, 388, 554, 739, 403, 860, 775, 333, 217, 101, 582, 518, 719, 1080, 434, 469, 485, 152, 213, 266, 282, 370, 389, 543, 206, 595, 549, 608, 132, 445, 332, 526, 585, 504, 398, 372, 96, 240, 274, 418, 815, 829, 258, 156, 802, 445, 946, 382, 735, 207, 255, 1101, 219, 727, 1047, 204, 171, 246, 533, 133, 722, 331, 454, 744, 377, 273, 418, 358, 255, 1615, 258, 348, 282, 373, 627, 726, 433, 115, 497, 399, 404, 628, 222, 293, 546, 501, 132, 138, 211, 411, 406, 435, 668, 389, 451, 443, 535, 1198, 1087, 660, 181, 1192, 376, 561, 490, 1731, 411, 151, 566, 496, 170, 220, 421, 294, 360, 792, 354, 181, 309, 1360, 277, 583, 697, 596, 843, 172, 150, 330, 321, 270, 205, 211, 278, 182, 575, 609, 1187, 488, 214, 364, 549, 187, 495, 544, 383, 583, 616, 186, 364, 258, 387, 446, 699, 779, 1412, 228, 619, 208, 504, 311, 581, 128, 115, 220, 1138, 423, 484, 306, 279, 461, 992, 397, 471, 652, 509, 107, 532, 421, 137, 728, 241, 923, 526, 243, 298, 1070, 746, 263, 838, 670, 322, 694, 161, 751, 391, 362, 296, 529, 422, 449, 546, 288, 265, 505, 310, 876, 389, 313, 397, 550, 147, 469, 192, 671, 488, 1819, 546, 179, 311, 322, 955, 492, 560, 449, 503, 81, 538, 364, 338, 530, 919, 414, 306, 414, 214, 206, 276, 826, 747, 428, 97, 689, 653, 524, 397, 926, 632, 164, 794, 508, 174, 478, 368, 959, 259, 197, 961, 254, 365, 410, 439, 668, 679, 584, 389, 897, 540, 238, 301, 655, 207, 383, 359, 355, 298, 824, 153, 963, 251, 486, 364, 190, 636, 404, 343, 321, 364, 237, 516, 275, 152, 991, 94, 348, 932, 600, 648, 440, 81, 334, 245, 319, 556, 588, 191, 813, 255, 522, 187, 348, 190, 588, 156, 146, 289, 176, 644, 332, 133, 65, 437, 166, 130, 149, 240, 415, 733, 402, 574, 433, 445, 411, 693, 611, 175, 1226, 448, 87, 170, 256, 961, 246, 644, 721, 418, 936, 653, 809, 865, 213, 341, 669, 171, 253, 400, 273, 236, 346, 242, 656, 221, 805, 173, 468, 885, 624, 168, 331, 449, 141, 318, 349, 503, 246, 811, 455, 607, 148, 632, 156, 436, 1096, 356, 166, 1340, 166, 527, 446, 391, 427, 564, 482, 701, 1120, 283, 311, 408, 348, 411, 334, 592, 461, 1228, 273, 474, 450, 247, 461, 570, 564, 285, 172, 329, 389, 85, 522, 291, 229, 286, 311, 579, 375, 315, 413, 216, 852, 288, 544, 163, 868, 364, 533, 1106, 241, 346, 403, 101, 792, 423, 632, 716, 361, 589, 541, 690, 290, 199, 565, 310, 598, 354, 641, 255, 519, 513, 222, 964, 716, 372, 146, 377, 212, 1042, 267, 420, 352, 817, 406, 635, 349, 390, 661, 724, 324, 678, 193, 286, 255, 144, 637, 407, 267, 355, 204, 789, 136, 64, 796, 532, 909, 311, 600, 63, 654, 215, 212, 280, 360, 148, 397, 533, 221, 639, 231, 489, 709, 230, 278, 269, 334, 1161, 549, 304, 670, 376, 776, 615, 1060, 458, 723, 400, 423, 225, 165, 509, 403, 339, 454, 592, 883, 449, 467, 1072, 367, 471, 459, 454, 437, 907, 623, 454, 683, 889, 327, 204, 697, 269, 115, 362, 352, 851, 177, 379, 409, 393, 400, 574, 836, 149, 136, 340, 136, 586, 38, 323, 115, 433, 592, 78, 605, 451, 282, 550, 371, 411, 176, 246, 818, 141, 254, 488, 173, 122, 527, 145, 411, 422, 405, 821, 215, 1021, 654, 421, 290, 749, 476, 144, 274, 358, 516, 506, 59, 230, 426, 935, 660, 247, 209, 499, 142, 228, 139, 379, 700, 947, 353, 671, 688, 199, 382, 805, 373, 512, 68, 852, 225, 206, 146, 341, 287, 359, 859, 552, 197, 224, 134, 146, 358, 923, 254, 288, 907, 241, 91, 504, 435, 599, 466, 333, 434, 739, 253, 470, 1157, 302, 540, 119, 729, 803, 349, 151, 158, 700, 754, 1030, 349, 1073, 407, 380, 575, 215, 762, 1349, 133, 441, 272, 226, 643, 726, 833, 292, 154, 343, 378, 323, 360, 410, 418, 210, 367, 528, 462, 349, 1045, 476, 409, 398, 238, 369, 210, 311, 573, 615, 303, 1163, 1000, 268, 418, 362, 887, 270, 488, 337, 778, 451, 585, 473, 239, 561, 477, 690, 1167, 336, 267, 504, 469, 924, 344, 650, 902, 1014, 162, 531, 785, 594, 182, 269, 270, 239, 612, 578, 542, 223, 183, 231, 600, 879, 342, 253, 219, 290, 401, 420, 830, 415, 469, 353, 727, 199, 397, 168, 504, 50, 911, 280, 87, 267, 493, 438, 508, 284, 481, 128, 603, 370, 276, 168, 400, 409, 758, 337, 64, 1173, 433, 250, 98, 368, 129, 216, 380, 119, 228, 604, 83, 298, 458, 226, 485, 561, 254, 187, 292, 597, 132, 438, 245, 283, 278, 150, 285, 253, 219, 476, 141, 338, 413, 647, 570, 474, 306, 203, 362, 328, 339, 689, 173, 265, 198, 335, 233, 387, 505, 176, 210, 315, 430, 787, 116, 458, 856, 185, 95, 255, 362, 338, 315, 279, 420, 222, 423, 438, 314, 236, 127, 163, 276, 532, 397, 498, 235, 469, 152, 242, 456, 683, 459, 183, 269, 335, 237, 454, 233, 560, 212, 465, 308, 200, 233, 88, 430, 294, 509, 271, 973, 176, 672, 195, 147, 525, 138, 384, 347, 291, 604, 266, 363, 267, 204, 128, 464, 368, 788, 533, 201, 613, 908, 229, 277, 215, 744, 364, 499, 373, 385, 342, 397, 752, 149, 199, 186, 183, 379, 276, 571, 396, 518, 456, 346, 862, 260, 371, 215, 224, 685, 126, 280, 636, 596, 158, 568, 187, 134, 323, 407, 236, 218, 410, 273, 385, 280, 224, 126, 259, 114, 342, 194, 580, 348, 707, 490, 451, 319, 174, 191, 153, 100, 113, 199, 211, 331, 124, 378, 562, 584, 159, 288, 401, 620, 244, 224, 242, 556, 255, 379, 82, 205, 147, 171, 326, 826, 194, 458, 170, 188, 567, 430, 117, 266, 346, 156, 587, 326, 334, 183, 341, 185, 198, 197, 663, 364, 250, 387, 183, 251, 286, 631, 257, 243, 142, 248, 288, 517, 258, 242, 357, 380, 572, 288, 147, 317, 360, 184, 234, 258, 293, 588, 112, 504, 518, 88, 251, 290, 110, 136, 303, 276, 391, 157, 137, 277, 120, 179, 286, 220, 239, 341, 376, 344, 141, 306, 401, 373, 318, 735, 365, 178, 166, 252, 206, 193, 344, 274, 747, 237, 577, 98, 256, 896, 440, 294, 278, 551, 346, 276, 340, 804, 152, 152, 188, 842, 511, 631, 364, 255, 274, 356, 66, 295, 393, 303, 317, 126, 582, 249, 244, 108, 301, 271, 267, 137, 198, 96, 164, 354, 330, 111, 124, 531, 451, 173, 267, 195, 382, 560, 207, 233, 814, 142, 302, 277, 283, 245, 272, 271, 306, 173, 280, 234, 252, 109, 411, 543, 116, 436, 241, 70, 178, 254, 209, 304, 375, 293, 153, 473, 797, 156, 85, 471, 379, 472, 495, 218, 133, 235, 208, 182, 760, 245, 199, 242, 310, 443, 248, 120, 452, 528, 459, 155, 384, 322, 324, 348, 270, 523, 152, 344, 222, 132, 341, 215, 234, 817, 467, 468, 194, 393, 861, 381, 229, 407, 594, 390, 465, 503, 302, 325, 138, 947, 459, 183, 209, 358, 298, 549, 118, 274, 277, 231, 653, 515, 775, 217, 777, 147, 110, 207, 384, 309, 416, 307, 416, 631, 521, 414, 446, 346, 490, 567, 333, 196, 238, 328, 164, 465, 326, 176, 157, 59, 216, 229, 258, 402, 391, 231, 195, 176, 792, 267, 123, 483, 355, 53, 186, 169, 252, 128, 211, 343, 491, 668, 178, 318, 485, 729, 495, 557, 769, 548, 368, 207, 202, 923, 613, 657, 258, 357, 181, 154, 102, 359, 607, 434, 511, 371, 479, 602, 1342, 427, 287, 610, 90, 83, 704, 91, 192, 241, 150, 988, 277, 164, 338, 577, 833, 182, 373, 789, 1274, 355, 129, 573, 363, 186, 259, 537, 566, 281, 136, 312, 783, 1043, 810, 678, 601, 445, 531, 106, 520, 731, 269, 471, 271, 186, 361, 120, 210, 493, 707, 558, 220, 252, 230, 470, 193, 398, 74, 380, 84, 827, 388, 495, 511, 452, 553, 156, 331, 91, 1017, 549, 229, 259, 106, 378, 488, 223, 681, 402, 786, 142, 772, 186, 256, 229, 267, 339, 720, 1440, 353, 377, 686, 890, 428, 776, 246, 242, 582, 822, 295, 865, 315, 786, 292, 258, 473, 341, 926, 325, 341, 861, 115, 308, 453, 378, 1035, 670, 242, 1028, 379, 194, 442, 332, 402, 148, 607, 573, 623, 38, 123, 332, 352, 347, 618, 532, 710, 396, 287, 684, 388, 605, 226, 611, 513, 675, 874, 99, 746, 1185, 169, 124, 101, 132, 461, 659, 374, 280, 135, 171, 591, 170, 405, 579, 698, 1211, 409, 657, 507, 975, 412, 605, 403, 582, 377, 504, 400, 401, 229, 770, 610, 72, 688, 1058, 669, 644, 539, 315, 376, 921, 629, 428, 689, 574, 722, 370, 227, 377, 277, 504, 878, 551, 1260, 652, 355, 667, 548, 624, 504, 657, 862, 194, 774, 257, 223, 426, 876, 683, 396, 634, 640, 197, 427, 310, 372, 897, 728, 738, 312, 329, 111, 546, 946, 251, 308, 322, 334, 640, 650, 380, 150, 327, 766, 307, 396, 229, 340, 77, 743, 724, 366, 546, 133, 551, 400, 433, 444, 306, 468, 520, 229, 560, 218, 317, 239, 608, 81, 128, 1146, 276, 577, 744, 346, 381, 471, 209, 801, 863, 319, 380, 530, 433, 436, 443, 205, 588, 1806, 775, 601, 1366, 1984, 667, 628, 335, 170, 254, 116, 395, 480, 143, 421, 151, 1211, 759, 350, 791, 322, 178, 107, 794, 258, 249, 101, 527, 230, 296, 445, 344, 339, 635, 180, 778, 316, 142, 421, 1014, 582, 1110, 654, 266, 709, 343, 759, 254, 191, 407, 252, 487, 560, 493, 397, 492, 970, 1034, 412, 595, 369, 221, 1161, 448, 561, 118, 255, 322, 849, 262, 240, 420, 436, 525, 99, 1053, 197, 693, 411, 717, 200, 1067, 749, 121, 199, 793, 310, 948, 710, 554, 915, 279, 758, 210, 229, 53, 379, 297, 500, 463, 671, 238, 370, 432, 191, 764, 230, 544, 674, 281, 273, 135, 206, 400, 210, 1205, 192, 243, 170, 689, 579, 462, 306, 574, 544, 68, 251, 335, 158, 185, 248, 101, 134, 112, 229, 137, 159, 253, 69, 87, 253, 214, 308, 78, 231, 192, 163, 91, 380, 548, 160, 170, 191, 108, 211, 150, 57, 275, 248, 315, 296, 193, 147, 156, 220, 509, 361, 171, 185, 129, 268, 192, 359, 525, 121, 40, 143, 246, 425, 323, 279, 71, 234, 225, 364, 66, 363, 202, 273, 275, 156, 145, 86, 166, 169, 599, 412, 162, 127, 228, 132, 418, 220, 272, 166, 175, 232, 362, 246, 285, 583, 214, 317, 306, 132, 673, 190, 76, 195, 140, 145, 171, 266, 70, 151, 144, 134, 1063, 571, 320, 258, 133, 208, 206, 289, 116, 357, 372, 239, 554, 155, 247, 392, 365, 102, 240, 229, 214, 450, 130, 143, 289, 103, 156, 200, 126, 198, 764, 159, 275, 460, 149, 207, 488, 103, 104, 139, 707, 146, 460, 378, 127, 156, 244, 85, 85, 234, 216, 156, 176, 89, 111, 209, 418, 216, 180, 230, 78, 226, 233, 174, 157, 436, 311, 283, 297, 184, 151, 200, 638, 277, 598, 157, 312, 92, 143, 203, 321, 163, 264, 155, 160, 272, 90, 74, 523, 268, 534, 1074, 122, 205, 146, 103, 600, 105, 200, 208, 67, 434, 329, 98, 255, 232, 86, 283, 247, 438, 269, 264, 156, 178, 218, 135, 145, 596, 103, 213, 133, 256, 84, 575, 304, 175, 230, 255, 243, 280, 188, 386, 220, 223, 365, 224, 367, 384, 413, 112, 182, 75, 467, 946, 127, 335, 260, 268, 100, 262, 61, 167, 172, 473, 148, 170, 417, 204, 304, 420, 238, 188, 286, 203, 244, 160, 470, 96, 145, 264, 288, 80, 176, 191, 529, 161, 88, 122, 225, 386, 214, 149, 276, 218, 144, 180, 111, 189, 177, 143, 362, 237, 128, 88, 488, 135, 170, 395, 147, 473, 253, 936, 699, 160, 231, 182, 207, 855, 284, 417, 113, 152, 216, 294, 327, 299, 160, 88, 152, 249, 110, 236, 219, 238, 204, 223, 373, 454, 394, 347, 926, 247, 331, 262, 113, 186, 255, 376, 256, 356, 240, 189, 286, 261, 203, 152, 397, 248, 350, 216, 276, 416, 161, 588, 166, 116, 94, 430, 102, 224, 239, 396, 187, 84, 123, 313, 213, 290, 68, 395, 275, 168, 215, 252, 300, 186, 186, 144, 218, 129, 119, 415, 179, 269, 185, 168, 424, 163, 215, 459, 246, 136, 194, 144, 85, 349, 179, 61, 118, 496, 62, 126, 106, 364, 405, 170, 114, 104, 118, 288, 82, 105, 323, 150, 162, 378, 335, 216, 80, 335, 523, 200, 245, 67, 199, 120, 341, 172, 169, 194, 238, 237, 178, 168, 174, 127, 332, 196, 376, 221, 126, 81, 152, 1093, 122, 301, 95, 141, 516, 392, 371, 276, 294, 222, 230, 230, 158, 112, 360, 229, 99, 109, 160, 270, 326, 80, 280, 302, 117, 323, 167, 169, 231, 108, 137, 312, 90, 467, 176, 239, 246, 643, 115, 244, 463, 183, 244, 152, 319, 255, 299, 154, 234, 131, 266, 304, 335, 225, 296, 110, 143, 150, 279, 124, 224, 73, 200, 631, 366, 378, 304, 502, 271, 232, 377, 136, 199, 123, 652, 70, 405, 185, 287, 303, 115, 380, 269, 283, 441, 235, 100, 216, 400, 430, 607, 268, 234, 205, 372, 92, 267, 221, 250, 271, 219, 132, 161, 392, 94, 308, 226, 378, 176, 109, 410, 198, 190, 166, 285, 318, 80, 68, 466, 189, 418, 163, 142, 230, 107, 258, 559, 1054, 253, 285, 150, 300, 365, 143, 501, 203, 104, 167, 164, 355, 370, 597, 98, 76, 195, 300, 214, 301, 226, 180, 780, 340, 277, 324, 196, 272, 95, 209, 162, 184, 255, 199, 81, 215, 551, 333, 341, 346, 81, 294, 366, 316, 103, 241, 663, 154, 162, 51, 287, 192, 321, 183, 297, 426, 421, 314, 162, 333, 342, 135, 278, 204, 260, 228, 108, 697, 121, 217, 625, 115, 184, 116, 797, 291, 220, 423, 104, 269, 67, 154, 212, 224, 961, 133, 120, 208, 399, 62, 151, 89, 160, 144, 168, 57, 180, 454, 399, 408, 484, 140, 184, 230, 281, 195, 368, 593, 183, 180, 210, 288, 486, 167, 220, 182, 131, 334, 239, 60, 218, 197, 421, 199, 181, 322, 164, 434, 374, 256, 331, 35, 284, 174, 573, 388, 270, 227, 70, 169, 318, 629, 393, 305, 272, 174, 330, 273, 52, 191, 212, 210, 302, 82, 248, 259, 569, 239, 119, 209, 130, 301, 268, 709, 337, 176, 299, 246, 227, 647, 106, 284, 96, 188, 274, 366, 1204, 358, 441, 764, 1210, 341, 146, 425, 295, 295, 368, 417, 315, 331, 209, 123, 198, 317, 337, 451, 268, 261, 1091, 346, 749, 1126, 504, 1141, 396, 266, 890, 371, 637, 266, 503, 595, 458, 329, 318, 662, 604, 400, 525, 277, 451, 669, 674, 248, 326, 145, 356, 365, 290, 221, 588, 168, 1591, 565, 387, 185, 975, 230, 237, 488, 590, 1588, 1167, 688, 265, 700, 375, 265, 529, 458, 299, 329, 163, 483, 160, 297, 251, 1044, 163, 135, 254, 481, 543, 229, 343, 201, 412, 215, 473, 304, 641, 402, 528, 351, 745, 282, 395, 492, 270, 577, 293, 134, 326, 590, 207, 200, 602, 518, 352, 307, 543, 465, 181, 306, 306, 466, 206, 355, 454, 376, 859, 304, 500, 176, 318, 953, 98, 1059, 320, 303, 435, 424, 631, 292, 775, 400, 720, 999, 972, 464, 941, 67, 123, 752, 410, 662, 277, 110, 223, 608, 497, 329, 145, 301, 1568, 1021, 849, 460, 157, 718, 257, 285, 120, 422, 93, 1097, 100, 226, 984, 158, 195, 169, 556, 802, 640, 612, 484, 423, 1026, 305, 695, 224, 842, 226, 428, 1012, 1051, 177, 190, 207, 479, 778, 371, 492, 373, 470, 700, 770, 174, 369, 803, 261, 344, 267, 352, 346, 619, 626, 190, 300, 326, 801, 444, 682, 111, 674, 659, 347, 316, 187, 412, 239, 512, 98, 321, 241, 326, 282, 71, 568, 126, 215, 351, 234, 407, 254, 729, 466, 584, 333, 619, 679, 1095, 459, 269, 270, 381, 752, 361, 298, 700, 509, 1244, 422, 363, 483, 119, 157, 271, 75, 239, 679, 497, 150, 354, 240, 649, 386, 277, 494, 108, 298, 245, 841, 640, 743, 586, 620, 553, 125, 540, 450, 875, 909, 143, 195, 158, 703, 138, 707, 216, 823, 181, 269, 199, 738, 1605, 840, 497, 604, 773, 406, 385, 506, 165, 306, 453, 164, 226, 729, 106, 277, 92, 380, 346, 193, 432, 231, 378, 181, 845, 1151, 1419, 313, 296, 300, 728, 697, 244, 291, 348, 737, 679, 817, 791, 398, 630, 77, 146, 356, 201, 886, 275, 646, 619, 436, 256, 200, 372, 833, 578, 1122, 744, 447, 180, 314, 276, 238, 252, 512, 460, 985, 221, 546, 1070, 1468, 289, 282, 533, 329, 444, 579, 370, 751, 555, 161, 426, 134, 453, 451, 561, 301, 273, 531, 1917, 770, 249, 138, 260, 325, 227, 335, 471, 864, 556, 954, 712, 754, 358, 368, 361, 239, 245, 522, 1051, 817, 499, 401, 197, 122, 141, 290, 351, 250, 213, 238, 428, 356, 510, 203, 301, 266, 111, 157, 255, 85, 255, 230, 248, 190, 355, 278, 927, 142, 134, 354, 189, 338, 656, 122, 159, 164, 129, 369, 603, 126, 101, 279, 154, 340, 70, 390, 194, 146, 222, 177, 127, 192, 150, 497, 214, 147, 161, 188, 46, 154, 382, 242, 561, 310, 184, 366, 87, 243, 546, 427, 444, 258, 250, 947, 215, 321, 98, 168, 418, 370, 705, 311, 112, 335, 152, 231, 173, 73, 778, 306, 149, 142, 296, 217, 749, 311, 332, 163, 238, 115, 480, 299, 456, 281, 117, 290, 289, 145, 220, 229, 246, 270, 127, 266, 1561, 187, 319, 349, 456, 443, 634, 226, 347, 246, 170, 192, 141, 603, 449, 259, 260, 162, 439, 114, 132, 335, 397, 161, 224, 198, 176, 176, 181, 414, 611, 212, 273, 296, 321, 358, 370, 249, 125, 261, 155, 119, 373, 453, 270, 93, 357, 608, 196, 189, 365, 70, 277, 246, 105, 313, 243, 328, 212, 369, 411, 613, 315, 370, 206, 447, 417, 225, 353, 319, 479, 227, 383, 262, 310, 347, 89, 108, 175, 243, 215, 374, 149, 228, 319, 245, 311, 256, 148, 391, 221, 371, 272, 257, 218, 473, 223, 345, 228, 347, 217, 355, 53, 182, 309, 725, 346, 111, 138, 107, 165, 190, 471, 302, 204, 243, 177, 644, 755, 309, 192, 286, 454, 160, 250, 85, 185, 375, 505, 986, 411, 155, 476, 296, 260, 625, 291, 365, 185, 412, 258, 207, 116, 202, 113, 153, 193, 553, 232, 295, 447, 316, 284, 148, 164, 217, 145, 218, 135, 173, 201, 214, 336, 459, 101, 229, 169, 234, 219, 260, 274, 216, 174, 246, 285, 97, 253, 188, 392, 378, 305, 113, 340, 276, 84, 270, 185, 117, 99, 181, 792, 212, 308, 270, 227, 685, 293, 274, 142, 202, 292, 763, 276, 250, 84, 341, 746, 241, 206, 361, 274, 491, 441, 536, 98, 199, 98, 272, 295, 287, 394, 318, 115, 419, 282, 135, 172, 177, 206, 168, 316, 680, 218, 500, 438, 190, 112, 102, 98, 91, 240, 371, 339, 341, 181, 327, 135, 251, 140, 118, 421, 128, 254, 180, 217, 352, 256, 204, 395, 157, 363, 148, 178, 159, 225, 896, 410, 576, 260, 332, 413, 277, 119, 184, 84, 268, 284, 258, 385, 313, 279, 237, 548, 417, 143, 82, 198, 142, 106, 383, 128, 298, 72, 594, 132, 315, 371, 247, 152, 240, 607, 269, 318, 173, 456, 370, 144, 216, 69, 825, 186, 242, 148, 243, 426, 312, 230, 482, 257, 732, 310, 155, 429, 180, 642, 316, 204, 301, 187, 314, 768, 266, 120, 182, 464, 211, 832, 205, 216, 253, 351, 88, 603, 166, 142, 112, 601, 277, 320, 114, 176, 431, 218, 242, 505, 194, 365, 151, 338, 285, 175, 222, 104, 136, 120, 213, 337, 289, 284, 219, 90, 146, 238, 92, 119, 279, 431, 214, 138, 175, 29, 121, 123, 171, 534, 234, 499, 215, 230, 236, 176, 311, 216, 261, 227, 143, 287, 471, 191, 172, 441, 215, 361, 252, 398, 634, 197, 307, 253, 586, 160, 145, 128, 460, 463, 189, 1123, 532, 428, 263, 330, 294, 154, 305, 118, 154, 398, 299, 103, 235, 164, 631, 419, 300, 250, 54, 389, 115, 254, 294, 400, 283, 596, 162, 387, 374, 273, 440, 206, 441, 138, 85, 780, 437, 188, 129, 116, 313, 232, 264, 100, 263, 571, 303, 325, 301, 319, 264, 222, 421, 291, 204, 192, 153, 323, 258, 159, 187, 343, 310, 186, 227, 267, 196, 407, 308, 147, 139, 322, 734, 210, 181, 156, 219, 496, 168, 112, 277, 407, 294, 582, 180, 257, 217, 392, 1384, 184, 358, 176, 200, 292, 264, 236, 318, 516, 129, 164, 227, 50, 165, 341, 254, 209, 178, 146, 728, 401, 573, 598, 302, 872, 412, 340, 313, 373, 142, 84, 271, 360, 158, 96, 707, 309, 432, 371, 454, 266, 211, 281, 467, 519, 173, 211, 135, 168, 119, 174, 205, 350, 168, 77, 158, 137, 322, 192, 81, 168, 258, 777, 204, 166, 239, 484, 390, 272, 543, 127, 283, 172, 210, 460, 222, 288, 974, 223, 362, 507, 418, 76, 122, 284, 286, 207, 209, 222, 133, 309, 288, 415, 264, 178, 130, 338, 263, 326, 198, 266, 150, 199, 247, 301, 185, 120, 215, 234, 195, 152, 158, 196, 162, 133, 258, 831, 352, 145, 190, 156, 279, 234, 264, 125, 88, 108, 193, 200, 210, 342, 240, 249, 258, 359, 246, 237, 210, 203, 722, 176, 316, 233, 625, 409, 224, 285, 206, 383, 116, 257, 118, 216, 224, 40, 384, 133, 147, 112, 382, 465, 106, 175, 245, 224, 96, 195, 299, 164, 88, 546, 1229, 304, 212, 193, 160, 146, 196, 182, 211, 413, 239, 364, 209, 131, 239, 171, 473, 236, 208, 395, 120, 697, 171, 350, 165, 79, 227, 172, 169, 258, 239, 247, 94, 238, 226, 329, 124, 370, 241, 612, 237, 247, 236, 98, 293, 359, 209, 417, 367, 212, 199, 267, 230, 171, 157, 66, 452, 166, 52, 216, 414, 444, 651, 312, 67, 215, 415, 142, 83, 539, 108, 131, 85, 118, 372, 372, 402, 154, 143, 115, 91, 168, 575, 301, 376, 212, 277, 511, 155, 118, 339, 247, 242, 385, 136, 210, 440, 216, 325, 483, 348, 207, 535, 361, 204, 574, 565, 227, 211, 226, 297, 292, 373, 224, 321, 561, 390, 114, 314, 422, 138, 306, 398, 304, 285, 105, 411, 380, 770, 143, 126, 105, 348, 219, 231, 356, 317, 176, 273, 315, 164, 162, 225, 109, 300, 158, 381, 240, 290, 122, 239, 217, 210, 289, 407, 221, 154, 287, 290, 184, 279, 462, 181, 326, 378, 168, 225, 324, 210, 419, 128, 552, 171, 92, 122, 290, 170, 219, 274, 242, 604, 144, 300, 269, 291, 338, 189, 252, 459, 222, 474, 128, 223, 498, 338, 210, 303, 279, 141, 648, 96, 243, 465, 423, 206, 203, 457, 414, 271, 231, 191, 188, 201, 127, 163, 189, 285, 214, 222, 323, 417, 325, 231, 168, 154, 230, 1141, 128, 219, 155, 196, 265, 284, 376, 125, 344, 148, 208, 215, 472, 694, 276, 210, 78, 179, 66, 289, 229, 384, 623, 267, 420, 187, 406, 386, 283, 408, 755, 264, 191, 422, 447, 524, 948, 318, 429, 535, 508, 709, 444, 415, 731, 183, 238, 384, 341, 346, 304, 484, 229, 757, 271, 317, 114, 353, 394, 263, 230, 691, 241, 303, 204, 1013, 392, 302, 308, 406, 826, 916, 575, 977, 874, 945, 1023, 800, 1104, 1051, 945, 558, 374, 552, 417, 649, 875, 165, 161, 818, 950, 182, 709, 701, 130, 733, 697, 418, 585, 151, 95, 96, 209, 256, 185, 1200, 207, 154, 791, 210, 317, 157, 201, 164, 198, 159, 314, 376, 1308, 363, 396, 113, 674, 861, 514, 975, 604, 261, 377, 763, 516, 1078, 1324, 586, 325, 676, 214, 650, 1349, 700, 682, 322, 56, 266, 315, 746, 726, 511, 545, 694, 634, 131, 694, 539, 349, 720, 203, 721, 450, 263, 267, 321, 560, 685, 300, 697, 90, 584, 719, 170, 186, 772, 288, 494, 79, 600, 361, 745, 108, 1440, 658, 226, 695, 350, 532, 453, 658, 344, 288, 670, 127, 221, 449, 116, 230, 149, 150, 102, 226, 158, 134, 162, 161, 137, 176, 252, 258, 146, 130, 259, 135, 76, 111, 137, 88, 174, 166, 136, 181, 210, 319, 144, 86, 167, 161, 136, 163, 158, 104, 137, 182, 202, 100, 251, 133, 233, 245, 113, 124, 143, 133, 235, 183, 108, 89, 155, 334, 76, 114, 123, 96, 192, 129, 270, 115, 140, 125, 82, 86, 178, 123, 132, 81, 245, 257, 261, 408, 91, 135, 151, 130, 151, 181, 130, 327, 232, 119, 137, 92, 121, 148, 271, 201, 158, 219, 112, 111, 87, 167, 97, 122, 109, 124, 106, 124, 135, 96, 157, 242, 137, 144, 141, 186, 91, 294, 184, 108, 76, 332, 271, 230, 76, 156, 118, 78, 180, 139, 278, 175, 161, 134, 146, 138, 88, 171, 132, 210, 183, 98, 223, 187, 188, 168, 169, 149, 133, 148, 225, 110, 122, 101, 106, 135, 305, 151, 129, 174, 358, 133, 103, 89, 133, 109, 91, 176, 139, 123, 143, 144, 234, 122, 127, 171, 87, 94, 77, 219, 81, 235, 181, 176, 148, 134, 131, 78, 146, 245, 148, 171, 107, 158, 359, 88, 170, 182, 93, 162, 234, 360, 189, 121, 158, 141, 236, 254, 140, 155, 101, 87, 86, 241, 158, 159, 118, 89, 131, 76, 185, 174, 142, 127, 178, 156, 87, 242, 262, 85, 116, 95, 118, 108, 86, 340, 165, 190, 121, 367, 151, 208, 274, 129, 118, 231, 108, 213, 156, 182, 237, 106, 140, 129, 118, 187, 145, 327, 177, 130, 149, 258, 114, 107, 88, 99, 148, 103, 132, 93, 96, 172, 103, 141, 201, 172, 161, 174, 92, 188, 76, 175, 85, 181, 134, 158, 162, 183, 133, 118, 100, 130, 81, 118, 81, 214, 170, 173, 214, 237, 125, 195, 129, 142, 167, 260, 179, 122, 203, 138, 137, 141, 110, 214, 141, 150, 109, 100, 139, 107, 105, 144, 150, 185, 143, 256, 151, 134, 159, 142, 131, 124, 170, 90, 96, 190, 76, 100, 233, 103, 379, 157, 238, 76, 181, 149, 94, 182, 154, 336, 343, 146, 188, 192, 252, 83, 129, 339, 139, 264, 134, 266, 139, 304, 145, 262, 270, 150, 88, 124, 99, 144, 92, 123, 272, 242, 134, 128, 110, 224, 173, 219, 109, 129, 254, 127, 76, 234, 135, 125, 124, 147, 151, 137, 170, 131, 109, 151, 111, 167, 136, 158, 86, 224, 96, 125, 171, 91, 125, 354, 108, 440, 103, 328, 113, 137, 88, 147, 316, 275, 128, 110, 235, 123, 366, 81, 116, 188, 98, 71, 163, 290, 86, 276, 84, 167, 284, 246, 220, 194, 216, 184, 144, 275, 315, 132, 213, 136, 236, 110, 122, 156, 214, 356, 129, 147, 95, 162, 206, 116, 381, 168, 153, 140, 191, 336, 124, 167, 279, 97, 74, 335, 163, 150, 135, 98, 150, 243, 280, 153, 338, 126, 140, 233, 398, 145, 116, 84, 128, 102, 86, 155, 172, 351, 178, 155, 346, 189, 129, 132, 100, 161, 214, 172, 139, 199, 178, 144, 170, 134, 199, 193, 167, 313, 81, 228, 119, 171, 152, 83, 160, 161, 163, 85, 185, 133, 93, 175, 127, 95, 117, 90, 204, 136, 335, 146, 76, 105, 131, 124, 122, 163, 123, 131, 182, 184, 96, 217, 271, 153, 94, 254, 92, 159, 71, 139, 145, 149, 288, 188, 227, 94, 107, 85, 180, 137, 87, 164, 196, 81, 216, 214, 76, 206, 181, 157, 187, 133, 133, 81, 134, 180, 128, 101, 134, 94, 278, 133, 180, 117, 162, 130, 309, 135, 144, 111, 134, 114, 107, 128, 144, 88, 254, 150, 151, 255, 145, 152, 172, 113, 246, 165, 144, 318, 268, 150, 135, 185, 88, 176, 290, 164, 164, 220, 77, 102, 218, 146, 134, 131, 322, 211, 370, 121, 171, 234, 95, 88, 185, 83, 170, 302, 244, 174, 75, 240, 167, 145, 143, 129, 183, 290, 109, 144, 84, 91, 141, 91, 141, 144, 126, 206, 81, 143, 129, 114, 111, 91, 163, 323, 163, 108, 156, 137, 213, 182, 190, 149, 98, 137, 145, 185, 94, 155, 107, 135, 244, 210, 157, 167, 161, 246, 95, 177, 200, 140, 177, 129, 152, 144, 71, 317, 170, 161, 110, 261, 133, 362, 182, 90, 107, 123, 193, 273, 155, 86, 316, 214, 165, 320, 157, 135, 145, 83, 171, 258, 83, 144, 89, 153, 228, 249, 105, 152, 92, 149, 115, 229, 137, 129, 189, 221, 189, 145, 77, 120, 88, 233, 197, 138, 174, 325, 316, 96, 129, 203, 196, 173, 111, 143, 178, 78, 159, 153, 245, 124, 91, 323, 106, 223, 81, 167, 178, 88, 123, 123, 110, 81, 104, 71, 115, 122, 153, 131, 132, 149, 104, 92, 89, 93, 94, 139, 359, 127, 151, 170, 100, 152, 149, 177, 71, 151, 152, 164, 135, 126, 124, 118, 130, 161, 129, 134, 165, 228, 322, 84, 227, 102, 267, 145, 116, 146, 162, 202, 239, 76, 164, 120, 172, 200, 205, 95, 85, 178, 182, 93, 97, 71, 194, 199, 86, 182, 137, 156, 142, 123, 128, 157, 111, 166, 129, 246, 164, 76, 99, 140, 132, 126, 163, 165, 165, 170, 348, 137, 277, 345, 160, 240, 143, 287, 76, 126, 255, 121, 103, 89, 151, 87, 149, 109, 141, 157, 236, 99, 304, 236, 112, 128, 181, 96, 175, 176, 160, 121, 140, 164, 128, 210, 180, 131, 196, 85, 139, 116, 120, 180, 282, 121, 169, 88, 136, 116, 76, 172, 99, 127, 139, 192, 309, 185, 199, 185, 105, 91, 127, 171, 224, 87, 308, 95, 224, 88, 83, 165, 154, 92, 171, 200, 108, 330, 111, 115, 141, 133, 90, 108, 125, 133, 103, 121, 96, 112, 90, 142, 109, 119, 149, 229, 233, 229, 212, 107, 107, 81, 86, 184, 127, 107, 215, 87, 110, 213, 139, 224, 95, 81, 135, 154, 248, 81, 125, 126, 158, 136, 124, 302, 191, 178, 176, 175, 143, 123, 97, 85, 186, 223, 155, 121, 385, 245, 156, 75, 204, 413, 76, 99, 231, 164, 138, 146, 83, 149, 117, 212, 124, 163, 96, 319, 85, 206, 121, 83, 161, 135, 319, 179, 76, 112, 95, 114, 135, 86, 111, 326, 124, 127, 145, 185, 208, 181, 132, 127, 127, 141, 152, 135, 88, 189, 234, 206, 91, 138, 92, 253, 141, 146, 193, 138, 270, 173, 128, 372, 173, 141, 154, 134, 135, 140, 163, 124, 103, 116, 272, 151, 151, 214, 112, 106, 220, 137, 162, 134, 118, 180, 167, 144, 135, 82, 133, 268, 202, 132, 127, 130, 112, 262, 196, 151, 117, 292, 145, 92, 137, 82, 97, 95, 133, 84, 133, 119, 109, 194, 178, 94, 93, 184, 127, 211, 237, 138, 374, 127, 103, 118, 172, 109, 126, 167, 191, 115, 373, 142, 227, 150, 125, 152, 128, 128, 178, 124, 126, 200, 156, 81, 126, 159, 182, 128, 117, 101, 107, 149, 81, 161, 663, 399, 454, 520, 568, 285, 586, 878, 782, 447, 46, 138, 74, 66, 136, 46, 75, 77, 71, 55, 130, 67, 87, 84, 79, 81, 102, 97, 118, 112, 77, 60, 86, 178, 57, 46, 151, 82, 96, 92, 83, 121, 145, 90, 52, 128, 132, 69, 136, 88, 77, 79, 204, 294, 115, 264, 110, 162, 332, 82, 109, 123, 89, 129, 173, 155, 131, 83, 78, 117, 134, 75, 172, 78, 79, 136, 102, 155, 135, 126, 91, 100, 70, 67, 106, 78, 69, 113, 125, 86, 94, 137, 103, 139, 146, 73, 94, 181, 106, 149, 76, 88, 92, 50, 96, 107, 86, 155, 44, 59, 81, 55, 101, 132, 70, 146, 263, 447, 257, 752, 199, 515, 551, 38, 34, 46, 147, 58, 45, 48, 127, 46, 47, 33, 50, 62, 30, 136, 72, 37, 97, 68, 47, 55, 128, 112, 90, 42, 41, 121, 53, 246, 66, 46, 82, 76, 85, 83, 128, 161, 65, 92, 106, 119, 234, 102, 301, 58, 231, 113, 109, 94, 171, 58, 99, 87, 75, 253, 198, 142, 294, 129, 131, 223, 157, 146, 347, 139, 187, 163, 75, 198, 49, 84, 105, 136, 133, 57, 80, 83, 147, 59, 108, 30, 79, 66, 116, 107, 100, 91, 97, 83, 120, 72, 150, 82, 93, 148, 106, 70, 104, 88, 93, 159, 99, 87, 100, 70, 95, 52, 91, 74, 67, 51, 78, 191, 87, 57, 79, 429, 127, 105, 190, 79, 90, 93, 78, 48, 62, 119, 122, 157, 148, 117, 101, 83, 88, 137, 68, 102, 54, 118, 137, 77, 87, 141, 154, 64, 61, 139, 110, 74, 99, 89, 158, 170, 71, 77, 154, 57, 150, 57, 143, 108, 136, 121, 128, 68, 43, 105, 111, 77, 132, 152, 68, 92, 115, 85, 82, 84, 47, 145, 153, 67, 51, 111, 502, 423, 1191, 487, 736, 1084, 513, 276, 243, 273, 149, 356, 281, 613, 354, 364, 205, 84, 60, 126, 64, 19, 103, 117, 42, 89, 75, 112, 107, 49, 70, 82, 78, 44, 73, 84, 65, 63, 36, 122, 72, 74, 29, 110, 39, 89, 162, 37, 109, 60, 25, 150, 52, 127, 60, 50, 32, 230, 66, 131, 43, 159, 83, 68, 64, 122, 34, 81, 193, 18, 66, 78, 69, 144, 95, 64, 107, 88, 151, 94, 109, 83, 47, 72, 80, 166, 59, 192, 91, 123, 194, 139, 63, 67, 119, 51, 49, 136, 69, 135, 158, 47, 97, 120, 94, 149, 191, 94, 213, 46, 57, 62, 198, 52, 55, 624, 459, 640, 532, 540, 566, 768, 244, 244, 537, 439, 134, 128, 104, 167, 271, 481, 118, 74, 224, 319, 209, 171, 96, 291, 229, 147, 101, 615, 379, 576, 427, 391, 690, 396, 418, 389, 602, 315, 561, 947, 251, 159, 466, 1313, 314, 135, 79, 128, 146, 130, 193, 100, 71, 158, 73, 90, 69, 52, 74, 158, 221, 95, 77, 126, 63, 64, 60, 51, 47, 82, 592, 533, 967, 645, 425, 734, 704, 448, 569, 873, 821, 650, 266, 690, 240, 435, 775, 344, 490, 541, 915, 344, 451, 526, 369, 506, 392, 681, 651, 399, 743, 479, 494, 503, 342, 424, 379, 619, 370, 733, 575, 476, 529, 273, 371, 432, 298, 368, 491, 562, 247, 236, 401, 407, 502, 502, 337, 267, 694, 593, 641, 320, 335, 577, 444, 509, 422, 295, 507, 428, 306, 453, 464, 702, 659, 387, 381, 394, 449, 777, 288, 223, 318, 549, 516, 419, 662, 509, 437, 514, 588, 459, 772, 352, 355, 451, 446, 526, 315, 286, 599, 654, 477, 437, 598, 503, 393, 419, 552, 226, 597, 452, 283, 331, 517, 696, 535, 465, 632, 547, 485, 507, 383, 403, 480, 444, 609, 565, 577, 321, 286, 464, 676, 490, 622, 532, 625, 477, 381, 319, 658, 507, 424, 476, 495, 557, 450, 436, 524, 424, 470, 419, 652, 531, 464, 528, 451, 639, 520, 648, 513, 598, 340, 325, 413, 530, 503, 536, 659, 426, 469, 592, 787, 392, 444, 447, 368, 591, 501, 351, 504, 421, 401, 356, 410, 483, 354, 438, 758, 523, 584, 586, 563, 628, 588, 435, 349, 428, 1798, 480, 389, 418, 306, 502, 488, 510, 442, 412, 485, 309, 643, 303, 811, 468, 433, 585, 377, 402, 496, 292, 434, 554, 367, 544, 781, 363, 636, 499, 443, 442, 422, 433, 515, 554, 544, 731, 450, 519, 671, 613, 447, 669, 348, 538, 373, 571, 618, 831, 655, 521, 497, 431, 581, 269, 404, 398, 461, 544, 447, 296, 359, 552, 458, 427, 428, 469, 450, 765, 484, 331, 558, 718, 440, 540, 537, 600, 243, 653, 422, 302, 405, 527, 583, 537, 461, 291, 630, 487, 334, 530, 432, 585, 589, 388, 392, 321, 434, 326, 661, 308, 397, 369, 354, 377, 727, 495, 516, 487, 339, 575, 647, 584, 592, 326, 445, 362, 318, 535, 323, 547, 643, 561, 900, 527, 686, 485, 1322, 543, 952, 527, 791, 481, 1005, 670, 456, 833, 471, 512, 623, 475, 806, 470, 806, 1311, 881, 499, 811, 807, 1032, 684, 846, 516, 686, 664, 609, 606, 605, 452, 583, 751, 535, 592, 576, 544, 599, 471, 605, 544, 861, 660, 445, 1264, 467, 403, 712, 824, 685, 628, 681, 923, 567, 423, 804, 442, 615, 634, 978, 997, 581, 928, 873, 520, 1055, 686, 526, 489, 312, 911, 534, 652, 537, 737, 531, 370, 547, 506, 685, 525, 1095, 602, 742, 467, 1123, 1037, 691, 393, 1051, 706, 623, 1006, 591, 537, 608, 865, 633, 547, 766, 781, 1213, 1307, 576, 619, 709, 938, 657, 766, 462, 414, 751, 423, 902, 959, 420, 509, 500, 578, 826, 787, 295, 626, 730, 353, 619, 462, 531, 465, 758, 917, 612, 383, 744, 1132, 520, 755, 599, 762, 669, 775, 563, 519, 419, 455, 724, 719, 624, 707, 718, 542, 564, 942, 509, 571, 855, 330, 610, 702, 449, 535, 779, 416, 443, 517, 1043, 742, 721, 507, 752, 824, 565, 535, 960, 1068, 464, 881, 891, 584, 1225, 1111, 578, 517, 475, 1019, 617, 696, 893, 680, 777, 1276, 891, 941, 469, 764, 766, 686, 634, 549, 635, 596, 782, 824, 664, 767, 551, 824, 764, 604, 804, 681, 619, 764, 695, 655, 601, 758, 427, 407, 424, 628, 496, 1488, 546, 1343, 1198, 1418, 578, 1384, 500, 442, 838, 799, 861, 733, 942, 706, 725, 481, 577, 634, 399, 579, 961, 629, 1189, 862, 981, 1052, 693, 523, 788, 905, 508, 381, 1277, 315, 585, 932, 581, 972, 757, 796, 445, 672, 1349, 527, 616, 572, 735, 560, 886, 814, 725, 582, 526, 549, 608, 1333, 692, 614, 659, 562, 660, 801, 557, 925, 736, 1525, 565, 1236, 1107, 959, 798, 359, 712, 765, 792, 368, 367, 849, 1173, 663, 872, 551, 917, 718, 674, 687, 1187, 974, 435, 495, 603, 777, 826, 678, 630, 1260, 775, 699, 566, 737, 666, 792, 624, 605, 814, 524, 984, 718, 591, 627, 780, 1114, 744, 1254, 1087, 1061, 575, 634, 929, 790, 704, 928, 1086, 642, 549, 573, 873, 318, 716, 485, 450, 499, 620, 938, 695, 1067, 429, 601, 711, 466, 549, 690, 855, 1350, 595, 394, 501, 423, 613, 417, 836, 295, 730, 366, 949, 728, 839, 489, 584, 759, 647, 411, 611, 389, 409, 756, 697, 480, 716, 644, 428, 609, 292, 717, 526, 583, 630, 590, 381, 505, 528, 868, 582, 614, 683, 393, 482, 432, 628, 782, 604, 552, 548, 418, 536, 940, 673, 359, 820, 1023, 649, 719, 678, 806, 561, 535, 688, 531, 553, 1033, 714, 514, 508, 1167, 875, 706, 678, 518, 583, 631, 569, 395, 656, 332, 709, 672, 636, 919, 553, 1085, 837, 525, 703, 486, 592, 706, 685, 963, 541, 1051, 1193, 526, 519, 621, 565, 699, 630, 813, 883, 730, 490, 374, 606, 430, 412, 947, 463, 349, 495, 1548, 575, 691, 427, 895, 144, 457, 321, 591, 626, 597, 960, 329, 684, 712, 511, 425, 645, 834, 780, 624, 646, 301, 1070, 556, 615, 519, 408, 562, 542, 777, 467, 946, 517, 476, 536, 380, 616, 517, 698, 554, 450, 518, 684, 285, 1022, 638, 1080, 320, 701, 551, 564, 1047, 1304, 952, 606, 696, 724, 551, 543, 761, 580, 703, 565, 1431, 962, 868, 338, 1025, 499, 740, 641, 883, 581, 483, 338, 962, 688, 781, 569, 355, 983, 421, 279, 706, 575, 576, 200, 503, 182, 601, 741, 683, 399, 538, 1057, 725, 701, 820, 422, 827, 958, 411, 785, 777, 346, 274, 217, 630, 802, 1212, 542, 512, 258, 561, 584, 574, 523, 426, 690, 577, 388, 407, 508, 505, 796, 924, 511, 382, 482, 515, 867, 756, 668, 503, 309, 508, 623, 537, 751, 488, 440, 672, 432, 544, 574, 825, 1079, 550, 823, 426, 931, 753, 742, 1065, 586, 426, 369, 650, 520, 910, 812, 588, 687, 776, 564, 706, 808, 647, 711, 558, 913, 707, 770, 459, 464, 552, 684, 382, 525, 749, 733, 585, 452, 626, 755, 536, 710, 1202, 623, 607, 420, 515, 603, 686, 481, 753, 433, 596, 945, 805, 535, 691, 848, 752, 581, 590, 590, 645, 444, 528, 1045, 488, 895, 515, 822, 692, 515, 507, 803, 1570, 399, 387, 791, 500, 362, 1272, 852, 508, 601, 488, 745, 696, 382, 799, 434, 722, 667, 454, 787, 539, 890, 530, 700, 459, 310, 1310, 483, 617, 310, 744, 1000, 667, 461, 736, 776, 598, 638, 709, 671, 691, 628, 485, 481, 385, 439, 571, 781, 332, 1033, 1098, 467, 314, 325, 885, 408, 557, 427, 692, 406, 266, 575, 748, 546, 768, 518, 493, 363, 795, 667, 447, 327, 593, 461, 650, 576, 939, 291, 469, 765, 520, 492, 499, 671, 644, 486, 338, 447, 905, 479, 521, 535, 501, 186, 977, 863, 970, 554, 416, 809, 453, 1005, 893, 807, 941, 528, 256, 535, 751, 362, 848, 594, 436, 640, 716, 549, 443, 590, 620, 1003, 455, 339, 610, 492, 522, 728, 741, 706, 1048, 511, 1029, 638, 680, 268, 598, 559, 534, 860, 304, 658, 607, 778, 916, 1253, 455, 553, 617, 501, 541, 411, 172, 681, 517, 520, 431, 391, 556, 363, 537, 867, 722, 525, 817, 665, 530, 644, 632, 840, 669, 826, 710, 570, 553, 586, 516, 787, 591, 737, 728, 493, 579, 619, 597, 309, 419, 861, 750, 573, 549, 350, 768, 420, 453, 299, 434, 822, 534, 1237, 822, 519, 434, 583, 680, 581, 412, 864, 403, 399, 401, 346, 238, 406, 517, 1154, 845, 640, 414, 1295, 466, 413, 592, 724, 592, 422, 341, 697, 753, 563, 394, 724, 632, 836, 498, 381, 1081, 666, 676, 575, 621, 741, 583, 333, 903, 514, 875, 866, 705, 878, 725, 618, 906, 303, 1092, 823, 495, 820, 816, 478, 692, 510, 351, 813, 457, 684, 500, 763, 900, 525, 563, 327, 909, 767, 250, 631, 537, 831, 553, 627, 545, 522, 565, 460, 726, 546, 810, 616, 714, 680, 478, 716, 1249, 479, 648, 1052, 557, 850, 371, 465, 406, 445, 436, 492, 845, 451, 372, 856, 564, 284, 509, 342, 209, 441, 923, 515, 651, 697, 456, 613, 449, 552, 641, 668, 531, 831, 1100, 843, 419, 349, 359, 719, 822, 844, 801, 461, 1106, 360, 417, 743, 575, 697, 443, 961, 709, 505, 821, 386, 450, 411, 432, 903, 533, 594, 202, 604, 454, 455, 652, 686, 330, 360, 326, 762, 859, 408, 306, 511, 801, 587, 314, 736, 852, 447, 410, 564, 528, 640, 462, 647, 359, 1002, 507, 385, 635, 964, 690, 743, 561, 537, 515, 629, 510, 1081, 660, 1125, 592, 1206, 398, 633, 282, 825, 528, 585, 1079, 1070, 534, 532, 658, 823, 522, 324, 539, 601, 461, 610, 214, 280, 639, 682, 494, 429, 480, 883, 477, 1026, 391, 675, 600, 511, 857, 679, 949, 745, 419, 624, 978, 546, 459, 472, 738, 487, 421, 475, 501, 508, 415, 740, 592, 682, 389, 956, 700, 569, 732, 839, 546, 1042, 499, 399, 446, 679, 571, 486, 432, 568, 517, 615, 438, 369, 759, 547, 726, 1005, 443, 678, 558, 299, 1026, 1233, 278, 489, 769, 579, 704, 840, 1188, 546, 1139, 894, 419, 871, 676, 726, 664, 931, 284, 321, 345, 869, 1085, 464, 690, 580, 602, 659, 525, 624, 1005, 320, 572, 661, 653, 590, 399, 625, 641, 887, 887, 304, 827, 712, 721, 552, 801, 646, 878, 495, 251, 576, 492, 881, 785, 539, 882, 549, 508, 693, 661, 691, 1031, 431, 792, 528, 864, 1133, 416, 685, 530, 324, 494, 891, 503, 501, 750, 480, 534, 449, 672, 535, 301, 475, 411, 456, 590, 669, 682, 785, 812, 626, 1037, 363, 799, 899, 572, 562, 445, 829, 1424, 703, 747, 339, 310, 698, 637, 697, 552, 611, 590, 678, 851, 753, 367, 744, 412, 479, 458, 743, 491, 896, 636, 888, 419, 922, 838, 566, 341, 460, 1131, 419, 557, 698, 523, 1149, 1816, 1002, 620, 324, 605, 618, 426, 562, 953, 482, 551, 688, 825, 490, 1310, 867, 546, 319, 508, 435, 506, 370, 686, 520, 624, 570, 904, 707, 372, 697, 517, 446, 495, 489, 542, 801, 502, 725, 498, 511, 1015, 749, 902, 1278, 440, 369, 620, 773, 596, 356, 593, 547, 491, 229, 627, 359, 639, 851, 846, 607, 421, 254, 470, 399, 776, 254, 499, 397, 766, 502, 434, 437, 315, 223, 193, 88, 396, 1216, 716, 290, 604, 952, 175, 517, 1794, 285, 111, 455, 432, 189, 815, 989, 582, 1564, 1191, 302, 882, 149, 601, 248, 1025, 616, 767, 434, 1006, 39, 83, 300, 390, 341, 164, 459, 1113, 641, 1917, 1256, 741, 154, 19, 573, 262, 791, 677, 1028, 298, 240, 513, 202, 633, 166, 88, 1310, 718, 217, 26, 992, 368, 307, 1121, 276, 906, 477, 738, 516, 543, 1101, 449, 397, 516, 521, 786, 523, 683, 345, 828, 1494, 584, 1124, 41, 848, 421, 509, 591, 337, 53, 638, 641, 1100, 297, 546, 291, 427, 835, 1071, 889, 1145, 1374, 83, 1629, 172, 749, 324, 1343, 761, 152, 234, 187, 1683, 188, 748, 298, 202, 495, 1908, 328, 1322, 1163, 472, 1522, 576, 731, 602, 1359, 1060, 211, 327, 1024, 722, 668, 1979, 1012, 1399, 1270, 903, 389, 755, 692, 217, 1586, 310, 402, 197, 1136, 68, 28, 830, 1281, 894, 1513, 223, 1084, 1578, 183, 255, 1399, 295, 209, 733, 982, 356, 225, 742, 510, 514, 246, 511, 390, 920, 628, 400, 200, 492, 112, 1246, 285, 862, 515, 1218, 1184, 1218, 1112, 1571, 466, 32, 62, 1081, 1225, 321, 247, 165, 242, 593, 689, 1874, 831, 304, 665, 165, 1326, 168, 251, 868, 264, 996, 774, 193, 236, 544, 196, 953, 223, 399, 894, 854, 903, 1610, 478, 567, 400, 752, 277, 476, 717, 603, 764, 861, 27, 482, 819, 479, 606, 173, 389, 1247, 173, 313, 212, 1097, 885, 1498, 294, 171, 43, 298, 276, 1493, 218, 526, 1121, 1380, 844, 703, 662, 265, 254, 559, 1046, 417, 570, 257, 44, 203, 256, 279, 366, 1063, 112, 635, 426, 484, 260, 551, 199, 241, 1364, 1217, 574, 1021, 425, 699, 578, 173, 101, 956, 1313, 364, 259, 1164, 558, 456, 594, 323, 1357, 996, 562, 588, 302, 337, 1199, 328, 313, 483, 453, 990, 263, 590, 202, 1048, 1934, 1094, 483, 742, 681, 830, 464, 981, 418, 559, 1005, 322, 1829, 931, 930, 402, 690, 891, 1703, 922, 92, 1076, 394, 1638, 1516, 487, 1091, 895, 59, 38, 1168, 1327, 36, 290, 911, 201, 546, 714, 646, 953, 820, 387, 394, 583, 293, 275, 759, 485, 242, 1632, 735, 720, 921, 844, 1779, 574, 165, 262, 708, 252, 269, 430, 719, 327, 241, 356, 1363, 224, 367, 405, 772, 222, 415, 758, 1659, 281, 1097, 241, 352, 274, 632, 230, 396, 244, 914, 448, 333, 47, 333, 38, 487, 1478, 192, 293, 1324, 886, 185, 596, 250, 1451, 805, 566, 480, 884, 1319, 299, 1217, 1526, 399, 825, 1851, 851, 177, 669, 1111, 675, 403, 491, 1194, 346, 603, 697, 1885, 242, 389, 164, 1234, 367, 102, 292, 38, 464, 802, 193, 1143, 786, 564, 1443, 1135, 1693, 35, 567, 430, 1016, 903, 159, 638, 973, 582, 444, 1015, 831, 36, 846, 1521, 655, 300, 1562, 848, 277, 454, 156, 174, 291, 277, 1142, 1085, 634, 1108, 958, 424, 1588, 478, 968, 298, 41, 457, 148, 903, 447, 858, 902, 314, 357, 658, 364, 271, 871, 872, 934, 448, 234, 853, 480, 29, 1369, 592, 261, 339, 1132, 233, 831, 824, 794, 545, 26, 598, 593, 916, 417, 301, 1116, 1012, 302, 652, 388, 534, 265, 1162, 649, 940, 560, 1111, 338, 496, 343, 412, 610, 1128, 481, 596, 1162, 1540, 35, 932, 284, 446, 517, 354, 1415, 853, 246, 630, 969, 426, 402, 616, 836, 170, 988, 231, 169, 355, 151, 106, 1353, 112, 31, 862, 834, 1133, 492, 760, 581, 1145, 1934, 796, 1095, 526, 20, 213, 184, 1221, 357, 1047, 354, 540, 252, 215, 37, 672, 868, 498, 818, 169, 15, 1451, 379, 1490, 255, 796, 704, 389, 759, 1373, 418, 1004, 196, 1195, 525, 649, 28, 519, 1798, 525, 643, 338, 265, 487, 881, 15, 924, 1172, 1058, 1063, 198, 557, 762, 18, 948, 230, 571, 1119, 777, 314, 1011, 684, 807, 20, 546, 311, 499, 407, 1805, 993, 1387, 1084, 133, 92, 178, 721, 193, 327, 407, 452, 302, 1329, 907, 1350, 1795, 1742, 215, 708, 1256, 674, 1173, 1006, 767, 602, 801, 227, 1082, 643, 727, 40, 1079, 637, 1237, 465, 646, 667, 321, 817, 878, 690, 376, 513, 886, 447, 604, 1461, 1031, 53, 585, 574, 296, 658, 1086, 302, 149, 130, 285, 174, 554, 61, 1307, 784, 1007, 537, 1263, 1240, 1567, 930, 966, 986, 955, 521, 634, 664, 230, 598, 1404, 170, 289, 1454, 878, 296, 846, 858, 1470, 581, 196, 521, 1095, 418, 866, 235, 743, 1130, 699, 818, 1599, 212, 427, 431, 986, 380, 284, 928, 608, 249, 257, 591, 575, 30, 344, 792, 207, 697, 913, 232, 266, 17, 1683, 384, 303, 661, 838, 787, 570, 593, 505, 435, 170, 339, 1084, 380, 627, 840, 800, 920, 743, 466, 1526, 1166, 622, 38, 413, 908, 611, 991, 147, 528, 772, 703, 109, 479, 451, 1060, 1358, 980, 274, 166, 242, 394, 1081, 27, 732, 753, 233, 1257, 231, 744, 427, 871, 1113, 109, 509, 272, 698, 1467, 275, 275, 342, 876, 729, 215, 625, 78, 948, 300, 627, 176, 561, 733, 806, 913, 607, 289, 41, 668, 535, 293, 677, 605, 1148, 787, 1055, 462, 801, 206, 43, 730, 1113, 409, 425, 1406, 416, 1716, 814, 1002, 456, 398, 1149, 388, 488, 539, 962, 49, 1333, 1227, 964, 1412, 1047, 103, 763, 724, 940, 369, 393, 391, 153, 1071, 639, 448, 1122, 175, 414, 1551, 813, 697, 1314, 811, 834, 340, 768, 1499, 220, 184, 196, 1652, 323, 105, 1546, 848, 408, 246, 282, 1124, 973, 780, 243, 333, 319, 994, 729, 782, 984, 726, 532, 202, 334, 264, 403, 874, 448, 23, 66, 591, 517, 184, 188, 258, 538, 834, 1187, 767, 268, 1400, 626, 707, 1557, 1118, 1133, 973, 36, 987, 366, 758, 313, 302, 496, 922, 434, 556, 621, 325, 827, 1225, 371, 547, 509, 667, 312, 1374, 300, 973, 1030, 31, 1388, 549, 35, 1546, 215, 687, 294, 26, 128, 1003, 48, 608, 1244, 602, 301, 334, 36, 366, 986, 1135, 1119, 166, 280, 1184, 428, 1007, 458, 1050, 1428, 380, 784, 415, 561, 944, 814, 1404, 607, 1066, 813, 761, 705, 788, 117, 163, 244, 627, 596, 646, 940, 885, 1721, 1347, 624, 538, 333, 941, 1251, 667, 957, 1097, 308, 667, 1003, 891, 1349, 554, 40, 247, 909, 479, 399, 629, 1191, 1871, 734, 1356, 567, 376, 364, 843, 498, 271, 324, 1951, 401, 1220, 1045, 147, 1014, 406, 379, 1223, 532, 562, 977, 424, 904, 1026, 826, 1291, 538, 249, 35, 631, 1377, 116, 682, 822, 42, 973, 206, 1009, 359, 760, 888, 59, 49, 662, 45, 216, 516, 44, 1446, 1759, 390, 1018, 18, 198, 841, 772, 40, 370, 1881, 245, 729, 728, 1022, 833, 233, 1207, 242, 102, 670, 673, 940, 608, 378, 445, 1547, 1395, 1072, 460, 862, 739, 13, 932, 795, 973, 307, 744, 801, 703, 1244, 440, 393, 388, 1779, 195, 221, 1813, 1415, 790, 323, 34, 1330, 446, 362, 356, 828, 1122, 84, 578, 719, 539, 1766, 488, 1538, 1178, 1070, 1468, 1203, 1174, 168, 407, 330, 46, 573, 740, 147, 240, 377, 293, 429, 482, 382, 1023, 893, 1284, 331, 516, 1374, 453, 1285, 810, 543, 1035, 807, 750, 778, 1051, 1063, 428, 1072, 1333, 521, 628, 679, 329, 866, 1650, 788, 1151, 438, 884, 882, 793, 544, 220, 1302, 688, 599, 32, 1147, 1147, 1492, 808, 562, 547, 994, 986, 1013, 210, 159, 327, 391, 1213, 263, 47, 964, 664, 609, 738, 871, 602, 325, 774, 909, 39, 1404, 1454, 459, 101, 876, 355, 343, 1036, 754, 182, 480, 328, 795, 763, 712, 1170, 212, 927, 1427, 430, 605, 1092, 286, 1070, 423, 604, 268, 1469, 186, 704, 529, 513, 706, 1210, 657, 779, 878, 575, 613, 770, 230, 239, 823, 249, 839, 551, 781, 1010, 1307, 523, 783, 1004, 836, 310, 245, 526, 720, 988, 220, 1644, 311, 490, 258, 317, 762, 325, 575, 45, 739, 1055, 1072, 967, 244, 1782, 1089, 587, 312, 1406, 233, 354, 43, 914, 357, 994, 274, 386, 841, 697, 341, 270, 572, 445, 878, 1083, 683, 1226, 549, 1192, 691, 768, 707, 620, 1433, 331, 1376, 190, 718, 177, 492, 648, 300, 159, 785, 638, 120, 1077, 259, 272, 570, 1000, 817, 371, 842, 28, 819, 311, 766, 692, 1267, 445, 782, 45, 592, 721, 874, 187, 884, 1339, 24, 273, 805, 963, 186, 969, 542, 652, 616, 167, 31, 596, 236, 211, 179, 1434, 451, 538, 28, 1113, 1018, 403, 970, 465, 292, 56, 309, 593, 475, 327, 1507, 354, 655, 356, 1252, 683, 1525, 388, 584, 595, 599, 533, 292, 867, 368, 449, 725, 856, 1193, 1685, 336, 782, 999, 959, 1460, 143, 165, 178, 648, 1630, 636, 585, 1229, 276, 740, 1111, 1352, 1531, 196, 238, 1089, 417, 610, 993, 1309, 325, 338, 189, 855, 49, 591, 626, 328, 662, 876, 527, 799, 514, 717, 1170, 1382, 462, 142, 429, 603, 40, 552, 653, 616, 1323, 69, 32, 314, 737, 108, 429, 404, 352, 561, 975, 885, 456, 586, 1009, 938, 1478, 148, 185, 952, 1098, 612, 1150, 1298, 254, 1182, 739, 703, 770, 170, 448, 603, 190, 855, 1676, 62, 251, 1160, 803, 988, 208, 94, 1387, 308, 984, 203, 40, 358, 744, 517, 704, 153, 859, 947, 522, 604, 826, 300, 1313, 513, 1713, 282, 696, 110, 47, 508, 224, 110, 756, 232, 498, 300, 996, 141, 220, 589, 761, 508, 1287, 296, 1030, 852, 683, 1127, 580, 1920, 372, 810, 496, 183, 897, 1439, 473, 774, 1205, 645, 1760, 1125, 946, 712, 224, 924, 595, 528, 693, 1254, 253, 609, 303, 34, 585, 399, 885, 804, 405, 162, 493, 349, 1122, 1597, 1752, 1064, 194, 657, 36, 1198, 753, 972, 1012, 402, 558, 604, 574, 1680, 415, 814, 642, 303, 907, 219, 206, 233, 508, 367, 206, 540, 727, 1060, 1541, 373, 1267, 1199, 1228, 513, 366, 1279, 853, 453, 56, 24, 206, 721, 851, 1041, 788, 630, 1721, 479, 32, 1033, 351, 475, 357, 1224, 1096, 584, 29, 651, 874, 921, 753, 1525, 1952, 39, 300, 1168, 765, 1201, 23, 36, 685, 999, 291, 773, 505, 584, 521, 904, 413, 1144, 272, 214, 849, 1438, 337, 437, 1090, 1381, 966, 340, 970, 72, 324, 189, 731, 761, 1056, 681, 186, 1734, 114, 484, 431, 1195, 1651, 1473, 850, 1091, 439, 295, 736, 26, 1262, 332, 748, 1693, 391, 1000, 1062, 354, 330, 550, 340, 659, 335, 934, 997, 369, 981, 669, 1019, 833, 487, 164, 866, 972, 519, 1225, 1159, 320, 543, 1092, 406, 459, 519, 422, 1242, 922, 259, 263, 207, 241, 1025, 1006, 51, 1459, 895, 277, 1933, 366, 253, 738, 1107, 938, 907, 1033, 33, 920, 816, 1446, 1216, 233, 838, 1187, 1755, 453, 1262, 328, 773, 814, 989, 1307, 894, 324, 235, 392, 183, 741, 1283, 1498, 286, 216, 1103, 865, 216, 293, 864, 230, 282, 241, 69, 41, 407, 622, 742, 659, 356, 171, 827, 259, 728, 1033, 213, 739, 1955, 596, 262, 1716, 490, 354, 842, 314, 568, 784, 35, 996, 571, 522, 32, 985, 1935, 403, 267, 1068, 307, 1300, 237, 802, 206, 1142, 948, 943, 775, 1757, 1863, 233, 207, 122, 775, 782, 935, 787, 843, 622, 693, 1366, 1012, 91, 696, 147, 657, 42, 670, 418, 238, 654, 447, 921, 272, 291, 1430, 560, 950, 1077, 1301, 617, 1353, 145, 768, 1455, 130, 779, 38, 736, 196, 111, 231, 1205, 583, 30, 161, 818, 224, 643, 737, 1586, 278, 1313, 1689, 75, 343, 66, 1947, 36, 1333, 421, 1195, 275, 876, 255, 250, 733, 353, 173, 852, 175, 969, 810, 53, 196, 909, 254, 1014, 769, 361, 718, 212, 755, 640, 1837, 1632, 1207, 773, 58, 842, 1955, 1094, 781, 1179, 1103, 1281, 1511, 1038, 304, 95, 163, 710, 191, 399, 242, 17, 315, 331, 236, 196, 1279, 1164, 1334, 778, 342, 801, 87, 1167, 344, 425, 35, 712, 1183, 910, 918, 1420, 646, 276, 684, 305, 34, 471, 561, 1636, 395, 515, 1015, 1122, 1901, 636, 1363, 833, 1072, 23, 1200, 32, 943, 1146, 791, 240, 1370, 1030, 323, 43, 160, 497, 1552, 172, 420, 507, 903, 162, 1497, 667, 454, 53, 639, 1560, 345, 343, 18, 321, 1102, 1113, 1295, 768, 525, 466, 148, 1456, 894, 14, 621, 1041, 30, 1622, 952, 844, 94, 99, 1730, 977, 950, 979, 209, 216, 1239, 222, 946, 881, 498, 115, 351, 91, 1257, 1489, 1826, 587, 287, 1048, 554, 673, 237, 1564, 713, 1001, 853, 184, 428, 933, 1072, 729, 185, 709, 891, 611, 246, 287, 670, 267, 1184, 355, 987, 58, 1025, 1229, 370, 871, 536, 1914, 887, 938, 796, 676, 401, 1288, 27, 431, 1862, 258, 771, 216, 652, 511, 1701, 1396, 109, 761, 517, 736, 1152, 665, 816, 212, 902, 264, 223, 1214, 919, 902, 1035, 881, 218, 314, 1008, 634, 553, 1556, 305, 169, 438, 1496, 719, 233, 802, 993, 189, 1067, 700, 1413, 1501, 675, 976, 954, 368, 632, 1359, 927, 1112, 841, 201, 743, 594, 217, 774, 182, 1252, 746, 1026, 360, 1567, 1098, 99, 464, 1003, 169, 1528, 1471, 426, 1101, 447, 583, 85, 29, 1353, 63, 452, 335, 1194, 1080, 940, 71, 290, 644, 49, 1227, 435, 381, 1197, 52, 293, 23, 1266, 197, 1001, 727, 614, 627, 1386, 48, 216, 433, 1140, 1266, 723, 167, 910, 1289, 24, 975, 310, 425, 806, 587, 538, 1199, 694, 38, 1043, 755, 455, 554, 1714, 1062, 628, 1379, 1205, 56, 333, 471, 315, 301, 295, 444, 849, 359, 258, 786, 559, 159, 281, 210, 421, 376, 740, 1704, 664, 412, 110, 68, 294, 28, 572, 252, 546, 693, 263, 103, 969, 832, 1210, 736, 744, 859, 571, 55, 972, 172, 909, 598, 1268, 255, 1161, 321, 243, 982, 1842, 1254, 1026, 282, 961, 531, 35, 914, 1264, 66, 387, 293, 975, 1086, 217, 66, 1485, 560, 528, 615, 151, 854, 434, 571, 1376, 287, 341, 412, 1492, 873, 194, 375, 1245, 222, 894, 666, 577, 681, 711, 142, 623, 623, 166, 1034, 42, 286, 154, 150, 663, 267, 850, 802, 1075, 459, 802, 860, 988, 570, 41, 1014, 255, 117, 1126, 906, 704, 231, 1040, 1036, 264, 304, 921, 1042, 152, 502, 1179, 1311, 729, 873, 670, 846, 1815, 388, 937, 118, 652, 28, 233, 991, 1951, 419, 745, 202, 245, 795, 423, 893, 320, 541, 1002, 985, 650, 907, 963, 600, 1168, 431, 17, 394, 636, 345, 436, 1595, 899, 359, 351, 873, 199, 1051, 753, 531, 768, 385, 458, 188, 809, 1181, 376, 270, 371, 756, 333, 489, 1162, 287, 515, 444, 819, 450, 312, 199, 582, 391, 381, 706, 230, 380, 441, 477, 468, 502, 226, 374, 734, 152, 382, 256, 803, 391, 528, 383, 337, 80, 294, 708, 388, 347, 405, 180, 457, 160, 119, 315, 999, 489, 162, 263, 1023, 404, 324, 239, 174, 508, 380, 517, 485, 163, 434, 359, 139, 142, 671, 561, 79, 409, 1378, 92, 131, 585, 495, 129, 107, 406, 1169, 266, 505, 353, 529, 732, 635, 297, 37, 335, 452, 336, 71, 564, 357, 526, 347, 297, 242, 249, 401, 639, 485, 565, 205, 665, 443, 401, 432, 416, 431, 729, 518, 1026, 664, 400, 156, 544, 1072, 112, 275, 239, 576, 548, 502, 500, 942, 529, 764, 641, 102, 257, 581, 846, 609, 414, 673, 448, 68, 49, 879, 502, 268, 1082, 743, 917, 1067, 569, 890, 883, 665, 207, 104, 485, 396, 499, 664, 592, 795, 476, 140, 614, 514, 562, 1353, 690, 1000, 347, 283, 354, 485, 343, 561, 881, 1054, 231, 1056, 534, 1408, 251, 519, 235, 770, 678, 1589, 94, 792, 281, 871, 873, 958, 649, 554, 370, 687, 571, 414, 827, 543, 779, 377, 290, 1106, 287, 1194, 821, 759, 1659, 1087, 729, 1752, 424, 415, 549, 355, 349, 412, 468, 142, 330, 649, 525, 417, 142, 462, 231, 236, 842, 442, 467, 380, 418, 178, 686, 167, 370, 316, 661, 1132, 66, 661, 583, 360, 286, 751, 800, 110, 273, 216, 463, 1012, 180, 1450, 935, 1410, 538, 672, 182, 439, 163, 114, 310, 200, 129, 1511, 714, 233, 342, 205, 360, 175, 436, 244, 589, 363, 383, 432, 399, 72, 679, 119, 341, 912, 522, 550, 820, 644, 157, 325, 1289, 694, 324, 851, 1719, 435, 992, 269, 671, 462, 453, 462, 157, 214, 375, 157, 747, 165, 534, 435, 376, 168, 367, 589, 358, 523, 589, 238, 477, 792, 51, 166, 576, 301, 420, 588, 1066, 172, 522, 343, 410, 310, 282, 464, 494, 727, 546, 492, 945, 625, 1787, 249, 895, 502, 894, 374, 620, 367, 340, 246, 379, 381, 311, 1241, 619, 1024, 148, 566, 320, 1128, 593, 454, 726, 143, 169, 557, 1273, 864, 336, 1086, 685, 411, 780, 494, 459, 453, 531, 158, 811, 53, 323, 720, 506, 472, 248, 343, 646, 1010, 930, 578, 647, 268, 657, 839, 616, 159, 139, 485, 269, 672, 347, 476, 1456, 281, 299, 355, 1219, 190, 78, 253, 478, 247, 397, 428, 308, 261, 529, 462, 145, 326, 464, 356, 176, 572, 740, 231, 148, 305, 255, 352, 201, 149, 291, 66, 241, 342, 146, 641, 298, 607, 59, 456, 200, 471, 822, 584, 808, 510, 370, 149, 650, 236, 540, 645, 587, 361, 224, 600, 137, 1006, 300, 1092, 277, 348, 683, 612, 480, 482, 573, 195, 542, 443, 323, 584, 507, 503, 48, 277, 735, 732, 576, 502, 130, 1085, 837, 394, 803, 564, 334, 231, 424, 541, 252, 413, 821, 367, 426, 270, 550, 740, 819, 967, 652, 716, 171, 664, 1181, 741, 295, 600, 581, 440, 535, 767, 980, 539, 250, 1000, 784, 522, 347, 108, 2035, 752, 223, 98, 289, 454, 733, 102, 889, 808, 610, 55, 397, 69, 1122, 783, 1011, 1004, 496, 893, 402, 1374, 322, 594, 1234, 888, 814, 934, 1042, 587, 772, 813, 623, 526, 588, 670, 665, 565, 224, 1058, 962, 846, 2043, 320, 437, 1283, 194, 624, 72, 1008, 1515, 648, 212, 642, 666, 211, 488, 86, 199, 536, 379, 277, 356, 460, 379, 240, 326, 226, 193, 616, 108, 112, 97, 476, 332, 159, 548, 514, 227, 1018, 620, 649, 1756, 745, 301, 243, 634, 195, 786, 386, 366, 449, 367, 477, 160, 270, 1581, 304, 999, 732, 143, 300, 1557, 204, 315, 906, 218, 274, 125, 417, 138, 99, 112, 183, 726, 227, 455, 416, 242, 232, 420, 182, 385, 252, 526, 994, 596, 403, 294, 372, 569, 1226, 237, 159, 1153, 358, 1045, 719, 786, 319, 220, 475, 384, 678, 162, 358, 476, 175, 373, 479, 454, 449, 506, 966, 148, 178, 411, 600, 429, 591, 1313, 869, 222, 644, 492, 118, 158, 230, 93, 1035, 178, 139, 264, 619, 749, 739, 732, 491, 161, 448, 403, 162, 335, 200, 369, 312, 606, 386, 707, 857, 895, 176, 549, 197, 531, 217, 315, 341, 498, 403, 826, 461, 490, 144, 331, 309, 421, 350, 576, 628, 195, 349, 623, 93, 470, 317, 581, 149, 767, 310, 217, 793, 581, 626, 458, 266, 1341, 104, 1344, 1808, 213, 515, 285, 510, 603, 723, 183, 119, 817, 118, 333, 415, 1045, 493, 1002, 448, 351, 423, 1093, 252, 163, 533, 244, 697, 811]\n", "Length of the Combine Tokens Count 18188\n" ] } ], "source": [ "# Tokenize each row in the 'instruction' column of the deduplicated dataset and count the tokens\n", "# The tokenizer.tokenize method splits the text into tokens (words/subwords)\n", "instruction_tokens_count = [len(tokenizer.tokenize(example[\"instruction\"])) for example in deduped_dataset[\"train\"]]\n", "print(\"Instruction Tokens Count\", instruction_tokens_count)\n", "# Print the total number of entries processed for instruction token counts\n", "print(\"Length of Instruction Tokens Count\", len(instruction_tokens_count))\n", "\n", "# Tokenize each row in the 'output' column of the deduplicated dataset and count the tokens\n", "output_tokens_count = [len(tokenizer.tokenize(example[\"output\"])) for example in deduped_dataset[\"train\"]]\n", "print(\"Output Tokens Count\", output_tokens_count)\n", "# Print the total number of entries processed for output token counts\n", "print(\"Length of the Output Tokens Count\", len(output_tokens_count))\n", "\n", "# Combine the token counts for instruction and output by adding corresponding counts together\n", "# This shows the total number of tokens per row across both columns\n", "combine_tokens_count = [instruction + output for instruction, output in zip(instruction_tokens_count, output_tokens_count)]\n", "print(\"Combine Tokens Count\", combine_tokens_count)\n", "# Print the total number of entries for which combined token counts have been calculated\n", "print(\"Length of the Combine Tokens Count\", len(combine_tokens_count))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fdMYZwiNbWXT", "outputId": "9625e1e7-3f36-4978-d208-d2e3e3616281" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Top K Indices [17975, 833, 17933, 1508, 3194, 9174, 15156, 5188, 16833, 16954, 16681, 16077, 17378, 16921, 16849, 15335, 15600, 16777, 3384, 16584, 10433, 15061, 17103, 802, 15140, 1609, 17002, 6090, 15457, 16126, 5121, 15220, 16067, 16863, 7586, 17112, 6656, 15445, 17290, 3019, 16948, 4727, 15347, 17070, 210, 7803, 14947, 17370, 16163, 18162, 9170, 15668, 13504, 15638, 15684, 15031, 17751, 16335, 15389, 16160, 16178, 16595, 16117, 16862, 4703, 18015, 16793, 16619, 17622, 15685, 3469, 16718, 7693, 17054, 16044, 16665, 17705, 15883, 16836, 17236, 16559, 5508, 17259, 15353, 17118, 15474, 16734, 16917, 16449, 15134, 15788, 16632, 16533, 7238, 15409, 17619, 605, 15925, 16723, 16223, 16321, 4770, 15358, 16997, 15384, 16949, 16459, 15125, 17049, 3312, 7657, 15242, 3074, 10345, 3208, 15766, 16618, 532, 17401, 10101, 17596, 5165, 10110, 15506, 15165, 16914, 1832, 18029, 5378, 15178, 15208, 1619, 14335, 10203, 15736, 17174, 15040, 17077, 15492, 10569, 17031, 15966, 18035, 17141, 17020, 15913, 14115, 16142, 15928, 15997, 4878, 16647, 15567, 16180, 3204, 4955, 478, 16467, 3357, 1847, 17180, 15442, 15808, 13921, 16436, 16680, 15145, 15489, 15359, 17983, 15175, 3457, 16960, 17676, 16430, 3285, 17154, 15921, 15266, 16808, 17026, 17145, 15102, 15272, 16238, 17318, 15623, 17069, 13855, 17306, 15426, 16515, 16724, 17181, 15754, 16289, 3080, 10414, 16183, 15845, 15715, 16454, 16774, 17043, 17813, 16898, 15749, 16263, 15434, 15621, 17664, 3174, 744, 16116, 16788, 3810, 15472, 5420, 8973, 11652, 16590, 16702, 16415, 16364, 14179, 16889, 16022, 4853, 16280, 3294, 14911, 16989, 10371, 13859, 15574, 16164, 17153, 7742, 15897, 17666, 4913, 17590, 15881, 16339, 15746, 16029, 16262, 15963, 15158, 15181, 17119, 16143, 4865, 6825, 2844, 2913, 15994, 15670, 16541, 17212, 11074, 13861, 16490, 16706, 4907, 15276, 5288, 17239, 17484, 16098, 16366, 17314, 15123, 15989, 16204, 17954, 15629, 919, 17014, 1735, 15530, 9173, 16874, 15301, 15401, 17004, 7707, 15149, 17160, 489, 15824, 15319, 16069, 15590, 16895, 17188, 17576, 16466, 4906, 747, 13999, 15683, 8260, 11611, 13898, 16058, 16045, 3246, 4747, 18161, 13857, 15129, 8884, 18159, 7972, 16399, 2880, 16976, 13911, 15894, 16217, 16923, 16168, 15681, 5814, 15366, 15225, 11605, 15429, 16499, 13632, 15142, 798, 3107, 15439, 15916, 13279, 15311, 16557, 16916, 18093, 13649, 17365, 14361, 14961, 15078, 16474, 11591, 13735, 15730, 16310, 16800, 3079, 14168, 4860, 16232, 16893, 16854, 16522, 14552, 17038, 1469, 16093, 17221, 17701, 17109, 16577, 16206, 16201, 16807, 17978, 15173, 16959, 16654, 16974, 14990, 13888, 13823, 8904, 17777, 14341, 15159, 17284, 16390, 16649, 17206, 17217, 13677, 17298, 15734, 16731, 16795, 5171, 9086, 13951, 15835, 17068, 15062, 15688, 3754, 13969, 16604, 17291, 14478, 16434, 17170, 16050, 855, 4679, 2922, 14625, 15260, 5186, 15200, 17322, 10301, 16006, 16156, 16765, 17764, 1415, 1836, 15735, 3207, 17060, 14532, 15702, 13923, 3795, 15461, 17957, 14812, 485, 2943, 3149, 11246, 16462, 17099, 3454, 7990, 16651, 15895, 17199, 1008, 7923, 16357, 18064, 2925, 13812, 15213, 15983, 16756, 16672, 16085, 15607, 3100, 16079, 17817, 3385, 3393, 15204, 15206, 5803, 15302, 15441, 15024, 16789, 17131, 13734, 16249, 3089, 4719, 14225, 9049, 9186, 230, 10049, 16295, 17274, 5275, 16133, 16950, 14730, 754, 9285, 16593, 16906, 17240, 10045, 16184, 14303, 16686, 11578, 17008, 15325, 16650, 17229, 7685, 13858, 16624, 17202, 15633, 16722, 16925, 15453, 17192, 17616, 5131, 14096, 16448, 7689, 16359, 5048, 13122, 15041, 16066, 13878, 3353, 14819, 7724, 13942, 15960, 16792, 9033, 15205, 16017, 17094, 2895, 6348, 16986, 16524, 17415, 17917, 3507, 3050, 16957, 17364, 16181, 475, 1407, 4760, 16185, 3183, 8370, 13934, 15690, 15647, 5396, 16277, 16489, 17492, 15365, 16684, 17394, 8309, 10111, 14069, 16981, 15809, 15314, 16975, 1949, 2979, 8292, 15143, 3243, 15553, 15566, 17422, 8098, 9232, 17286, 16536, 16757, 8241, 3088, 14548, 18067, 17124, 10370, 16225, 16521, 866, 4855, 14946, 15888, 15870, 16236, 16237, 9152, 17011, 15122, 15599, 16698, 15469, 4217, 5691, 15500, 16858, 2888, 10072, 11472, 1244, 3344, 17216, 14821, 3552, 7752, 15169, 15473, 16013, 1490, 14878, 15595, 15968, 6317, 13767, 15534, 17650, 14941, 15763, 5406, 6764, 15563, 17770, 16582, 10070, 17352, 14728, 16596, 5013, 15104, 15933, 6153, 10985, 13718, 10400, 15910, 16173, 16617, 17001, 17947, 15085, 15275, 7981, 3077, 15657, 16014, 15967, 15546, 13967, 15059, 15840, 15878, 16419, 17037, 15207, 17162, 2602, 13813, 15449, 15557, 16465, 89, 3229, 9211, 15503, 13924, 16781, 286, 8020, 14669, 17614, 964, 1777, 4942, 4968, 11551, 16811, 16958, 17036, 7639, 15092, 17183, 14659, 15114, 14385, 16519, 17175, 157, 2950, 10214, 15264, 15411, 16053, 7969, 16673, 10291, 13714, 15602, 15758, 15336, 16955, 1072, 1931, 3471, 9740, 18181, 4775, 14587, 16283, 16760, 17872, 4877, 10067, 15361, 16726, 15, 16705, 16336, 16470, 1559, 1629, 1652, 5235, 7686, 13970, 17620, 1897, 13978, 15722, 17303, 17780, 940, 14085, 14833, 15501, 17894, 13125, 15177, 15671, 15800, 732, 5326, 16355, 15696, 17555, 14569, 14726, 15212, 15830, 7601, 14162, 17193, 14262, 14737, 15700, 11604, 3400, 16377, 16892, 3328, 15356, 17342, 9488, 8254, 8120, 16144, 16216, 16332, 17006, 17084, 17530, 15120, 15907, 7773, 10413, 14138, 14738, 16182, 16285, 767, 5269, 13807, 16852, 9251, 13991, 17151, 17558, 2978, 16031, 17737, 3381, 14269, 1703, 16620, 1622, 9397, 15292, 15649, 16214, 16737, 17237, 5128, 13971, 8105, 15150, 15823, 16646, 1533, 10176, 9067, 15648, 17972, 1542, 14210, 1928, 4856, 16715, 17588, 13698, 15872, 16331, 9868, 17586, 1669, 4871, 9245, 13881, 14628, 3029, 10235, 10453, 11552, 13722, 14095, 16213, 17407, 16021, 3056, 14463, 15334, 17073, 7642, 14167, 15609, 15898, 3051, 15283, 1394, 8281, 14326, 16080, 18069, 18175, 4785, 10126, 1948, 2878, 5046, 8917, 13798, 17232, 3365, 8050, 14790, 17361, 17961, 1584, 16662, 17047, 17356, 723, 16961, 1099, 2494, 13719, 14903, 16269, 17357, 9000, 16209, 17134, 18102, 3363, 4764, 9227, 17333, 1765, 14065, 14384, 16668, 16784, 16830, 766, 13654, 14873, 15716, 1403, 8252, 15992, 16579, 17015, 1655, 14465, 6440, 6919, 9003, 15070, 4418, 4845, 10227, 14758, 14811, 16091, 17172, 17292, 17525, 14183, 15047, 16771, 17098, 1546, 15153, 17766, 11549, 14055, 16199, 17466, 14160, 16130, 3111, 8178, 10204, 15304, 13817, 16749, 16119, 16420, 18012, 8954, 15478, 14987, 15485, 17000, 8318, 9209, 16082, 16941, 17349, 11538, 16244, 10234, 15157, 15547, 16627, 16875, 17662, 4762, 15660, 17949, 16309, 17798, 4777, 16105, 16513, 17138, 17982, 15732, 16019, 3411, 13725, 15051, 15691, 16772, 17870, 13638, 14436, 14806, 14841, 15345, 4671, 5335, 15631, 16313, 17950, 14454, 16003, 16056, 17178, 3429, 14714, 14948, 15885, 17388, 18177, 2622, 5628, 17079, 17208]\n", "Length of Top K Indices 1000\n" ] } ], "source": [ "# Define a function to retrieve the top k rows with the highest number of tokens\n", "def get_top_k_rows(dataset, tokens_count, k):\n", " # Sort indices of the rows based on the token counts in descending order\n", " sorted_indices = sorted(range(len(tokens_count)), key=lambda i: tokens_count[i], reverse=True)\n", " # Select the top k indices from the sorted list\n", " top_k_indices = sorted_indices[:k]\n", " print(\"Top K Indices\", top_k_indices)\n", " # Print the number of top k indices to confirm the size\n", " print(\"Length of Top K Indices\", len(top_k_indices))\n", "\n", " # Extract the Top K rows based on the indices and store them in a dictionary\n", " top_k_data = {\n", " \"instruction\": [dataset[\"train\"][i][\"instruction\"] for i in top_k_indices],\n", " \"output\": [dataset[\"train\"][i][\"output\"] for i in top_k_indices]\n", " }\n", " # Return the top k rows as a new Dataset object\n", " return Dataset.from_dict(top_k_data)\n", "\n", "# Number of rows to retrieve\n", "k = 1000\n", "# Get the top 1000 rows with the most number of tokens\n", "top_k_dataset = get_top_k_rows(deduped_dataset, combine_tokens_count, k)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "oAv-KO4Wbdes", "outputId": "3c502d58-fb4f-4da4-f355-6f2965aa801e" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Dataset({\n", " features: ['instruction', 'output'],\n", " num_rows: 1000\n", "})" ] }, "metadata": {}, "execution_count": 19 } ], "source": [ "top_k_dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Ayr-sieZbgXt" }, "outputs": [], "source": [ "\n", "dataset = DatasetDict({\"train\": top_k_dataset})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dPJU8vwXbjg6", "outputId": "9431e96d-5b9e-4b24-abbb-5c5fdcdf2b4b" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "DatasetDict({\n", " train: Dataset({\n", " features: ['instruction', 'output'],\n", " num_rows: 1000\n", " })\n", "})" ] }, "metadata": {}, "execution_count": 22 } ], "source": [ "dataset" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "MqztEBGBble-", "outputId": "06de285d-8364-49d3-b761-35eddaa91c15" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " instruction \\\n", "0 Let's come up with a rich and complex alien wo... \n", "1 Let\\n$$p(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a... \n", "2 Given the code below, refactor it, add comment... \n", "3 Find the area of the region described by $x \\g... \n", "4 Let $P$ be the plane passing through the origi... \n", ".. ... \n", "995 Hello. My name is Mike. I have a message left ... \n", "996 Given a prime $p$ and an integer $a$, we say t... \n", "997 Let $f$ be defined by \\[f(x) = \\left\\{\\n\\begi... \n", "998 BEGININPUT\\nBEGINCONTEXT\\ndate: August 5, 2021... \n", "999 BEGININPUT\\nBEGINCONTEXT\\ndate: August 14, 201... \n", "\n", " output \n", "0 Planet Name: Xylothar\\n\\nXylothar is a diverse... \n", "1 Observe that \\begin{align*}\\np(0,0) &= a_0 = ... \n", "2 Here is the refactored and commented version:\\... \n", "3 Let $n = \\lfloor x \\rfloor,$ and let $\\{x\\} = ... \n", "4 Let $\\mathbf{v} = \\begin{pmatrix} x \\\\ y \\\\ z ... \n", ".. ... \n", "995 Hello Mike, it's nice to meet you. As an AI la... \n", "996 To find the primitive roots $\\pmod 7$, I need ... \n", "997 The number $f^{-1}(-3)$ is the value of $x$ su... \n", "998 Dr. Eleanor Thompson's study found that partic... \n", "999 Charles Leroux won the Golden Bread Award in 1... \n", "\n", "[1000 rows x 2 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
instructionoutput
0Let's come up with a rich and complex alien wo...Planet Name: Xylothar\\n\\nXylothar is a diverse...
1Let\\n$$p(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a...Observe that \\begin{align*}\\np(0,0) &= a_0 = ...
2Given the code below, refactor it, add comment...Here is the refactored and commented version:\\...
3Find the area of the region described by $x \\g...Let $n = \\lfloor x \\rfloor,$ and let $\\{x\\} = ...
4Let $P$ be the plane passing through the origi...Let $\\mathbf{v} = \\begin{pmatrix} x \\\\ y \\\\ z ...
.........
995Hello. My name is Mike. I have a message left ...Hello Mike, it's nice to meet you. As an AI la...
996Given a prime $p$ and an integer $a$, we say t...To find the primitive roots $\\pmod 7$, I need ...
997Let $f$ be defined by \\[f(x) = \\left\\{\\n\\begi...The number $f^{-1}(-3)$ is the value of $x$ su...
998BEGININPUT\\nBEGINCONTEXT\\ndate: August 5, 2021...Dr. Eleanor Thompson's study found that partic...
999BEGININPUT\\nBEGINCONTEXT\\ndate: August 14, 201...Charles Leroux won the Golden Bread Award in 1...
\n", "

1000 rows × 2 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"dataset[\\\"train\\\"]\",\n \"rows\": 1000,\n \"fields\": [\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1000,\n \"samples\": [\n \"BEGININPUT\\nBEGINCONTEXT\\ndate: September 15, 2021\\nurl: www.telecomhistory.com/evolution-video-transcript\\nauthor: Patricia Williams\\ntitle: The Evolution of Telecommunication: A Video Transcript\\nENDCONTEXT\\nIn this video transcript, we will explore the fascinating journey of telecommunication from its humble beginnings to the advanced technologies we use today. Our story begins in the early 19th century with Samuel Morse's invention of the electric telegraph.\\n\\nThe electric telegraph was invented by Samuel Morse in 1837 and became operational in 1844. This revolutionary device allowed people to send messages over long distances using a series of electrical signals. Messages were sent in Morse code, a system of dots and dashes that represented letters and numbers. The first message sent via telegraph was \\\"What hath God wrought?\\\" on May 24, 1844, between Washington D.C. and Baltimore.\\n\\nAlexander Graham Bell is credited with inventing the telephone in 1876. His invention revolutionized communication by allowing people to speak directly to each other over long distances. On March 10, 1876, Bell made the first successful telephone call to his assistant, Thomas Watson, saying, \\\"Mr. Watson, come here; I want you.\\\" By the end of the 19th century, telephone lines had been installed across the United States and Europe.\\n\\nWireless communication took a significant leap forward in 1895 when Guglielmo Marconi developed the wireless telegraph, also known as the radio. Marconi's invention used electromagnetic waves to transmit messages without wires. In 1901, he successfully sent a wireless signal across the Atlantic Ocean, proving that radio could be used for long-distance communication.\\n\\nTelevision emerged as a new form of telecommunication in the 1920s. Scottish inventor John Logie Baird demonstrated the first working television system on January 26, 1926. Early television sets were large and expensive, but by the 1950s, they had become more affordable and widespread.\\n\\nThe development of satellites in the 1960s allowed for global communication on an unprecedented scale. On July 10, 1962, Telstar 1, the first active communications satellite, was launched into orbit. This satellite enabled live transatlantic television broadcasts and telephone calls between the United States and Europe.\\n\\nIn the 1980s, mobile phones began to gain popularity. The first commercially available cell phone, the Motorola DynaTAC 8000X, was released in 1983. It weighed nearly two pounds and cost $3,995. Over time, mobile phones became smaller, lighter, and more affordable, leading to their widespread adoption around the world.\\n\\nThe invention of the internet in the late 20th century revolutionized telecommunication once again. Developed initially as a military project in the 1960s, the internet became publicly accessible in the 1990s. Today, it serves as a platform for countless applications, including email, social media, video conferencing, and online gaming.\\n\\nAs we look to the future, advancements in telecommunication technology continue to evolve at a rapid pace. From 5G networks to virtual reality, the possibilities are endless. One thing is certain: the history of telecommunication is a testament to human ingenuity and our desire to connect with one another.\\nENDINPUT\\n\\nBEGININSTRUCTION\\n- Summarize the key milestones in the evolution of telecommunication from the electric telegraph to the internet.\\nENDINSTRUCTION\",\n \"For each following Query, return a series of clear, factual and concise Summary Bullet Points of the Query using only information available in the Query.\\n###\\nQuery:\\nArtificial intelligence (AI) is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals, which involves consciousness and emotionality. The distinction between the former and the latter categories is often revealed by the acronym chosen. 'Strong' AI is usually labelled as AGI (Artificial General Intelligence) while attempts to emulate 'natural' intelligence have been called ABI (Artificial Biological Intelligence). Leading AI textbooks define the field as the study of \\\"intelligent agents\\\": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.3 Colloquially, the term \\\"artificial intelligence\\\" is often used to describe machines (or computers) that mimic \\\"cognitive\\\" functions that humans associate with the human mind, such as \\\"learning\\\" and \\\"problem solving\\\".[4]\\n\\nAs machines become increasingly capable, tasks considered to require \\\"intelligence\\\" are often removed from the definition of AI, a phenomenon known as the AI effect.[5] A quip in Tesler's Theorem says \\\"AI is whatever hasn't been done yet.\\\"[6] For instance, optical character recognition is frequently excluded from things considered to be AI,[7] having become a routine technology.[8] Modern machine capabilities generally classified as AI include successfully understanding human speech,[9] competing at the highest level in strategic game systems (such as chess and Go),[10] autonomously operating cars, intelligent routing in content delivery networks, and military simulations.[11]\\n\\nSummary:\\n- The text discusses artificial intelligence (AI) and its various applications. \\n- It defines AI as intelligence demonstrated by machines\\n- AI is often distinguished from natural intelligence by its lack of consciousness and emotionality. \\n- Discusses the AI effect, which is the tendency for tasks to be removed from the definition of AI as machines become increasingly capable.\\n###\\nQuery:\\nFishing is the activity of trying to catch fish. Fish are often caught as wildlife from the natural environments, but may also be caught from stocked bodies of water such as ponds, canals, park wetlands and reservoirs. Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping, as well as more destructive and often illegal techniques such as electrocution, blasting and poisoning.\\n\\nThe term fishing broadly includes catching aquatic animals other than fish, such as crustaceans (shrimp/lobsters/crabs), shellfish, cephalopods (octopus/squid) and echinoderms (starfish/sea urchins). The term is not normally applied to harvesting fish raised in controlled cultivations (fish farming). Nor is it normally applied to hunting aquatic mammals, where terms like whaling and sealing are used instead.\\n\\nFishing has been an important part of human culture since hunter-gatherer times, and is one of the few food production activities that have persisted from prehistory into modern age, surviving both the Neolithic Revolution and successive Industrial Revolutions. In addition to being caught to be eaten for food, fish are caught as recreational pastimes. Fishing tournaments are held, and caught fish are sometimes kept long-term as preserved or living trophies. When bioblitzes occur, fish are typically caught, identified, and then released.\\n\\nAccording to the United Nations FAO statistics, the total number of commercial fishers and fish farmers is estimated to be 38 million. Fishing industries and aquaculture provide direct and indirect employment to over 500 million people in developing countries.[1] In 2005, the worldwide per capita consumption of fish captured from wild fisheries was 14.4 kilograms (32 lb), with an additional 7.4 kilograms (16 lb) harvested from fish farms.[2]\\n\\nSummary:\\n- Fishing is the activity of trying to catch fish.\\n- Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping.\\n- The term \\\"fishing\\\" broadly includes catching aquatic animals other than fish, such as crustaceans, shellfish, cephalopods and echinoderms.\\n- The term fishing is not normally applied to hunting aquatic mammals.\\n- Fishing has been an important part of human culture since hunter-gatherer times\\n###\\nQuery: {}\\n\\nSummary:\",\n \"Develop a C++ program that implements a simple ray-tracing algorithm to render 3D scenes with basic shapes (spheres, planes) and lighting. The program should output the rendered image as a PNG file.\\nPLAINFORMAT\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"output\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1000,\n \"samples\": [\n \"The key milestones in the evolution of telecommunication include:\\n\\n1. Invention of the electric telegraph by Samuel Morse in 1837, which became operational in 1844 and allowed long-distance communication using Morse code.\\n2. Alexander Graham Bell's invention of the telephone in 1876, enabling direct speech over long distances.\\n3. Guglielmo Marconi's development of the wireless telegraph (radio) in 1895, using electromagnetic waves for wire-free messaging.\\n4. The emergence of television as a new form of telecommunication in the 1920s, with John Logie Baird demonstrating the first working system in 1926.\\n5. Launch of Telstar 1, the first active communications satellite, in 1962, allowing global communication through live transatlantic broadcasts and phone calls.\\n6. The rise of mobile phones in the 1980s, starting with the release of the Motorola DynaTAC 8000X in 1983.\\n7. The invention of the internet in the late 20th century, initially developed as a military project and becoming publicly accessible in the 1990s, leading to various applications like email, social media, and video conferencing.\",\n \"Thank you for the examples, I'm ready to summarize now. \\n\\nWhat is your query?\",\n \"```cpp\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\\"stb_image_write.h\\\"\\n\\nusing namespace std;\\nusing namespace Eigen;\\n\\nclass Vector3 {\\npublic:\\n Vector3(float x = 0, float y = 0, float z = 0) : v(x, y, z) {}\\n\\n float x() const { return v.x(); }\\n float y() const { return v.y(); }\\n float z() const { return v.z(); }\\n\\n Vector3 operator+(const Vector3 &other) const {\\n return Vector3(v + other.v);\\n }\\n\\nprivate:\\n Vector3(const Eigen::Vector3f &v) : v(v) {}\\n\\n Eigen::Vector3f v;\\n};\\n\\nclass Ray {\\npublic:\\n Ray(const Vector3 &origin, const Vector3 &direction)\\n : origin(origin), direction(direction.normalized()) {}\\n\\n Vector3 origin;\\n Vector3 direction;\\n};\\n\\nclass Shape {\\npublic:\\n virtual bool intersect(const Ray &ray, float &t) const = 0;\\n};\\n\\nclass Sphere : public Shape {\\npublic:\\n Sphere(const Vector3 ¢er, float radius) : center(center), radius(radius) {}\\n\\n bool intersect(const Ray &ray, float &t) const override {\\n // ... (intersection algorithm)\\n }\\n\\n Vector3 center;\\n float radius;\\n};\\n\\nclass Plane : public Shape {\\npublic:\\n Plane(const Vector3 &point, const Vector3 &normal)\\n : point(point), normal(normal.normalized()) {}\\n\\n bool intersect(const Ray &ray, float &t) const override {\\n // ... (intersection algorithm)\\n }\\n\\n Vector3 point;\\n Vector3 normal;\\n};\\n\\nclass Light {\\npublic:\\n Light(const Vector3 &position, float intensity)\\n : position(position), intensity(intensity) {}\\n\\n Vector3 position;\\n float intensity;\\n};\\n\\nclass Scene {\\npublic:\\n void addShape(unique_ptr shape) {\\n shapes.push_back(move(shape));\\n }\\n\\n void addLight(const Light &light) {\\n lights.push_back(light);\\n }\\n\\n const Shape *intersect(const Ray &ray, float &t) const {\\n // ... (find the closest intersection)\\n }\\n\\n vector> shapes;\\n vector lights;\\n};\\n\\nVector3 shade(const Ray &ray, const Scene &scene) {\\n float t;\\n const Shape *shape = scene.intersect(ray, t);\\n\\n if (!shape) {\\n return Vector3(0); // background color\\n }\\n\\n // Compute the shading based on the intersection and lighting\\n // ...\\n\\n return color;\\n}\\n\\nvoid render(const Scene &scene, const string &outputFile) {\\n int width = 800;\\n int height = 600;\\n\\n vector pixels(width * height * 3);\\n\\n for (int y = 0; y < height; ++y) {\\n for (int x = 0; x < width; ++x) {\\n // Cast a ray through the pixel\\n Ray ray = ...;\\n\\n Vector3 color = shade(ray, scene);\\n\\n int index = (y * width + x) * 3;\\n pixels[index] = color.x() * 255;\\n pixels[index + 1] = color.y() * 255;\\n pixels[index + 2] = color.z() * 255;\\n }\\n }\\n\\n stbi_write_png(outputFile.c_str(), width, height, 3, pixels.data(), width * 3);\\n}\\n\\nint main() {\\n // Create your 3D scene with shapes and lights\\n // ...\\n\\n // Render the scene and save it as a PNG file\\n render(scene, \\\"output.png\\\");\\n\\n return 0;\\n}\\n```\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 21 } ], "source": [ "\n", "dataset[\"train\"].to_pandas()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "LFcru3J9bnCz", "outputId": "5b3eb86f-52d4-400f-d878-a12dc696ff67" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Instruction Tokens Count [315, 201, 553, 98, 77, 125, 47, 1200, 1468, 1630, 1871, 1512, 1850, 1686, 42, 1673, 1616, 1495, 94, 65, 416, 62, 1768, 79, 1473, 50, 1388, 877, 71, 1831, 290, 1259, 1512, 1477, 93, 1373, 897, 1694, 1559, 95, 1504, 114, 1506, 1317, 24, 40, 1735, 1630, 47, 16, 204, 1597, 1759, 55, 50, 1642, 708, 1465, 37, 73, 51, 61, 31, 1676, 531, 646, 1215, 1476, 128, 56, 721, 1620, 105, 1551, 1202, 45, 1345, 1403, 39, 1515, 1398, 531, 1572, 39, 1238, 1548, 84, 1260, 1295, 110, 140, 1549, 1339, 1442, 51, 470, 158, 30, 1424, 1314, 48, 1352, 1138, 1154, 1447, 1223, 1423, 1201, 1218, 849, 228, 48, 105, 144, 84, 1398, 1131, 585, 1214, 477, 27, 142, 428, 33, 60, 65, 124, 72, 568, 1284, 132, 153, 1273, 234, 130, 81, 1326, 1239, 44, 46, 1335, 1170, 1298, 1341, 1079, 1365, 1246, 47, 1232, 133, 447, 1228, 1221, 1431, 66, 379, 124, 1403, 169, 137, 175, 1176, 1405, 1056, 1024, 1212, 50, 45, 1309, 708, 52, 493, 124, 59, 1420, 655, 1188, 1297, 54, 1213, 1034, 1136, 41, 71, 33, 52, 37, 1308, 1013, 1102, 50, 1403, 1268, 1362, 1145, 1309, 90, 495, 1071, 41, 89, 50, 1139, 1172, 34, 1400, 1234, 37, 725, 1089, 104, 22, 110, 1112, 1300, 487, 1177, 123, 335, 245, 63, 1295, 82, 69, 1202, 1143, 1221, 172, 44, 50, 1260, 1281, 569, 804, 1317, 69, 1190, 1064, 104, 9, 104, 18, 1166, 50, 1236, 1122, 119, 727, 81, 1073, 926, 1124, 153, 23, 99, 51, 1261, 1033, 57, 1031, 961, 752, 1155, 1157, 258, 73, 179, 1215, 918, 1234, 994, 1234, 72, 128, 926, 60, 1253, 107, 1104, 53, 57, 82, 37, 1221, 1249, 1062, 423, 871, 122, 149, 54, 1125, 963, 43, 1189, 1331, 326, 1193, 190, 233, 847, 1125, 107, 75, 819, 56, 44, 76, 398, 573, 663, 1205, 29, 84, 296, 970, 123, 955, 813, 52, 73, 152, 1231, 73, 84, 1028, 951, 169, 57, 965, 958, 1059, 53, 434, 50, 71, 193, 45, 45, 989, 14, 765, 1221, 1232, 1151, 54, 104, 253, 1095, 1065, 1230, 110, 76, 1132, 264, 1096, 37, 1113, 105, 1150, 1212, 98, 156, 1193, 26, 122, 123, 1083, 51, 130, 732, 981, 28, 983, 1027, 1115, 860, 680, 107, 498, 949, 74, 1191, 69, 52, 1158, 952, 696, 983, 114, 1070, 1051, 406, 61, 728, 1124, 62, 62, 860, 1054, 757, 51, 845, 1152, 1028, 97, 68, 76, 260, 308, 893, 67, 213, 858, 25, 483, 56, 943, 35, 17, 54, 64, 70, 500, 923, 915, 115, 775, 454, 838, 161, 1052, 978, 119, 274, 510, 1172, 1160, 43, 58, 1115, 920, 1002, 123, 55, 52, 39, 144, 776, 48, 61, 1014, 145, 61, 117, 413, 69, 19, 293, 85, 876, 57, 505, 70, 862, 59, 1084, 972, 820, 44, 352, 1000, 1063, 380, 43, 184, 487, 1041, 876, 213, 45, 136, 1011, 53, 228, 122, 833, 1187, 1034, 62, 945, 1115, 985, 871, 867, 798, 887, 1002, 719, 952, 1072, 41, 824, 95, 142, 1054, 58, 112, 1118, 1118, 71, 847, 470, 60, 33, 59, 826, 268, 971, 75, 697, 880, 45, 739, 81, 1102, 1044, 354, 885, 861, 54, 364, 135, 70, 95, 93, 1052, 1014, 26, 53, 505, 1024, 51, 78, 921, 868, 137, 471, 130, 136, 1139, 84, 69, 40, 221, 204, 990, 1058, 46, 975, 76, 49, 74, 50, 978, 76, 978, 786, 19, 212, 67, 887, 920, 1057, 91, 280, 935, 11, 831, 279, 987, 1053, 1066, 82, 827, 102, 99, 938, 825, 85, 148, 85, 36, 866, 74, 564, 75, 58, 167, 49, 408, 91, 111, 127, 156, 920, 1104, 62, 29, 848, 981, 1020, 873, 49, 52, 894, 706, 1004, 34, 824, 954, 582, 894, 1016, 35, 112, 705, 826, 1042, 78, 429, 65, 30, 972, 977, 721, 527, 887, 880, 65, 1000, 371, 41, 42, 70, 418, 70, 744, 44, 46, 499, 94, 137, 27, 53, 896, 42, 149, 188, 638, 47, 59, 1007, 305, 240, 98, 1024, 555, 41, 63, 53, 904, 749, 1062, 67, 617, 415, 936, 859, 948, 120, 67, 105, 57, 970, 881, 1017, 1021, 63, 239, 98, 540, 59, 41, 47, 118, 35, 67, 579, 864, 749, 873, 772, 999, 133, 49, 517, 49, 112, 995, 876, 934, 59, 440, 63, 759, 29, 132, 37, 42, 924, 39, 120, 94, 391, 778, 770, 399, 35, 606, 735, 1037, 20, 94, 867, 1042, 746, 1062, 39, 890, 55, 793, 281, 466, 34, 746, 24, 841, 980, 928, 999, 74, 905, 49, 895, 628, 93, 30, 81, 964, 123, 94, 50, 880, 406, 93, 63, 871, 56, 939, 898, 731, 40, 761, 80, 42, 311, 845, 904, 55, 46, 123, 214, 382, 61, 77, 593, 18, 147, 76, 941, 19, 50, 951, 109, 937, 42, 882, 848, 122, 869, 852, 717, 220, 693, 64, 83, 800, 889, 114, 62, 106, 86, 48, 156, 803, 109, 416, 36, 14, 589, 138, 845, 903, 45, 111, 150, 74, 574, 678, 79, 251, 85, 985, 624, 759, 65, 914, 52, 66, 881, 830, 137, 170, 875, 728, 56, 66, 954, 38, 108, 979, 91, 137, 62, 348, 76, 374, 31, 160, 94, 317, 676, 48, 126, 937, 90, 120, 91, 105, 948, 146, 60, 864, 100, 50, 608, 732, 757, 29, 290, 30, 33, 49, 118, 166, 79, 797, 679, 791, 808, 62, 52, 903, 985, 771, 912, 905, 78, 77, 123, 861, 54, 982, 833, 855, 868, 46, 57, 327, 153, 293, 837, 896, 38, 50, 852, 20, 923, 35, 761, 71, 94, 883, 37, 866, 698, 682, 36, 861, 61, 107, 17, 643, 767, 569, 70, 806, 107, 54, 112, 743, 931, 900, 831, 185, 80, 706, 916, 101, 82, 50, 303, 822, 26, 735, 796, 57, 119, 62, 29, 53, 17, 148, 71, 816, 100, 137, 79, 676, 48, 648, 49, 120, 695, 65, 449, 852, 907, 684, 653, 466, 641, 76, 991, 108, 748, 831, 926, 41, 128, 796, 746, 56, 616, 276, 246, 92, 742, 813]\n", "Length of Instruction Tokens Count 1000\n", "Output Tokens Count [1728, 1837, 1482, 1931, 1918, 1859, 1932, 777, 487, 325, 81, 439, 101, 261, 1893, 261, 318, 438, 1831, 1855, 1501, 1855, 146, 1831, 435, 1857, 513, 1022, 1814, 50, 1584, 615, 359, 386, 1769, 489, 957, 157, 283, 1743, 333, 1718, 323, 509, 1801, 1779, 81, 185, 1766, 1792, 1602, 208, 39, 1743, 1745, 152, 1079, 317, 1742, 1706, 1715, 1699, 1728, 81, 1225, 1110, 540, 276, 1624, 1686, 1016, 114, 1626, 179, 519, 1676, 374, 313, 1677, 199, 315, 1176, 132, 1664, 463, 145, 1609, 429, 390, 1573, 1543, 131, 337, 228, 1608, 1189, 1494, 1622, 227, 336, 1596, 286, 500, 482, 185, 409, 207, 428, 404, 772, 1387, 1562, 1503, 1461, 1516, 201, 466, 1011, 381, 1114, 1562, 1446, 1160, 1555, 1526, 1521, 1457, 1509, 1010, 294, 1439, 1417, 297, 1334, 1437, 1486, 238, 325, 1518, 1515, 225, 387, 259, 215, 473, 186, 302, 1500, 314, 1413, 1094, 313, 319, 107, 1471, 1155, 1409, 128, 1361, 1392, 1353, 350, 121, 469, 501, 313, 1472, 1476, 207, 807, 1461, 1019, 1387, 1452, 87, 850, 313, 202, 1444, 285, 463, 360, 1453, 1422, 1459, 1440, 1453, 181, 475, 383, 1428, 75, 205, 109, 325, 160, 1378, 973, 397, 1426, 1372, 1410, 320, 284, 1422, 55, 220, 1417, 726, 362, 1346, 1426, 1336, 334, 146, 957, 266, 1318, 1105, 1195, 1376, 143, 1352, 1364, 229, 287, 207, 1255, 1383, 1376, 164, 139, 850, 614, 98, 1346, 223, 348, 1308, 1401, 1304, 1390, 240, 1356, 168, 282, 1285, 673, 1318, 326, 470, 271, 1240, 1369, 1292, 1340, 127, 354, 1330, 355, 423, 632, 227, 224, 1122, 1307, 1200, 164, 460, 143, 382, 142, 1302, 1246, 448, 1314, 120, 1265, 266, 1316, 1312, 1284, 1329, 143, 114, 301, 937, 488, 1237, 1209, 1304, 232, 393, 1310, 164, 22, 1027, 159, 1161, 1117, 503, 225, 1242, 1274, 530, 1293, 1303, 1268, 946, 771, 680, 138, 1313, 1257, 1044, 369, 1214, 379, 520, 1281, 1260, 1181, 99, 1256, 1243, 299, 375, 1155, 1267, 358, 364, 263, 1266, 885, 1269, 1243, 1120, 1268, 1268, 324, 1299, 546, 90, 78, 159, 1256, 1205, 1055, 212, 242, 77, 1197, 1229, 172, 1039, 206, 1264, 187, 1193, 145, 83, 1194, 1135, 96, 1263, 1166, 1164, 202, 1233, 1153, 551, 300, 1253, 296, 252, 163, 417, 596, 1167, 775, 323, 1196, 77, 1198, 1215, 108, 314, 568, 281, 1149, 192, 211, 855, 1199, 532, 133, 1195, 1194, 396, 201, 497, 1203, 409, 101, 224, 1155, 1183, 1174, 990, 941, 356, 1180, 1033, 388, 1220, 761, 1188, 301, 1207, 1224, 1186, 1176, 1170, 739, 316, 322, 1122, 461, 781, 396, 1073, 181, 254, 1110, 955, 719, 57, 69, 1185, 1170, 113, 307, 225, 1103, 1171, 1174, 1187, 1081, 449, 1177, 1164, 211, 1079, 1162, 1104, 807, 1151, 1200, 925, 1133, 342, 1161, 712, 1147, 355, 1157, 132, 242, 393, 1169, 860, 212, 149, 831, 1168, 1026, 723, 169, 334, 996, 1162, 1071, 195, 1152, 977, 1083, 372, 18, 170, 1141, 257, 86, 215, 329, 332, 401, 312, 196, 479, 246, 125, 1154, 371, 1100, 1052, 140, 1136, 1081, 75, 75, 1121, 345, 721, 1131, 1158, 1132, 363, 920, 217, 1112, 490, 307, 1142, 446, 1103, 82, 140, 829, 298, 322, 1128, 817, 1046, 1110, 1084, 1086, 127, 164, 1150, 1122, 669, 150, 1122, 1095, 252, 305, 1035, 700, 1040, 1034, 30, 1084, 1099, 1128, 946, 963, 177, 109, 1120, 189, 1088, 1114, 1089, 1113, 185, 1086, 184, 376, 1143, 949, 1094, 274, 240, 102, 1066, 875, 219, 1142, 321, 872, 164, 97, 83, 1067, 322, 1047, 1049, 209, 322, 1061, 998, 1060, 1109, 278, 1069, 578, 1067, 1084, 975, 1092, 733, 1050, 1029, 1013, 984, 219, 34, 1076, 1107, 287, 154, 113, 260, 1084, 1081, 238, 426, 128, 1098, 307, 176, 546, 234, 112, 1093, 1015, 421, 300, 83, 1047, 695, 1059, 1094, 151, 146, 402, 595, 235, 242, 1057, 122, 751, 1080, 1079, 1050, 701, 1049, 375, 1074, 1070, 615, 1019, 976, 1086, 1060, 217, 1070, 963, 923, 473, 1064, 1052, 104, 805, 870, 1012, 84, 552, 1066, 1043, 1053, 202, 357, 42, 1037, 487, 689, 168, 244, 155, 982, 1034, 996, 1044, 130, 219, 81, 77, 1035, 858, 999, 557, 1038, 1056, 1050, 978, 1061, 1028, 516, 231, 346, 221, 322, 94, 960, 1044, 576, 1044, 980, 97, 216, 158, 1033, 651, 1028, 332, 1062, 958, 1053, 1047, 165, 1049, 967, 993, 696, 309, 317, 688, 1051, 480, 351, 49, 1066, 991, 218, 43, 339, 23, 1045, 194, 1029, 291, 802, 617, 1049, 336, 1058, 240, 101, 153, 82, 1006, 175, 1031, 184, 451, 986, 1048, 996, 113, 954, 982, 1026, 195, 668, 980, 1009, 201, 1016, 133, 174, 341, 1032, 310, 991, 1028, 759, 225, 166, 1015, 1024, 945, 854, 686, 1007, 990, 474, 1049, 920, 990, 125, 1047, 1015, 114, 955, 127, 1021, 181, 215, 941, 194, 210, 345, 841, 368, 996, 977, 260, 171, 945, 997, 952, 972, 1010, 901, 254, 947, 640, 1020, 1042, 466, 917, 210, 151, 1009, 942, 903, 979, 478, 374, 972, 800, 966, 66, 427, 292, 986, 137, 998, 982, 167, 218, 911, 877, 172, 319, 991, 980, 92, 1007, 937, 66, 954, 908, 983, 696, 968, 669, 1012, 883, 949, 726, 367, 994, 916, 105, 952, 922, 950, 936, 93, 894, 979, 174, 937, 987, 429, 305, 279, 1007, 745, 1005, 1002, 986, 916, 868, 955, 237, 354, 242, 225, 971, 981, 130, 47, 261, 119, 126, 952, 953, 907, 169, 976, 47, 196, 173, 160, 982, 971, 699, 873, 733, 189, 130, 988, 976, 174, 1006, 102, 990, 264, 954, 930, 141, 987, 157, 325, 341, 987, 161, 961, 914, 1004, 378, 254, 450, 949, 212, 911, 964, 905, 273, 84, 115, 184, 829, 934, 308, 98, 913, 931, 963, 709, 190, 986, 277, 216, 955, 892, 949, 982, 957, 993, 861, 938, 193, 908, 871, 928, 331, 958, 358, 957, 886, 311, 941, 556, 153, 98, 321, 352, 538, 363, 928, 13, 896, 255, 172, 77, 962, 874, 206, 256, 946, 386, 726, 755, 909, 259, 188]\n", "Length of the Output Tokens Count 1000\n", "Combine Tokens Count [2043, 2038, 2035, 2029, 1995, 1984, 1979, 1977, 1955, 1955, 1952, 1951, 1951, 1947, 1935, 1934, 1934, 1933, 1925, 1920, 1917, 1917, 1914, 1910, 1908, 1907, 1901, 1899, 1885, 1881, 1874, 1874, 1871, 1863, 1862, 1862, 1854, 1851, 1842, 1838, 1837, 1832, 1829, 1826, 1825, 1819, 1816, 1815, 1813, 1808, 1806, 1805, 1798, 1798, 1795, 1794, 1787, 1782, 1779, 1779, 1766, 1760, 1759, 1757, 1756, 1756, 1755, 1752, 1752, 1742, 1737, 1734, 1731, 1730, 1721, 1721, 1719, 1716, 1716, 1714, 1713, 1707, 1704, 1703, 1701, 1693, 1693, 1689, 1685, 1683, 1683, 1680, 1676, 1670, 1659, 1659, 1652, 1652, 1651, 1650, 1644, 1638, 1638, 1636, 1632, 1632, 1630, 1629, 1622, 1621, 1615, 1610, 1608, 1605, 1600, 1599, 1597, 1596, 1595, 1591, 1589, 1588, 1588, 1588, 1586, 1586, 1581, 1581, 1578, 1578, 1571, 1570, 1570, 1568, 1567, 1567, 1564, 1564, 1562, 1561, 1560, 1557, 1557, 1556, 1552, 1551, 1548, 1547, 1546, 1546, 1541, 1541, 1540, 1538, 1537, 1534, 1533, 1531, 1530, 1529, 1528, 1526, 1526, 1525, 1525, 1525, 1522, 1521, 1516, 1515, 1513, 1512, 1511, 1511, 1507, 1505, 1501, 1499, 1498, 1498, 1497, 1496, 1494, 1493, 1492, 1492, 1490, 1489, 1488, 1485, 1478, 1478, 1473, 1471, 1470, 1469, 1468, 1468, 1468, 1467, 1461, 1460, 1459, 1456, 1456, 1455, 1454, 1454, 1451, 1451, 1450, 1448, 1446, 1446, 1446, 1444, 1443, 1441, 1440, 1440, 1439, 1438, 1434, 1433, 1431, 1430, 1428, 1427, 1427, 1426, 1424, 1420, 1419, 1418, 1415, 1415, 1413, 1412, 1412, 1410, 1408, 1408, 1406, 1406, 1404, 1404, 1404, 1400, 1399, 1399, 1396, 1395, 1393, 1392, 1391, 1391, 1388, 1387, 1387, 1386, 1384, 1384, 1382, 1381, 1380, 1380, 1379, 1379, 1378, 1377, 1376, 1376, 1374, 1374, 1374, 1374, 1373, 1372, 1370, 1369, 1369, 1366, 1366, 1364, 1363, 1363, 1360, 1359, 1359, 1358, 1358, 1357, 1356, 1353, 1353, 1353, 1353, 1352, 1351, 1350, 1350, 1350, 1349, 1349, 1349, 1349, 1347, 1344, 1344, 1344, 1343, 1343, 1342, 1341, 1340, 1339, 1337, 1334, 1333, 1333, 1333, 1333, 1330, 1329, 1327, 1327, 1326, 1324, 1324, 1323, 1322, 1322, 1319, 1319, 1319, 1314, 1313, 1313, 1313, 1313, 1313, 1311, 1311, 1310, 1310, 1310, 1309, 1308, 1307, 1307, 1307, 1307, 1305, 1304, 1303, 1302, 1301, 1300, 1298, 1295, 1295, 1292, 1291, 1289, 1289, 1288, 1287, 1285, 1284, 1283, 1283, 1281, 1281, 1279, 1279, 1278, 1277, 1276, 1274, 1273, 1272, 1270, 1268, 1267, 1267, 1266, 1266, 1264, 1264, 1263, 1262, 1262, 1261, 1260, 1260, 1257, 1257, 1256, 1256, 1255, 1254, 1254, 1254, 1253, 1252, 1252, 1251, 1250, 1250, 1249, 1249, 1247, 1246, 1246, 1245, 1244, 1244, 1244, 1242, 1241, 1240, 1240, 1240, 1239, 1239, 1237, 1237, 1236, 1235, 1234, 1234, 1233, 1232, 1229, 1229, 1229, 1229, 1229, 1228, 1228, 1228, 1227, 1227, 1226, 1226, 1226, 1226, 1225, 1225, 1225, 1225, 1225, 1224, 1223, 1221, 1220, 1220, 1219, 1218, 1218, 1218, 1218, 1217, 1217, 1217, 1216, 1216, 1214, 1213, 1213, 1212, 1212, 1212, 1211, 1211, 1210, 1210, 1210, 1210, 1209, 1207, 1207, 1206, 1205, 1205, 1205, 1205, 1205, 1204, 1203, 1202, 1201, 1200, 1200, 1199, 1199, 1199, 1198, 1198, 1198, 1197, 1195, 1195, 1195, 1194, 1194, 1194, 1193, 1193, 1193, 1192, 1192, 1191, 1191, 1191, 1191, 1189, 1188, 1188, 1187, 1187, 1187, 1187, 1185, 1184, 1184, 1184, 1183, 1183, 1183, 1182, 1181, 1181, 1180, 1179, 1179, 1179, 1178, 1176, 1175, 1174, 1174, 1173, 1173, 1173, 1173, 1172, 1171, 1170, 1170, 1169, 1168, 1168, 1168, 1167, 1167, 1167, 1167, 1166, 1164, 1164, 1163, 1163, 1163, 1163, 1162, 1162, 1162, 1162, 1161, 1161, 1161, 1160, 1159, 1157, 1155, 1154, 1153, 1152, 1151, 1151, 1150, 1149, 1149, 1149, 1149, 1148, 1147, 1147, 1146, 1146, 1145, 1145, 1144, 1143, 1142, 1142, 1142, 1142, 1141, 1141, 1141, 1140, 1140, 1140, 1139, 1138, 1138, 1136, 1135, 1135, 1133, 1133, 1133, 1133, 1132, 1132, 1132, 1132, 1131, 1130, 1128, 1128, 1128, 1128, 1127, 1126, 1126, 1125, 1125, 1124, 1124, 1124, 1123, 1123, 1123, 1122, 1122, 1122, 1122, 1122, 1122, 1121, 1121, 1120, 1119, 1119, 1119, 1118, 1116, 1114, 1113, 1113, 1113, 1113, 1113, 1112, 1112, 1111, 1111, 1111, 1111, 1111, 1110, 1110, 1110, 1108, 1107, 1107, 1106, 1106, 1106, 1106, 1104, 1104, 1104, 1104, 1104, 1103, 1103, 1102, 1101, 1101, 1101, 1100, 1100, 1098, 1098, 1098, 1097, 1097, 1097, 1097, 1097, 1097, 1096, 1096, 1095, 1095, 1095, 1095, 1094, 1094, 1093, 1093, 1093, 1093, 1093, 1092, 1092, 1092, 1092, 1092, 1091, 1091, 1091, 1091, 1090, 1090, 1089, 1089, 1088, 1087, 1087, 1087, 1087, 1087, 1087, 1086, 1086, 1086, 1086, 1086, 1085, 1085, 1085, 1085, 1085, 1084, 1084, 1084, 1084, 1083, 1083, 1083, 1082, 1082, 1081, 1081, 1081, 1081, 1080, 1080, 1080, 1079, 1079, 1079, 1078, 1077, 1077, 1077, 1076, 1076, 1075, 1074, 1073, 1072, 1072, 1072, 1072, 1072, 1072, 1072, 1071, 1071, 1070, 1070, 1070, 1070, 1070, 1070, 1068, 1068, 1068, 1068, 1067, 1067, 1067, 1067, 1066, 1066, 1066, 1065, 1065, 1064, 1064, 1063, 1063, 1063, 1063, 1063, 1062, 1062, 1061, 1061, 1060, 1060, 1060, 1060, 1059, 1059, 1058, 1058, 1058, 1057, 1057, 1056, 1056, 1056, 1056, 1055, 1055, 1055, 1054, 1054, 1053, 1053, 1053, 1052, 1052, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1050, 1048, 1048, 1048, 1048, 1047, 1047, 1047, 1047, 1046, 1046, 1045, 1045, 1045, 1045, 1045, 1045, 1044, 1044, 1043, 1043, 1043, 1043, 1043, 1043, 1042, 1042, 1042, 1042, 1042, 1041, 1041, 1041, 1040, 1039, 1038, 1037, 1037, 1037, 1037, 1036, 1036, 1035, 1035, 1035, 1035, 1034, 1034, 1034, 1034, 1033, 1033, 1033, 1033, 1033, 1033, 1032, 1032, 1031, 1031, 1030, 1030, 1030, 1030, 1030, 1029, 1029, 1028, 1028, 1028, 1028, 1026, 1026, 1026, 1026, 1026, 1026, 1026, 1026, 1026, 1025, 1025, 1025, 1025, 1024, 1024, 1024, 1023, 1023, 1023, 1023, 1022, 1022, 1021, 1021, 1021, 1021, 1019, 1019, 1018, 1018, 1018, 1017, 1016, 1015, 1015, 1015, 1014, 1014, 1014, 1014, 1014, 1013, 1013, 1012, 1012, 1012, 1012, 1012, 1012, 1011, 1011, 1011, 1010, 1010, 1009, 1009, 1009, 1008, 1008, 1007, 1007, 1006, 1006, 1006, 1006, 1006, 1006, 1005, 1005, 1005, 1005, 1005, 1004, 1004, 1004, 1004, 1004, 1003, 1003, 1003, 1003, 1002, 1002, 1002, 1002, 1002, 1002, 1001, 1001, 1001, 1001]\n", "Length of the Combine Tokens Count 1000\n" ] } ], "source": [ "# Tokenize each row in the 'instruction' column of the dataset and count the number of tokens\n", "# Using a list comprehension to apply tokenizer.tokenize() to each instruction\n", "instruction_tokens_count = [len(tokenizer.tokenize(example[\"instruction\"])) for example in dataset[\"train\"]]\n", "# Print the total number of tokens for each instruction in the dataset\n", "print(\"Instruction Tokens Count\", instruction_tokens_count)\n", "# Print the number of entries that were processed to get token counts for instructions\n", "print(\"Length of Instruction Tokens Count\", len(instruction_tokens_count))\n", "\n", "# Tokenize each row in the 'output' column of the dataset and count the number of tokens\n", "# Using a list comprehension to apply tokenizer.tokenize() to each output\n", "output_tokens_count = [len(tokenizer.tokenize(example[\"output\"])) for example in dataset[\"train\"]]\n", "# Print the total number of tokens for each output in the dataset\n", "print(\"Output Tokens Count\", output_tokens_count)\n", "# Print the number of entries that were processed to get token counts for outputs\n", "print(\"Length of the Output Tokens Count\", len(output_tokens_count))\n", "\n", "# Combine the token counts from the instruction and output by adding them together for each row\n", "# Using zip to iterate over paired instruction and output token counts\n", "combine_tokens_count = [instruction + output for instruction, output in zip(instruction_tokens_count, output_tokens_count)]\n", "# Print the combined total number of tokens for each row across both instruction and output columns\n", "print(\"Combine Tokens Count\", combine_tokens_count)\n", "# Print the total number of entries for which combined token counts have been calculated\n", "print(\"Length of the Combine Tokens Count\", len(combine_tokens_count))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 453 }, "id": "F3Tgs35-bpOk", "outputId": "bcfae2d2-9223-4586-bee8-a5c819848122" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAJOCAYAAABYwk4SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ4klEQVR4nOzdfXzN9f/H8efZhtlGYsOofZM5G5uL2ZASuchVJaKURi66UHwLqai+uqYLRNdXrNIFClFRKiG5vsrkzCKaMHbIxezMrs7vj27n/Mx2bDvO2Tk7e9xvt263fK7er8/F+3O25z7n/TFYrVarAAAAAAAAAABAEX6eLgAAAAAAAAAAAG9FiA4AAAAAAAAAgAOE6AAAAAAAAAAAOECIDgAAAAAAAACAA4ToAAAAAAAAAAA4QIgOAAAAAAAAAIADhOgAAAAAAAAAADhAiA4AAAAAAAAAgAOE6AAAAAAAAAAAOECIDgBeokuXLoqKirL/Fx0drbi4OHXs2FGDBw/WSy+9pB07dlxwG4MHD1ZUVJQ2bNhQTlVfmG2f/v7770LTva1OSZowYYKioqK0cOFCT5fiFitWrNCgQYPUunVr+zXmiuO/YcMGRUVFafDgwS6o0nvZjhkqr5ycHE2fPl3du3dXbGysoqKi1KVLF0+XVaE526+88TOkOM7U+frrr1eKe2p5+vvvv+mvxfjnn3/0xhtv6LbbblO7du0UGxurDh06aMSIEZo3b55yc3M9XWKF89tvv+mpp57SDTfcoISEBMXGxqp9+/ZKTEzUW2+9pUOHDrmkHV//mRUAvBUhOgB4mdatW6tfv37q27evOnXqpEaNGmn37t2aPXu2br31Vg0ePFgHDhxwaw2Owu+KauHChYqKitKECRM8XYpHmEwmPfjgg9q+fbtatWqlvn37ql+/fgoNDS1x3Yp0LVSWQB9l54oQbcaMGXr33Xd15swZde3aVf369VOPHj1cWCXgeRXxPlqRPqe8xfLly9WtWze9/vrr+uOPPxQbG6sePXooIiJC69ev16RJk3TjjTdq7969Lm3XG8NfV9RksVj08MMP67bbbtPcuXN18uRJxcfHq0ePHmrWrJl2796tmTNnqnv37vrxxx9dWD0AoDwFeLoAAEBht956q2655ZZC06xWq1avXq3Jkydr48aNuv322zV37lxdfvnlhZZ76aWXZLFY1KBBg/Is2aEPP/xQubm5qlevnqdLKdG4ceN0zz33qG7dup4uxeV+/PFH5ebmauTIkRo7dqynywEqpO+++06S9Omnn+qKK67wbDGVnLd91sG71atXT0uXLlWVKlU8XYpX+OGHH/TQQw+poKBAd911l8aOHavq1avb5x85ckSPP/641qxZo0GDBmnBggW67LLLPFixd8vNzdWIESO0ZcsWhYWF6ZlnnlHXrl0LLZOXl6cffvhBr776Kn/sAYAKjCfRAaACMBgM6tSpk7744gtdccUVMpvNevLJJ4ss16BBAzVu3LjQL0OeFBERocaNG1eIX1zr1q2rxo0bq0aNGp4uxeVsXx/+z3/+4+FKgIrL1o8I0D3P2z7r4N2qVKmixo0bKyIiwtOlOMU2LJArwtfjx49r4sSJKigo0NChQ/X4448X6Uf16tXT22+/rbi4OJ04cUKPPvroRbfry9566y1t2bJFNWvW1Oeff14kQJekgIAA9erVS4sWLVLbtm09UCUAwBUI0QGgAqlZs6Yef/xxSdL69eu1c+fOQvMdjb+ak5OjDz74QLfccovi4uIUGxura665Rv3799fLL7+sEydOSPr/YU8OHjwoSeratWuhcdpt2z33694Wi0UzZ85Ur1691LJly0LDJZTmK9YbN27U8OHD1bZtW7Vs2VIDBgzQV199VeyyJY0vaxtL9vXXXy9Uw8SJEyVJixYtKrQ/535dvaSv83777be666671LZtW8XGxqpz586aOHGi9u3bV+zy5+77+vXrNXz4cLVp00YtWrRQv379HO5jSfLy8vT555/r9ttvV3x8vJo3b67u3bvr+eef15EjR4o9HrZ9mjhxYrH7XpzSXgvnys3N1XvvvacbbrhBLVq0ULt27TR69OgLfh385MmTeu2113TzzTcrLi5OLVu21E033aS33npLFoul1Mdl8ODBGjJkiKR/r6lzaz1/CI+yHMOS5Ofn66mnnlJUVJRuuukmHT58uFA7X3zxhQYPHmy/brp06aKnnnqq0HI25/arsh7LnTt3asyYMerYsaNiY2PVunVrde3aVf/973+d+ur4vn379PTTT6tHjx5q2bKlWrdurd69e+vpp59WampqkeX37t2riRMnqnPnzoqNjVXbtm111113aenSpcVuv6T+5mgIpnOnZ2Vladq0abr++uvt97THHnusyDmcMGGCPdQ4ePBgoWujNONx2/qy1WqVpELrnl//xdwnfvzxRw0ZMkRt27Yt8zjaO3fu1GOPPaYuXbqoefPmatu2rfr06aOXXnrJ3ofPtWPHDj300EPq0KGDfczekSNH6tdffy12++eerz///FNjxoxR+/bt1apVK/Xv37/QNfbbb79p5MiRuuqqq9SiRQsNHDhQ69atK3Ef5s+fr1tuuUWtWrVSQkKC7rnnHm3fvr3YZR19Fpxb54EDB/TII4/ommuuUWxsrLp166ZXX31VOTk5FzyODz/8sK677jr7dTxixAitWrXK4TqHDx/WxIkT1aFDB/u95NVXX1V2dnaJ+1wW5w5JZLVaNW/ePPvxio+P1/Dhw7Vt27Zi192/f78mTpyoLl26KDY2VnFxcercubPuvfdeLViwwL5cae+j5x7n1NRUjRkzRh06dFDTpk3tn7/FfR6fq6RhY44cOaKXXnpJN910k+Li4tSqVSv16NFDEyZM0NatWyWV/nOqpOGc0tPT9dxzz6l79+5q3ry54uPj7d/4y8/PL7K8M/chb/HZZ5/p9OnTql27tsaNG+dwuapVq2rSpEmSpC1btmjjxo2F5pd0/zy/j9rOwaJFiyQV/nnk/Ovk3G2X5b7gzpocyczM1McffyxJGjVqVJFviJ4vODhYzZo1KzL9l19+0X333af27dvbx6YfM2aMkpOTS6zhXK74bD19+rSmTJli/zzp3r273nvvPRUUFEj6t29OmjRJnTp1sg8DNGfOnGLbO/eYm0wmjR492j7+fu/evTV79mz7ZysAVAQM5wIAFUzHjh1Vq1YtnThxQmvXrlVsbOwFly8oKNC9996rdevWKSQkRAkJCapZs6aOHz+uv/76S7NmzdJNN92kWrVqKSIiQv369dP333+vrKws9ejRQ0FBQfZtnT+G9tmzZzV48GDt3btXCQkJio6OtgfypfHDDz/o008/1ZVXXqkOHTro6NGj2rJlix577DGlpKS4ZAzzHj16aPv27dq6dasiIiIUHx9vn3fllVeWuL7VatWECRP01VdfKSAgQAkJCapTp45+//13LVy4UMuWLdNrr72mjh07Frv+ggUL9Pbbb6tZs2a69tprdfDgQW3fvl2PPfaYTpw4oaFDh5Z6X3JycnTfffdp7dq1qlatmtq1a6eQkBBt27ZNc+bM0TfffKNZs2YpJiZGktS0aVP169dPW7ZsUVpamlq3bm1/Gr2kfS/rtZCbm6t7771X27ZtU0JCgho3bqwdO3bohx9+0IYNG7Ro0aIiXwffs2eP7r77bh0+fFhhYWGKj49XQECAkpOTNXPmTC1fvlxz5swp1bcDrr32WlWtWlVr1qxRaGiorr32Wvu8Sy+91OljeCFnzpzRmDFjtHr1al1zzTV67bXXFBISIunfX6zvv/9+bdy4UUFBQYqNjdWll16q1NRUzZ07V999952SkpKK/WW6rMdy3bp1uueee5Sbm6vo6Gi1atVKBQUFOnLkiFauXKn8/Hx169atxP2x+frrr/X4448rJydHDRo0UKdOnVRQUKADBw5o7ty5qlOnjoxGo335lStX6sEHH9TZs2fVqFEjde/eXceOHdOmTZu0fv16rVmzRpMnTy51+6Vx+vRp3X777Tp8+LDi4+PVpEkTbd++XV999ZU2bdqkxYsX26+b+Ph4ZWVl6fvvv1dQUFCZxzHv0aOH/vnnH3vQ0q9fP/s825OtF3ufSEpK0ieffKLY2Fhde+21Onr0qPz9/UtV3wcffKBp06apoKBAV1xxhbp27ars7GylpaVp9uzZatKkSaEhwubPn6+nnnpKBQUFatasmdq1a6eDBw/q559/1s8//6z//ve/Gj16dLFt7dq1S88995zq1aun9u3b69ChQ9q2bZtGjx6tGTNmKCAgQGPGjFGTJk3Uvn17/fnnn9q+fbvuvvtuffTRR0pISCh2u1OmTNFHH31k/+NPamqqVq9erbVr12rGjBm6/vrrS3UsbEwmk1544QVdcsklatOmjU6ePKmtW7fqnXfe0Z49e/Tmm28WWeejjz7Siy++qIKCAjVt2lQtWrSQ2WzWhg0btGbNmmKPy969ezV48GAdO3ZMYWFh6tKliywWiz788EO3vvR04sSJ+uabbxQfH6/rrrtOJpNJv/76qzZt2qRPPvlELVu2tC+bmpqqO+64Q5mZmWrUqJE6d+4sPz8/HTlyRJs2bdKRI0fUv39/SaW/j9ps27ZNTz31lMLCwpSQkKDs7GwFBwdf9P6tW7dODz74oE6dOqU6deqoffv2qlKlig4ePKhvvvlG0r/vjynr51RxduzYoXvuuUcnTpxQgwYN1K1bN50+fVobN27Utm3b9MMPP+jtt99W1apVi6xblvuQt7D9watXr16qVq3aBZdt1qyZjEajUlNTtWLFiot6gjooKMjhzyPSvz+vnM/V9wVX1HS+DRs2KDMzUwaDQTfffLNTdcyYMUNvv/22DAaD4uLi1KBBA+3du1fLli3T8uXL9eyzz2rAgAFObbusTp06pYEDB+rEiRNKSEjQmTNntHnzZk2bNk1HjhzRXXfdpUGDBikgIEBxcXE6fvy4Nm/erOeff14Wi0X33ntvsdtds2aNkpKSFBERoWuuuUYZGRnasmWLXnrpJR0+fFhPPPFEuewfAFw0KwDAK3Tu3NlqNBqtCxYsKHHZoUOHWo1Go3X8+PGFpicmJlqNRqN1/fr19mkbN260Go1Ga9++fa2nT58usq0dO3ZYjx8/XmwtBw4cKLb99evXW41Go9VoNFpvuukm69GjRy+4T+dvx1an0Wi0vvPOO4XmbdiwwdqiRQur0Wi0rl69usT9O9drr71mNRqN1tdee63Q9AULFliNRqP1scceK3Y9q9Vqfeyxx4o9/p999pnVaDRa27VrZ921a5d9ekFBgb29hIQE67Fjx4rd95iYGOuKFSuKrSc+Pt5qsVgc1nS+V155xWo0Gq3dunUrdExzcnKsjz/+uNVoNFq7dOliPXv2bKn2rTTKci307du30LWQnZ1tHT58uNVoNFr/97//FVrPYrFYu3XrZjUajdZXX321UM1ZWVnWcePGWY1Go3XChAmlrtVWS2JiosNlnD2Gtn20SU9Pt9588832GnNycgotb6v/vvvus5rN5kLzkpKSrEaj0dq9e3drXl5ekfrLeiwHDx5sNRqN1sWLFxfZ31OnTlm3bdvm8HicLzk52RoTE2ONioqyfvzxx9b8/PxC8//++29rcnKy/d8ZGRnW+Ph4q9FotL711lvWgoIC+7wdO3ZY27RpYzUajdZ58+YV2k5J16SjPmubbjQarcOHDy90Tztx4oT9nJx/Xzlw4IDVaDRaO3fuXOpjcb7zr4FzXex9omnTptYff/yxzDX9+OOPVqPRaG3evLn122+/LTL/jz/+sO7Zs8f+75SUFGuzZs2sUVFR1kWLFhVaduXKldaYmBir0Wi0rlmzptA82/kq7jx//PHHVqPRaO3YsaO1TZs2Rbb7wgsvWI1Go3Xo0KFF6rNts0WLFta1a9cWmvf+++/b75Pn9yFHnwXn1jl9+vRC/Wv37t3WVq1aWY1Go3Xr1q2F1lu9erU1KirK2q5dO+vGjRsLzUtJSbF27NjRajQarRs2bCg0r3///laj0Wh96KGHrNnZ2fbpBw8etN/fLvSZVRzb9XL+fcx2Dduu4z///NM+Ly8vzzpx4kR7vzjXhAkT7OftfBaLpcj+luY+eu5xnjp1apH7xLn7cf7ncUntHDp0yH5PmTp1apF7sdlstm7atKnQtJI+pxz1/7Nnz9rXnTRpUqH7eFpamn3e9OnTC63n7H3IWbbr3dH+lVZOTo41OjraajQai/RTR2zXz5133llo+oXuh1ZryX30Qj+POHtfcGdNjsyYMcNqNBqtXbt2LfO6VqvVumrVKvs9/Pz77vz58+0/R6amppaqZld8tt53333WrKws+7ydO3damzVrZo2Ojrb27t3bOmnSJGtubq59/g8//GA1Go3W1q1bF1rPai388/7nn39eaN7atWutUVFR1qZNm1oPHz5cwpECAO/AcC4AUAHZnggrzVPfZrNZ0r9PY9qekj1X8+bNi33CrLQmTZqksLAwp9Zt1qyZ7rvvvkLT2rZtq0GDBkn69+lMT5s9e7akf7+me+5TSQaDQaNHj1ZUVJROnTql+fPnF7t+YmKiOnfuXGjaLbfcoiuvvFKnT58uMiSPI2fPntWnn34q6d+nEM99ErlKlSp68sknFRoaqr///lvff/99mfbRFQwGg6ZMmVLoWqhWrZoefPBBSdLatWsLLb9o0SKlpaWpc+fOGjNmTKGn/KpXr65nn31WderU0ZIlS3Ty5EmX1OiqY5iSkqLbbrtNJpNJDz74oKZMmVJo3P+9e/fq22+/Vd26dTV16lTVqVOn0PpDhw5Vp06dtH//fq1evbrI9st6LI8dOyZJ6tSpU5Ft1ahRQ61atXK4L+d7++23lZubq8TERA0ePFh+foV/VGzYsGGhb7/Mnz9fp0+fVkxMjO6//34ZDAb7vObNm2vkyJGSpFmzZpW6htIICgrSlClTCt3TLrnkEvtTcOcfI3e72PtE3759ix1HtyS24QbGjh2r3r17F5kfGRmpxo0b2//98ccfKy8vT9dff7369u1baNlOnTpp4MCBkhyfrxYtWmjkyJGFzvMdd9yhWrVqKT09Xe3bty+y3fvvv1+StGnTJuXm5ha73YEDB6p9+/aFpt19992KjY3V6dOn9cUXXxS7niMxMTEaM2ZMoaf5jUaj+vTpI6no9fH666/LarXqmWeeUZs2bQrNO3fog08++cQ+fcuWLUpOTlZQUJCeeuqpQk/1NmjQQI899liZai6LJ598Uo0aNbL/29/f3/7S6I0bNxY6zhe6PwQGBhbZ37K44oorNGbMmCL3iYuRlJSk06dPq3Pnznr44YeLPAFep04dh99oKKtly5bp4MGDqlu3rp544olC9/HLL7/cfg7nzJmjs2fPFlnf2+5DJTl58qR9SI7zP5ccsT3Nf/z4cbfV5Yir7wvuYDsupT2e57N9dgwaNEjXXHNNoXm33nqrOnfurNzcXPuQMe4WFBSkF154odA4+TExMerYsaMKCgqUlZWlxx9/XAEB/z+gQbdu3WQ0GpWZmenwZ9ru3bvr9ttvLzStffv26tChg/Lz87V+/Xr37BAAuBghOgBUQLZfgs4NMhyJiYmRv7+/FixYoE8//VRHjx51WR0X+8uso6++2kKYLVu2FDseaXlJT09XWlqapMJDONgYDAb7MAmOvrp/foBuYwu2SjtuanJysrKyslSrVq1ix3WtXr26PURz5zACjjRo0EDR0dFFpjvaT9sYw7169Sp2e8HBwYqNjVVeXl6ZxwR1xBXH8JdfftGgQYN07Ngxvfzyyxo1alSRZVatWiWr1aqOHTsW+4crSfavxRc3hnFZj2WLFi0kSePHj9fmzZuVl5dXbJslyc/Pt4c+t912W6nWsY2TW1z/kGT/Cvr+/ftdOkZwbGys6tatW2S6bZii8hyP2BX3ibIOMSNJGRkZMplM8vPzK/VX/Ut7vjZv3lzsvbdjx45FPncCAgLUsGFDScUHtZdeeqlq1aql3Nxch3/4dVSP7bPg/PGYS9K5c+diPx+L60PHjx/Xjh07FBgY6PB+3a5dO0myj8V9bk3XXnttsX+I7tq1q1uG8ggICCg0zIpNWFiYLrnkEuXk5BQ6zrb7w9NPP61ffvml2DDYWd26dSv1sEOl9csvv0iS/Q867mQ7hzfccEOxw7V0795dl1xyic6cOVNsOOjq+9B7772nCRMmFPnvzz//lCS9/PLLxc53Z8Bt9eB41a6+L3ibvLw8+z2lpHtyef1cFxsbW+wfBGwv1G7Xrl2xwwDZ5jv6HaOkn4Vd+bsJALgTY6IDQAX0zz//SPr3iaeSREREaOLEiXr55Zf17LPP6tlnn1XDhg3VqlUrXXfdderZs2exvzyWhi04cdb5Y2SfPz07O1snTpxw+gmfi2X7BbhWrVoOw1DbmMiOfllu0KBBsdNt2yttoGH7BeNCx7ykWtwpPDy82Om2/Tz/ZX4HDhyQJD366KN69NFHL7htVwUErjiGI0eOVF5enl555RX7U63ns+3bl19+qS+//PKCNRW3b2U9luPGjdPu3bu1evVqrV69WoGBgWrWrJn95ZLnPol8ISdOnFBWVpYkFXrK9UJsx8lRX65Zs6b9HQ5HjhxRvXr1SrXdkpT1GLmTK+4Tjo7fhdheThsWFlbqsLak82V7Kd7Zs2eLvfc6Ou62cbAvNP/EiRMO73clfRakp6cXO9+Rslwff//9t6xWq7Kzs9W8efMLbtf22XtuTY7uJwaDQQ0bNlRKSkqZai9JWFhYoSemzxUSEqKTJ08WOs4jRozQli1btHbtWt19992qUqWKoqKi1KZNG/Xu3dsesjvjYn8GKM6hQ4ckle6dJRerpP5gMBh02WWX6eTJk8X2XVffh3755ZcLBsOOviE1evRo1a5du8TtX3LJJfLz81NBQYH9GwolsS1Xmu27mqvvC+5gOy6lPZ7nOveeWNI9ubx+rnN0TdveNVDSZ4Cje3xJfcWVf9wDAHciRAeACsZqtcpkMklSoZf7XcjgwYPVq1cvrVixQlu2bNGWLVv07bff6ttvv9Xrr7+uTz/9tNinqUoSGBhY5nXKqixPQdme0Pcmpfm2gC8o69f5befq2muvLfHlb47+EOEJffv21ZdffqmZM2cqLi7O/gvuuWz71rRp02KfKD/XuS8AtCnrsQwLC9OCBQu0ceNGrV27Vlu3btWOHTu0detWvfvuuxo3bpzDl315q5L6siuHj/AGJb3gz1uUdNzddV7K+jRsWeqwbduZl856QlmPcfXq1ZWUlKQdO3bol19+0bZt27Rt2zbt3LlTSUlJGjRokJ566imnarmYnwG88fO6rFx9vc+ZM6fY6YMHD9bGjRv1008/OfUHN5sqVarIaDQqJSVFv/32W5Ghl4pj+yZYaV62fa7yOL9lvS+4oybbcfn777/1zz//XNTwiOXhYj9bnb3mfe0zG0DlRYgOABXMqlWr7GNEd+jQodTrhYaG6rbbbrMP07B371498cQT2rZtm6ZNm6aXXnrJLfVeyN9//13s9IMHD0r6N1iqVauWfbrt6bszZ84Uu57tCTZXsT01e+LECWVmZhb7lKntqWNXPWHriO2PHLZjU5zyqsUVwsPD9eeff2rAgAHq2bNnubTpimP4/PPPKygoSB9//LHuvPNOJSUlFXnS2/bEVevWrTVp0iRXlF4ig8Ggdu3a2YedOHv2rBYuXKhnn31Wr776qnr27Gl/GtqRWrVqqXr16rJYLNq3b1+p/khXr149/fnnn/bjdr7Tp0/bh5Y495iWd192J0/dJ2zXWUZGhk6fPl2qp9Hr1auntLQ0HThwoNjza7snV6tWrVTfdHKVv//+u9BY8ja2vlq/fn23tW3btsFg0OTJk0sd9tjO5YXuJ950Hbdo0cL+1HleXp5+/PFHPfbYY/rss8/Uo0cPXXXVVS5tz9k+Hh4ern379unPP//Uf/7zH5fWdD7bOXR0/5L+v09UhM/V0ujatatSUlL03XffacKECRf8A97vv/+uP/74Q5KKDIFWpUoV5ebmOrznueLaL+t9oTxqOt9VV12l4OBgnTlzRosXL9bQoUNLvW6tWrVUtWpV5eTk6MCBA8X+0b2snx2+9NkKAN6IPwkCQAVy+vRpTZkyRZJ0zTXXFPvLRWk1btxYd999tyTZn2y3sf0Q7u7xyJcsWVLs9K+++krSvy9DPfflRbZfIvbu3VtkHYvF4nDMSNv+lHWs6Pr169uDx4ULFxaZb7VatWjRIkn/P2auuzRv3lxBQUE6ceKEfvrppyLzs7OztXTpUpfX4q5roWPHjpL+fbGbq5R0nl1xDA0Gg5544gndf//9OnLkiBITE4v0H9u+rVixwmNfUa5WrZruuOMORUVFqaCgQLt37y5xHX9/f1199dWS5PAFmOezje1u67PnW7BggaR/x0s9NwS4UF+2Wq3FvnD1Yjh7DygNT90nwsLCFB0drYKCAvtxLontfNnqOZ9t+KGEhIRC9153W7x48QWn2+p2h3r16ikqKkpnzpyxj8ddGraafvnll2LHev/pp5906tQpV5XpUgEBAerZs6f9D/HnDjnjqr5yoT4u/f97Mc5nG++9tPcgyfnPKds5XLp0abH36h9++EEnT560v6PDFyQmJiokJETHjx/XtGnTHC6Xk5Oj5557TpIUFxdX5N5l+6O0bbz2c6WkpNiHmzpfWc5VWe8L5VHT+UJCQjR48GBJ0ptvvnnBP8hI/4bbu3btkvRvP4yPj5fk+J5su7eX9rOjvD9bAaCyIUQHgArAarVq1apVGjBggPbv36+wsDD7LzclWbdunVatWqXc3Nwi21y5cqWkosNl2H4Itz2B5C6///673n///ULTNm/erM8++0ySijzR0759e0nSZ599Vmh8yKysLP3vf/9z+AuS7WklR7/MX8jw4cMlSW+99VahoMFqteqtt96SyWRSzZo1S/0iRmdVq1ZNd955pyTppZdeKvT0Y25url544QVlZGTosssuc+mQBO66Fm677TY1bNhQ3333nV555RVlZmYWWSYjI6NMQYrtPP/1119FrnfJtcdwzJgxeuSRR3T8+HENGTKk0AtCmzVrph49eujw4cMaPXp0sd+4yMrK0pIlS2Q2m0u9f47MmjWr2KfL9u7dq7/++ktS6YfEGTlypAICAvTpp5/q008/LfJ1+YMHDxZ6wd5tt92mkJAQ/f7773rnnXcKLb9r1y69/fbbkv4dl/lctr68ePFi7dmzxz49NzdXr7zyisteJmtTu3ZtValSRWaz2eHLLS+Gp+4To0ePliS9+uqrxY6XvGfPnkL3vSFDhiggIEA//vhjkYBqzZo1mjdvXqH9KS+ff/55kT+Cfvjhh9qxY4eCg4NL/eJUZ40ZM0aSNHHiRK1YsaLIfKvVqt9++01r1qyxT0tISFBMTIyysrL07LPPFhr/+vDhw3r55ZfdWnNpffrpp8WGihkZGfa+fO79oaT7aGldddVV8vPz05o1awqN8221WvXxxx87HN972LBhCg4O1ooVK/Tqq68WqeHYsWPavHlzoWnOfk716tVLDRo00NGjRzVlypRCfzg4cOCAXnzxRUn/DqdSUYZcKknt2rX1wgsvyGAw6KOPPtKUKVNksVgKLXPkyBHdf//92rZtm2rWrFnstWz7g+sbb7xR5B0DEyZMcDjUSlnOVVnvC+VRU3FGjRqluLg4nTp1SoMGDSr2HpKfn68ffvhBt9xyS6H+MGzYMEn/7uu6desKrbNw4UKtWLFCVapU0ZAhQ0pVS3l/tgJAZcNwLgDgZb744gv7D9g5OTn6559/tGvXLnvw07ZtW02ePLnUL/TavXu3pkyZopCQEDVr1kx169bV2bNntWvXLh08eFA1atTQQw89VGidHj16aMOGDXrkkUfUoUMH1axZU9K/QZgrX/Y1ePBgTZ8+XYsXL1ZUVJSOHj2qzZs3q6CgQEOGDFGnTp0KLd+rVy999NFH2rlzp2644QbFx8eroKBAO3fuVJUqVdS/f/9in8hs2bKl6tatq127dqlfv34yGo0KCAhQo0aN7E/jO3L77bdr27ZtWrx4sfr37682bdqoTp06+v3337Vv3z4FBgZq6tSp5fLSrQcffFA7d+7UunXr1Lt3b7Vr107BwcHavn27Dh06pFq1amnmzJlOvyi2OO66FoKCgvTuu+/qvvvu0wcffKD58+crKipK9erVU3Z2tvbv36+9e/eqTp06pQ4eGzRooNjYWO3cuVM33XSTYmNjVa1aNV166aUaP368JNcew7vvvlvBwcF65plnNHz4cL311lv2X2AnT56sU6dOafXq1erZs6eio6N12WWXyWq16uDBg0pJSVFubq6WLl1a4pjwJXn77bf18ssv68orr1Tjxo1VrVo1HT16VFu3blVeXp769u1b6vFsW7RooRdeeEFPPvmknn32Wc2aNUuxsbGyWq06cOCAUlJSNGrUKPtTmaGhoZo6daoeeughvfrqq1q8eLGaNWumY8eOadOmTcrLy9Mtt9xS5BzGx8era9eu+umnn9S/f3/Fx8erWrVq2rVrlzIzMzVkyBB9/PHHF3VczlWlShV16dJF33//vfr27av4+Hj7eM4vvPDCRW/fU/eJ66+/XmPHjtWMGTP04IMP6sorr1R0dLSys7OVlpamPXv2aMqUKfYhh6KiojRp0iQ9/fTTevTRR/XRRx+pUaNGOnTokLZt2yar1ar//ve/ZRoqzBUGDhyou+66SwkJCapXr55SU1OVmpoqf39/TZ48WWFhYW5tv0uXLnriiSf00ksv6f7779d//vMfNWrUSCEhIfrnn3+UkpKiY8eO6Z577il0bF5++WUNHjxY3377rTZt2qT4+HhlZ2dr/fr1ioqKUlxcXKE/sHnC/Pnz9eyzz+qyyy5TkyZN7Pu0efNmZWdn66qrrio0VEdp7qOlER4ersTERH388ccaOnSo4uPjVatWLfsTwffee6/ee++9Ius1aNBAr732mh588EG98847+vLLL9WqVSsFBATo0KFDMplMuvHGG5WQkGBfx9nPqapVq2rmzJm655579Pnnn2v16tVq2bKlzpw5o/Xr1+vs2bPq0KGDRo0aVer9rgh69uypV199VU888YQ+/PBDffHFF2rdurUuueQSHTlyRNu2bVNeXp4iIiL05ptvFjsU2H333afvv/9eq1atUo8ePdS8eXMdP35cycnJat26tcNrv1u3bnrzzTc1Z84c/fHHH6pfv778/PzUpUsXde3atdCyZb0vlEdNxalatapmzZqlJ554QsuWLdP999+vsLAwxcbG2l+qvHPnTp04cUJVq1YtNK59p06ddP/99+vtt9/WsGHD1Lp1a/uQRr///rv8/f319NNPq0mTJiXWIZX/ZysAVDaE6ADgZbZu3aqtW7dK+jdoDAkJkdFoVGxsrHr16mUf07S0unTposzMTG3evFl//fWXfvvtNwUGBqp+/fq69957deeddxYZV/KOO+7QmTNntGTJEq1atcr+Nec+ffq4NES//vrr1bVrV7377rv2p+WbNWumxMRE9evXr8jyVapUUVJSkmbOnKkff/xRv/76q2rXrq3rr79eDz30kP0J9vPZfsF59dVXtX37dqWkpKigoEBt27YtMUQ3GAx6+eWX1bFjR82bN0+///67LBaLQkNDdcstt+iee+5x6TG5kKpVq9oD58WLF2vz5s3KyclReHi4Bg8erHvuucfl47a681po0qSJlixZorlz5+rHH3/U7t27tX37dtWqVUv169fX8OHDdf3115dpm6+//rqmTZumDRs2aNmyZcrLy1PDhg3t4Y+rj+Edd9yh4OBgTZw4Uffdd59mzpypzp07KyQkRLNnz9bSpUu1ZMkS/f7770pJSVFwcLDq1q2rm266SV27di1xnPLSmDRpktatW6edO3dq06ZNysrKUlhYmK6++moNHDiwVCHAufr27avY2FglJSVp/fr1+vnnn1WtWjXVq1dPd955p3r16lVo+c6dO2vRokV6//33tW7dOn3//feqXr264uPjdfvtt6t3797FtjNjxgy99dZb+uabb7Rx40bVrFlT7du310MPPVTkSVNXePbZZ1WrVi398ssv+v777+1PuLoiRPfkfWLkyJG66qqrNGfOHG3atEk//PCDgoODVb9+fd19991FxroeOHCgoqOjNWvWLG3dulW7d+9WSEiIOnXqpCFDhuiaa65xS50X8vjjj6tRo0aaN2+ekpOTFRAQoGuvvVYPPPCAWrduXS41DBkyRFdddZU++eQTbdiwQevWrZOfn59CQ0PVtGlTXXfdderevXuhdSIjI7VgwQK9/vrrWr16tX788UfVr19fiYmJGjVqlFe80Hfs2LFauXKlfvvtN/322286ffq06tSpoxYtWqh///664YYbigzdU9J9tLQef/xxNWjQQF988YW2bdum4OBgxcXFacaMGcrMzCw2RJf+fd/LN998o6SkJP3yyy/65Zdf5O/vr7p166pPnz5F/ih3MZ9TLVq00FdffaX3339fq1ev1g8//KCqVauqWbNmuvnmm3XrrbeW69BG5aVXr15q166dPvvsM61atUrJyck6c+aMatasqXbt2un6669X//79Hf5B+fLLL9fcuXM1Y8YMbdiwQT///LMaNmyokSNH6u6773b4bZbo6Gi9/vrrmjVrln777TetW7dOVqtV9evXL/JZVdb7QnnU5EhwcLBmzJihoUOHauHChdq8ebM2bdqk7Oxs1ahRQ02aNFGHDh3Ur1+/Ij9jjBkzRq1bt9Ynn3xi76eXXnqpevbsqREjRpT55/7y/mwFgMrEYC3ra60BAAAAAABcLCoqSpJK9S4PAADKE2OiAwAAAAAAAADgACE6AAAAAAAAAAAOEKIDAAAAAAAAAOAAY6IDAAAAAAAAAOAAT6IDAAAAAAAAAOAAIToAAAAAAAAAAA4EeLoATysoKFBeXp78/PxkMBg8XQ4AAAAAAAAAoBxYrVYVFBQoICBAfn6Onzev9CF6Xl6ekpOTPV0GAAAAAAAAAMADmjdvrqpVqzqcX+lDdNtfGJo3by5/f38PV1O+8vPzlZycXCn3HfBl9G3AN9G3Ad9E3wZ8E30b8E30bd9jO6cXegpdIkS3D+Hi7+9faS/+yrzvgC+jbwO+ib4N+Cb6NuCb6NuAb6Jv+56ShvnmxaIAAAAAAAAAADhAiA4AAAAAAAAAgAOE6AAAAAAAAAAAOECIDgAAAAAAAACAA4ToAAAAAAAAAAA4QIgOAAAAAAAAAIADhOgAAAAAAAAAADhAiA4AAAAAAAAAgAMBni7gfBMmTNCiRYsczl+9erXq1asnSdq6dateeeUV7dq1SyEhIerVq5fGjh2r4ODg8ioXAAAAAAAAAODDvC5EHzhwoNq3b19omtVq1dNPP62GDRvaA3STyaShQ4eqcePGmjBhgtLT0zV79mzt379fH3zwgSdKBwAAAAAAAAD4GK8L0ePi4hQXF1do2ubNm2WxWHTTTTfZp02fPl01a9bUnDlzFBISIkm67LLL9OSTT2rNmjXq0KFDudYNAAAAAAAAAPA9FWJM9G+++UYGg0E33nijJCkzM1Nr165Vnz597AG6JN18880KCgrSsmXLPFUqAAAAAAAAAMCHeH2Inpubq2XLlikuLk6XXXaZJGn37t3Ky8tTbGxsoWWrVq2qpk2bymQyeaJUAAAAAAAAAICP8brhXM63Zs0anThxotBQLhkZGZKkunXrFlk+LCxMW7ZsKXM7+fn5zhdZQdn2uTLuO+DL6NuAb6JvA76Jvg34Jvo24Jvo276ntOfS60P0b775RlWqVFGvXr3s07KzsyX9++T5+apVq2afXxbJycnOF1nBVeZ9B3wZfRvwTfRtwDfRtwHfRN8GfBN9u/Lx6hD9zJkz+umnn9ShQwddeuml9umBgYGSpJycnCLrnD171j6/LJo3by5/f3/ni62A8vPzlZycXCn3HfBl9G3AN9G3Ad9E3wZ8E30b8E30bd9jO6cl8eoQ/ccff5TFYik0lIv075AtknT06NEi62RkZBQ7zEtJ/P39K+3FX5n3HfBl9G3AN9G3Ad9E3wZ8E30b8E307crHq18s+vXXXysoKEhdunQpNN1oNCogIEA7d+4sND0nJ0cmk0nR0dHlWSYAAAAAAAAAwEd5bYh+/PhxrVu3Ttdff72qV69eaF6NGjXUvn17LVmyRJmZmfbpixcvVlZWlnr27Fne5QIAAAAAAAAAfJDXDueydOlS5eXlFRnKxWbs2LG6/fbbNXjwYN12221KT09XUlKSOnTooI4dO5ZztQAAAAAAAAAAX+S1IfrXX3+tOnXq6Oqrry52fkxMjJKSkjR16lRNmTJFwcHBGjBggMaNG1fOlfqGtLQ0mc1mt7YRGhqqiIgIt7YBAAAAAAAAAK7ktSH6vHnzSlwmISFBc+fOLYdqfFtaWpqaxcQq25Ll1nYCqwdpd4qJIB0AAAAAAABAheG1ITrKj9lsVrYlS42GTVVgeKRb2sg+vEf7ksbLbDYTogMAAAAAAACoMAjRYRcYHqngiBhPlwEAAAAAAAAAXsPP0wUAAAAAAAAAAOCtCNEBAAAAAAAAAHCAEB0AAAAAAAAAAAcYEx3lymQyub2N0NBQXl4KAAAAAAAAwCUI0VEuck9mSAY/JSYmur2twOpB2p1iIkgHAAAAAAAAcNEI0VEu8iynJGuBGg2bqsDwSLe1k314j/YljZfZbCZEBwAAAAAAAHDRCNFRrgLDIxUcEePpMgAAAAAAAACgVHixKAAAAAAAAAAADhCiAwAAAAAAAADgAMO5wCeZTCa3txEaGsq46wAAAAAAAICPI0SHT8k9mSEZ/JSYmOj2tgKrB2l3iokgHQAAAAAAAPBhhOjwKXmWU5K1QI2GTVVgeKTb2sk+vEf7ksbLbDYTogMAAAAAAAA+jBAdPikwPFLBETGeLgMAAAAAAABABceLRQEAAAAAAAAAcIAQHQAAAAAAAAAABwjRAQAAAAAAAABwgBAdAAAAAAAAAAAHCNEBAAAAAAAAAHCAEB0AAAAAAAAAAAcI0QEAAAAAAAAAcIAQHQAAAAAAAAAABwjRAQAAAAAAAABwgBAdAAAAAAAAAAAHAjxdAIALS0tLk9lsdmsboaGhioiIcGsbAAAAAAAAQEVEiA54sbS0NEVFN1W2Jcut7QRWD9LuFBNBOgAAAAAAAHAeQnTAi5nNZmVbstRo2FQFhke6pY3sw3u0L2m8zGYzIToAAAAAAABwHkJ0oAIIDI9UcESMp8sAAAAAAAAAKh1eLAoAAAAAAAAAgAOE6AAAAAAAAAAAOECIDgAAAAAAAACAA4ToAAAAAAAAAAA4QIgOAAAAAAAAAIADhOgAAAAAAAAAADhAiA4AAAAAAAAAgAOE6AAAAAAAAAAAOECIDgAAAAAAAACAA4ToAAAAAAAAAAA4QIgOAAAAAAAAAIADhOgAAAAAAAAAADhAiA4AAAAAAAAAgAOE6AAAAAAAAAAAOECIDgAAAAAAAACAA4ToAAAAAAAAAAA4QIgOAAAAAAAAAIADhOgAAAAAAAAAADhAiA4AAAAAAAAAgAOE6AAAAAAAAAAAOECIDgAAAAAAAACAA4ToAAAAAAAAAAA4QIgOAAAAAAAAAIADhOgAAAAAAAAAADhAiA4AAAAAAAAAgANeG6L//vvvGjlypNq2bauWLVvqxhtv1Mcff1xoma1bt+qOO+5Qy5Ytdc011+j555/XmTNnPFQxAAAAAAAAAMDXBHi6gOKsWbNGI0eOVLNmzfTAAw8oKChIaWlpSk9Pty9jMpk0dOhQNW7cWBMmTFB6erpmz56t/fv364MPPvBg9QAAAAAAAAAAX+F1IXpmZqYee+wxXXfddXrttdfk51f8w/LTp09XzZo1NWfOHIWEhEiSLrvsMj355JNas2aNOnToUJ5lAwAAAAAAAAB8kNcN5/L111/LbDZr7Nix8vPzU1ZWlgoKCgotk5mZqbVr16pPnz72AF2Sbr75ZgUFBWnZsmXlXTYAAAAAAAAAwAd5XYi+bt06hYSE6MiRI+rRo4fi4uIUHx+vp556SmfPnpUk7d69W3l5eYqNjS20btWqVdW0aVOZTCZPlA4AAAAAAAAA8DFeN5zL/v37lZ+frwceeEADBgzQww8/rI0bN2rOnDk6ffq0pk+froyMDElS3bp1i6wfFhamLVu2lLnd/Pz8i669orHt8/lP+qP08vPz3XrtlOd16e59QfmxnUfOJ+Bb6NuAb6JvA76Jvg34Jvq27yntufS6ED0rK0sWi0W33367nnzySUlS9+7dlZOTo3nz5unBBx9Udna2pH+fPD9ftWrV7PPLIjk5+eIKr8D27Nnj6RIqrNTUVIfj9rtq++XF3fuC8leZ72uAL6NvA76Jvg34Jvo24Jvo25WP14XogYGBkqQbb7yx0PSbbrpJ8+bN0/bt2+3L5OTkFFn/7Nmz9vll0bx5c/n7+ztRccWVn5+v5ORkRUZGerqUCstoNKpVq1Zu2355fkvA3fuC8mPr25Xxvgb4Mvo24Jvo24Bvom8Dvom+7Xts57QkXhei161bV3/88Yfq1KlTaHrt2rUlSSdPntTll18uSTp69GiR9TMyMood5qUk/v7+lfbi5+lj57n7uinPa7Iy9wFfxTkFfBN9G/BN9G3AN9G3Ad9E3658vC49jYmJkSQdOXKk0HRbYF67dm0ZjUYFBARo586dhZbJycmRyWRSdHR0+RQLAAAAAAAAAPBpXhei9+rVS5L05ZdfFpr+5ZdfKiAgQG3btlWNGjXUvn17LVmyRJmZmfZlFi9erKysLPXs2bNcawYAAAAAAAAA+CavG86lWbNm6t+/vxYsWKD8/Hy1adNGGzdu1Hfffaf77rtP9erVkySNHTtWt99+uwYPHqzbbrtN6enpSkpKUocOHdSxY0cP7wUAAAAAAAAAwBd4XYguSc8884waNGighQsX6scff1SDBg00ceJEDR061L5MTEyMkpKSNHXqVE2ZMkXBwcEaMGCAxo0b57nCAQAAAAAAAAA+xStD9CpVqmj06NEaPXr0BZdLSEjQ3Llzy6kqAAAAAAAAAEBl43VjogMAAAAAAAAA4C0I0QEAAAAAAAAAcIAQHQAAAAAAAAAABwjRAQAAAAAAAABwgBAdAAAAAAAAAAAHAjxdAFCRmUymCr19AAAAAAAAABdGiA44IfdkhmTwU2JioqdLAQAAAAAAAOBGhOiAE/IspyRrgRoNm6rA8Ei3tXMyeaUOfT3DbdsHAAAAAAAAcGGE6MBFCAyPVHBEjNu2b0nf67ZtAwAAAAAAACgZLxYFAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABxwaYhutVq1f/9+HT582JWbBQAAAAAAAADAI5wK0ZcvX65HH31UJ0+etE/7+++/1adPH/Xq1UtdunTR2LFjlZ+fX+Ztb9iwQVFRUcX+t3379kLLbt26VXfccYdatmypa665Rs8//7zOnDnjzC4BAAAAAAAAAFBEgDMrff755zKbzbrkkkvs06ZMmaI//vhDV111lU6cOKHvvvtO7du312233eZUYYMHD1bz5s0LTYuIiLD/v8lk0tChQ9W4cWNNmDBB6enpmj17tvbv368PPvjAqTYBAAAAAAAAADiXUyH6nj171LFjR/u/MzMztWrVKvXu3VvTp09Xbm6u+vXrpwULFjgdoickJKhnz54O50+fPl01a9bUnDlzFBISIkm67LLL9OSTT2rNmjXq0KGDU+0CAAAAAAAAAGDj1HAuJ0+eVGhoqP3fW7ZsUV5enm644QZJUpUqVXT11VcrLS3toorLzMxUXl5esdPXrl2rPn362AN0Sbr55psVFBSkZcuWXVS7AAAAAAAAAABITj6JHhISohMnTtj/vWHDBvn5+SkhIeH/NxwQIIvF4nRhEydOVFZWlvz9/RUfH69HH33UPrzL7t27lZeXp9jY2ELrVK1aVU2bNpXJZHK6XQAAAAAAAAAAbJwK0a+88kr9/PPPGjNmjPz9/fXNN98oJiam0Bjphw4dUp06dcq87SpVqqhHjx7q2LGjLr30Uu3du1ezZs3SnXfeqblz56pZs2bKyMiQJNWtW7fI+mFhYdqyZUuZ23XmJagVnW2fCwoKPFwJvEF+fn6l7Ae+yHYeOZ+Ab6FvA76Jvg34Jvo24Jvo276ntOfSqRB98ODBeuihh9SpUyf7E+djxowptMxvv/2mZs2alXnbrVu3VuvWre3/7tq1q3r06KE+ffpo2rRpmjVrlrKzsyX9++T5+apVq2afXxbJycllXsdX7Nmzx9MlwAukpqbKz8+pEZ7gpSrzfQ3wZfRtwDfRtwHfRN8GfBN9u/JxKkTv0aOHJk2apC+//FKSdMMNN+iWW26xz9+4caMyMzN17bXXuqTI//znP+ratauWL1+u/Px8BQYGSpJycnKKLHv27Fn7/LJo3ry5/P39L7rWiiQ/P1/JycmKjIz0dCnwAkajUa1atfJ0GXABW9+ujPc1wJfRtwHfRN8GfBN9G/BN9G3fYzunJXEqRJekQYMGadCgQcXOa9u2rTZt2uTspotVv3595ebmymKxKCwsTJJ09OjRIstlZGQUO8xLSfz9/Svtxc/Tx5Aqdx/wVZxTwDfRtwHfRN8GfBN9G/BN9O3Kp8Kkp3///beqVaumoKAgGY1GBQQEaOfOnYWWycnJkclkUnR0tIeqBAAAAAAAAAD4EqdD9Ly8PH344YcaMGCAWrduXWj8c5PJpKefflr79u0r83aPHz9eZFpKSopWrFiha665Rn5+fqpRo4bat2+vJUuWKDMz077c4sWLlZWVpZ49ezq3UwAAAAAAAAAAnMOp4Vyys7M1fPhwbdu2TZdeeqlCQkJksVjs8y+77DItXLhQl1xyicaOHVumbY8ZM0aBgYGKi4tTnTp1tGfPHs2fP1+BgYEaP368fbmxY8fq9ttv1+DBg3XbbbcpPT1dSUlJ6tChgzp27OjMbgEAAAAAAAAAUIhTT6K/88472rp1q8aNG6dff/1Vt956a6H5NWrUUJs2bbRmzZoyb7tbt276559/9OGHH+qZZ57R0qVLdf3112vBggVq3LixfbmYmBglJSWpWrVqmjJliubPn68BAwZo5syZzuwSAAAAAAAAAABFOPUk+rJly9SuXTvdc889kiSDwVBkmcsvv1wmk6nM2x4yZIiGDBlSqmUTEhI0d+7cMrcBAAAAAAAAAEBpOPUk+qFDhxQbG3vBZYKDg3X69GmnigIAAAAAAAAAwBs4FaIHBwcX+wLQcx04cEC1a9d2qigAAAAAAAAAALyBUyF6q1attGLFCp06darY+YcPH9aqVauUkJBwUcUBAAAAAAAAAOBJToXoI0aM0KlTpzR06FBt2bJFeXl5kiSLxaJ169ZpxIgRys/P17Bhw1xaLAAAAAAAAAAA5cmpF4u2adNG//vf/zR58mQlJibap7du3VqS5O/vr6eeeqrEcdMBAAAAAAAAAPBmToXokjRo0CC1a9dOn3/+uXbs2KGTJ08qODhYLVu21KBBg9SkSRNX1gkAAAAAAAAAQLlzOkSXpMaNG+vJJ590VS0AAAAAAAAAAHgVp8ZEBwAAAAAAAACgMijVk+iHDh1yuoEGDRo4vS4AAAAAAAAAAJ5UqhC9S5cuMhgMZd64wWDQrl27yrweAAAAAAAAAADeoFQhet++fZ0K0QEAAAAAAAAAqMhKFaK/+OKL7q4DAAAAAAAAAACvU6oQHYDvM5lMbm8jNDRUERERbm8HAAAAAAAAcJWLDtF37dqlXbt2KTMzUyEhIWrWrJmaNWvmitoAlIPckxmSwU+JiYlubyuwepB2p5gI0gEAAAAAAFBhOB2i79ixQ//73/+UmpoqSbJarfZx041Go55//nk1b97cNVUCcJs8yynJWqBGw6YqMDzSbe1kH96jfUnjZTabCdEBAAAAAABQYTgVov/++++66667ZLFY1L59e8XHxys0NFRms1mbN2/W+vXrNWTIEH322Wdq2rSpq2sG4AaB4ZEKjojxdBkAAAAAAACAV3EqRJ8+fbpyc3M1a9YsXXPNNUXm//LLL7r//vs1depUzZo166KLBAAAAAAAAADAE/ycWWnr1q3q2bNnsQG6JF177bXq0aOHtm3bdlHFAQAAAAAAAADgSU49iR4QEKCGDRtecJnLLrtM/v7+ThUFAChfaWlpMpvNbm8nNDSUMfEBAAAAAECF4lSIHhcXp99+++2Cy2zfvl3x8fFOFQUAKD9paWmKim6qbEuW29sKrB6k3SkmgnQAAAAAAFBhOBWiP/roo7rjjjv06quvauTIkapevbp9nsVi0dtvvy2TyaTPP//cZYUCANzDbDYr25KlRsOmKjA80m3tZB/eo31J42U2mwnRAQAAAABAheFUiD5r1ixFRUXpvffe09y5c9W0aVPVqVNHx44dk8lk0qlTp5SQkKAPPvig0HoGg0GTJ092SeEAANcKDI9UcESMp8sAAAAAAADwKk6F6IsWLbL//8mTJ7V+/foiy2zatEmbNm0qNI0QHQAAAAAAAABQkTgVov/000+urgMAAAAAAAAAAK/jVIjesGFDV9cBAAAAAAAAAIDX8fN0AQAAAAAAAAAAeCunnkS3MZlMSklJ0dGjR5Wbm1tkvsFg0KhRoy6mCQAAAAAAAAAAPMapEP3YsWN6+OGHtWHDBkmS1WotdjlCdAAAAAAAAABAReZUiP7MM89o/fr16tSpk3r37q26devK39/f1bUBAAAAAAAAAOBRToXoa9asUbt27fTuu++6uh4AAAAAAAAAALyGUy8WrVKlimJiYlxdCwAAAAAAAAAAXsWpED0+Pl4pKSmurgUAAAAAAAAAAK/iVIj+8MMPa+fOnfrkk09cXQ8AAAAAAAAAAF7DqTHRGzdurE8//VR33nmn5syZo6ioKAUHBxdZzmAwaPLkyRddJAAAAAAAAAAAnuBUiH7gwAGNGjVKp06d0qlTp/TXX38VuxwhOgAAAAAAAACgInMqRH/++eeVlpamO+64QzfccIPq1q0rf39/V9cGAAAAAAAAAIBHORWib9q0SZ07d9ZTTz3l6noAAAAAAAAAAPAaTr1YtGrVqrriiitcXAoAAAAAAAAAAN7FqRD9mmuu0bZt21xdCwAAAAAAAAAAXsWpEP3RRx9VRkaGXnrpJZ09e9bVNQEAAAAAAAAA4BWcGhP9kUceUY0aNfThhx9q/vz5+s9//qOQkJAiyxkMBn300UcXXSQAAAAAAAAAAJ7gVIi+ceNG+/+fOXNGu3btKnY5g8HgXFUAAAAAAAAAAHgBp0L0lJQUV9cBAAAAAAAAAIDXcWpMdAAAAAAAAAAAKgNCdAAAAAAAAAAAHHBqOBeb9PR0rV+/XkePHlVOTk6R+QaDQaNGjbqYJgAAAAAAAAAA8BinQ/SXXnpJc+bMUX5+vn2a1Wq1v0zU9v+E6AAAAAAAAACAisqp4Vzmz5+vpKQktWvXTq+99pqsVqv69u2r6dOn6/bbb5e/v7969uypjz76yNX1AgAAAAAAAABQbpx6En3evHlq2LCh3n//ffn5/ZvDN2zYUL1791bv3r3Vq1cvDR8+XD179nRpsQAAAAAAAAAAlCennkT/888/de2119oDdEmFhnVp27atOnXqpNmzZ198hQAAAAAAAAAAeIhTIbok1axZ0/7/1atX14kTJwrNb9Sokf744w+nCwMAAAAAAAAAwNOcCtHr1aun9PR0+78jIiL022+/FVrmjz/+UFBQ0MVVBwAAAAAAAACABzkVordu3bpQaN61a1eZTCZNmjRJK1eu1LRp07R69WolJCS4rFAAAAAAAAAAAMqbUy8Wvfnmm3X06FEdPHhQDRs21IgRI7Ry5UrNnz9fX3zxhaxWqxo2bKhHH33U1fUCAAAAAAAAAFBunArR27Vrp3bt2tn/HRwcrHnz5umnn35SWlqaGjZsqM6dO7tkOJe3335bM2bMUJMmTfTNN98Umrd161a98sor2rVrl0JCQtSrVy+NHTtWwcHBF90uAAAAAAAAAABOhejFqVKlinr27OmqzUmS0tPT9e677xYbxptMJg0dOlSNGzfWhAkTlJ6ertmzZ2v//v364IMPXFoHAAAAAAAAAKBycipE37Ztm+Li4kpc7rPPPtOgQYOcaUKS9NJLL6lly5YqKCjQP//8U2je9OnTVbNmTc2ZM0chISGSpMsuu0xPPvmk1qxZow4dOjjdLgAAAAAAAAAAkpMvFh08eLDeeustWa3WYuefOHFC999/v5577jmnC9u0aZO+//57Pf7440XmZWZmau3aterTp489QJf+Has9KChIy5Ytc7pdAAAAAAAAAABsnArRGzdurNdff11DhgzRkSNHCs1bv369br75Zv3888+68cYbnSoqPz9fzz33nAYMGKCoqKgi83fv3q28vDzFxsYWml61alU1bdpUJpPJqXYBAAAAAAAAADiXU8O5fPHFF3r55Zf1ySefqE+fPnr22WfVrVs3TZ8+XUlJSQoKCtLLL7+sPn36OFXU3LlzdejQIX344YfFzs/IyJAk1a1bt8i8sLAwbdmypcxt5ufnl3mdis62zwUFBR6uBJVJfn5+pexv5cl2fEt7nMv7fHANAM4pa98GUDHQtwHfRN8GfBN92/eU9lw6FaJXrVpVTz75pK699lpNnDhRY8aMUf369ZWenq6WLVvqlVde0eWXX+7MpvXPP//otdde0wMPPKDatWsXu0x2dra9jvNVq1bNPr8skpOTy7yOr9izZ4+nS0AlkpqaKj8/p74EgzIq7X0tNTXVzZUUbY9rAHBeZf6ZBfBl9G3AN9G3Ad9E3658nArRbTp16qShQ4dq+vTpOnz4sC699FLNnDlT9erVc3qbM2bM0CWXXKLExESHywQGBkqScnJyisw7e/asfX5ZNG/eXP7+/mVeryLLz89XcnKyIiMjPV0KKhGj0ahWrVp5ugyfZuvbpb2vlfe3UbgGAOeUtW8DqBjo24Bvom8Dvom+7Xts57QkTofomZmZeuqpp7R06VLVq1dPCQkJ+vbbb9W/f39NnjxZHTt2LPM29+/fr/nz5+vxxx/X0aNH7dPPnj2r3Nxc/f333woJCVFYWJgkFVrGJiMjo9hhXkri7+9faS9+nghFearMfa28lfZYl/f54BoALg59CPBN9G3AN9G3Ad9E3658nEpPt23bpptvvlnffvutunXrpiVLlmjatGmaOXOmcnJydN999+mFF14o9knxCzly5IgKCgr0/PPPq2vXrvb/fvvtN+3fv19du3bVm2++KaPRqICAAO3cubPQ+jk5OTKZTIqOjnZmtwAAAAAAAAAAKMSpJ9ETExNVpUoVPfPMMxo4cKB9eo8ePdSqVSuNHz9ec+bM0caNG7V48eJSb7dJkyZ68803i0yfMWOGzpw5oyeeeEKXX365atSoofbt22vJkiV64IEHFBISIklavHixsrKy1LNnT2d2CwAAAAAAAACAQpwK0Zs0aaLp06fryiuvLDKvXr16+vjjj/X222/rrbfeKtN2a9eurW7duhWZ/tFHH0lSoXljx47V7bffrsGDB+u2225Tenq6kpKS1KFDB6eGkgEAAAAAAAAA4HxOhejz589X1apVHc43GAx64IEHdM011zhdWEliYmKUlJSkqVOnasqUKQoODtaAAQM0btw4t7UJAAAAAAAAAKhcnArRLxSgn6tly5bObL6IOXPmFDs9ISFBc+fOdUkbAAAAAAAAAACcr9QvFn3jjTe0adOmQtOOHTumlJSUYpdfunSpRo8efXHVAQAAAAAAAADgQWUK0Tds2FBo2ueff65+/foVu/yff/6pn3766eKqAwAAAAAAAADAg0odogMAAAAAAAAAUNkQogMAAAAAAAAA4AAhOgAAAAAAAAAADgR4ugAAgGNpaWkym81lWic/P1+pqakqKCiQv79/icubTCZnywMAAAAAAPB5hOgA4KXS0tIUFd1U2ZYsT5cCAAAAAABQaZUpRP/jjz+0dOlS+79TU1MlScuWLZPVai20rG0eAMA5ZrNZ2ZYsNRo2VYHhkW5r52TySh36eobbtg8AAAAAAFCRlSlEX758uZYvX27/ty04HzduXJFlrVarDAbDRZYHAAgMj1RwRIzbtm9J3+u2bQMAAAAAAFR0pQ7RR48e7c46AAAAAAAAAADwOoToAAAAAAAAAAA44OfpAgAAAAAAAAAA8FZlGhMdAC6WyWRyexuhoaGKiIhwaxtpaWkym81ubaM8jhUAAAAAAAAujBAdQLnIPZkhGfyUmJjo9rYCqwdpd4rJbUF6WlqaoqKbKtuS5ZbtAwAAAAAAwHsQogMoF3mWU5K1QI2GTVVgeKTb2sk+vEf7ksbLbDa7LUQ3m83KtmS5fV9OJq/Uoa9nuG37AAAAAAAAKBkhOoByFRgeqeCIGE+X4RLu3hdL+l63bRsAAAAAAAClw4tFAQAAAAAAAABwoFQh+ujRo7V06VL7vzdt2qRDhw65rSgAAAAAAAAAALxBqUL0H3/8UX/++af930OGDNHChQvdVhQAAAAAAAAAAN6gVCF6zZo1debMGfu/rVar2woCAAAAAAAAAMBblOrFoo0bN9Y333yj5s2bKywsTJJ08OBBbdq0qcR127Rpc3EVAgAAAAAAAADgIaUK0UeNGqVRo0bp4Ycftk/76quv9NVXX5W4rslkcro4AAAAAAAAAAA8qVQheocOHbR06VKtXbtWR44c0RtvvKE2bdqobdu27q4PAAAAAAAAAACPKVWILkkNGzbUrbfeKkl644031LZtW40ePdpthQEAAAAAAAAA4GmlDtHP9dNPP6lmzZqurgUAAAAAAAAAAK/iVIjesGFD+//n5eVp3759yszMVEhIiBo1aqSAAKc2CwAu4873MfCuBwAAAAAAgMrD6bT7xIkTmjp1qr755hudPXvWPj0wMFA33nijxo0bp0svvdQlRQJAaeWezJAMfkpMTPR0KQAAAAAAAPABToXoJ06c0MCBA/XXX3/pkksuUXx8vOrWrauMjAzt3LlTX3zxhTZu3Kh58+apVq1aLi4ZABzLs5ySrAVqNGyqAsMj3dLGyeSVOvT1DLdsGwAAAAAAAN7FqRD9rbfe0l9//aURI0Zo1KhRCgoKss+zWCx666239P777+udd97RhAkTXFYsAJRWYHikgiNi3LJtS/pet2wXAAAAAAAA3sfPmZV++ukntW3bVo888kihAF2Sqlevrocfflht27bVDz/84JIiAQAAAAAAAADwBKdC9KNHjyouLu6Cy8TFxeno0aNOFQUAAAAAAAAAgDdwKkSvUaOGDh48eMFlDh48qBo1ajhVFAAAAAAAAAAA3sCpEL1Nmzb67rvvtHbt2mLnr1u3Tt99953atm17UcUBAAAAAAAAAOBJTr1YdPTo0Vq1apVGjBihTp06qU2bNqpTp46OHTumjRs3avXq1QoMDNSoUaNcXS8AAAAAAAAAAOXGqRC9SZMm+uCDDzRx4kStXLlSK1eulMFgkNVqlSRFRERoypQpatKkiUuLBQAAAAAAAACgPDkVoktSQkKCli9fri1btshkMikzM1MhISFq2rSp4uPjZTAYXFknAAAAAAAAAADlzukQXZIMBoMSEhKUkJDgqnoAAAAAAAAAAPAaTr1YFAAAAAAAAACAyoAQHQAAAAAAAAAABwjRAQAAAAAAAABwgBAdAAAAAAAAAAAHCNEBAAAAAAAAAHCAEB0AAAAAAAAAAAecCtGbNm2qhx9+2NW1AAAAAAAAAADgVZwK0UNCQhQeHu7qWgAAAAAAAAAA8CpOhegtWrRQSkqKq2sBAAAAAAAAAMCrOBWijx49WuvXr9dXX33l4nIAAAAAAAAAAPAeAc6s9Ouvv6pdu3aaOHGi5syZo+bNmys0NLTIcgaDQaNGjbroIgEAAAAAAAAA8ASnQvQ33njD/v+///67fv/992KXI0QHAAAAAAAAAFRkToXoH3/8savrAAAAAAAAAADA6zgVordt29bVdQAAAAAAAAAA4HWcerEoAAAAAAAAAACVgdMhel5enj788EMNGDBArVu3VrNmzezzTCaTnn76ae3bt88lRQIAAAAAAAAA4AlODeeSnZ2t4cOHa9u2bbr00ksVEhIii8Vin3/ZZZdp4cKFuuSSSzR27FiXFQsAAAAAAAAAQHly6kn0d955R1u3btW4ceP066+/6tZbby00v0aNGmrTpo3WrFlT5m3/8ccfevDBB9W1a1e1bNlS7dq105133qkVK1YUWXbv3r0aMWKE4uLi1LZtWz3yyCM6fvy4M7sEAAAAAAAAAEARTj2JvmzZMrVr10733HOPJMlgMBRZ5vLLL5fJZCrztg8dOqQzZ86oX79+qlu3riwWi5YvX677779fzz77rAYOHChJSk9P15133qkaNWpo7NixysrK0uzZs5WamqovvvhCVatWdWbXAAAAAAAAAACwcypEP3TokLp163bBZYKDg3X69Okyb7tTp07q1KlToWmJiYm65ZZblJSUZA/R33nnHVksFi1cuFANGjSQJLVo0ULDhg3TokWL7MsBAAAAAAAAAOAsp4ZzCQ4OLnHYlAMHDqh27dpOFXU+f39/hYeHFwrlly9fruuuu84eoEvS1VdfrSuuuELLli1zSbsAAAAAAAAAgMrNqRC9VatWWrFihU6dOlXs/MOHD2vVqlVKSEhwurCsrCwdP35caWlp+vDDD7V69WpdddVVkqQjR47o2LFjio2NLbJeixYtnBpGBgAAAAAAAACA8zk1nMuIESM0ZMgQDR06VE888YTy8vIkSRaLRdu3b9dzzz2n/Px8DRs2zOnCXnzxRc2bN0+S5Ofnp+uvv16TJk2SJB09elSSFBYWVmS9sLAwnThxQjk5OWUaFz0/P9/pWisq2z4XFBR4uBIAlUl+fn6lvOcCF8vWb+g/gG+hbwO+ib4N+Cb6tu8p7bl0KkRv06aN/ve//2ny5MlKTEy0T2/durWkf4dfeeqpp4p9Ury07rrrLvXs2VNHjx7VsmXLVFBQoNzcXEnS2bNnJanYkLxatWqSpOzs7DKF6MnJyU7XWtHt2bPH0yUAqERSU1Pl5+fUF6EAqHL/zAL4Mvo24Jvo24Bvom9XPk6F6JI0aNAgtWvXTp9//rl27NihkydPKjg4WC1bttSgQYPUpEmTiyqscePGaty4sSSpb9++Gj58uEaOHKkvvvjCHpTn5OQUWc8WsAcGBpapvebNm8vf3/+iaq5o8vPzlZycrMjISE+XAqASMRqNatWqlafLACoc2+d2ZfyZBfBl9G3AN9G3Ad9E3/Y9tnNaEqdDdOnfoPvJJ5+8mE2UWo8ePTRp0iTt27dPdevWlSRlZGQUWS4jI0O1atUq01Po0r9Pz1fWi58nQgGUp8p8vwVcgT4E+Cb6NuCb6NuAb6JvVz4VJj3Nzs6WJGVmZqpevXqqXbu2du7cWWS5HTt2KDo6urzLAwAAAAAAAAD4oIt6Ev2HH37QwoULZTKZdPr0adWoUUNNmzZV//791a1bN6e2eezYMdWpU6fQtNzcXC1evFiBgYH2IV66d++ur776SocPH1Z4eLgkad26ddq/f7+GDh16MbsFAAAAAAAAAIAkJ0P0vLw8Pfzww1q+fLmsVqsCAgJUq1Ytmc1m/fzzz1q5cqW6d++uadOmKSCgbE1MmjRJmZmZatOmjerVq6eMjAx9/fXX+vPPPzVhwgQFBwdLkkaOHKnvvvtOQ4YM0ZAhQ5SVlaVZs2bJaDSqf//+zuwWAAAAAAAAAACFOBWiv/vuu/r+++/Vpk0bjRkzRnFxcfLz81NBQYG2bt2qGTNmaPny5Xrvvff0wAMPlGnbvXv31pdffqnPP/9cJ06cUHBwsGJiYjR+/Hh17drVvlx4eLg++eQTvfjii5o2bZqqVKmiTp06acKECWUeDx0AAAAAAAAAgOI4FaIvXLhQV155pZKSkgo9ae7n56eEhAQlJSWpT58+WrBgQZlD9BtuuEE33HBDqZZt0qSJZs2aVabtAwAAAAAAAABQWk69WDQjI0OdO3d2OFRLlSpV1LlzZ2VkZFxUcQAAAAAAAAAAeJJTIXp4eLiysrIuuIzFYrG/8BMAAAAAAAAAgIrIqRB9wIABWrZsmY4ePVrs/CNHjmjp0qW69dZbL6o4AAAAAAAAAAA8qVRjoh86dKjQv3v16qWtW7eqX79+uuuuu9S6dWuFhobKbDZry5Yt+vjjjxUfH6+ePXu6pWgAAAAAAAAAAMpDqUL0Ll26yGAwFJlutVr16quvFjt9xYoVWrlypXbt2nXxVQIAAAAAAAAA4AGlCtH79u1bbIgOAAAAAAAAAIAvK1WI/uKLL7q7DgAAAAAAAAAAvI5TLxYFAAAAAAAAAKAyIEQHAAAAAAAAAMCBUg3nUpzNmzdr9uzZSklJ0dGjR5Wfn19kGYPBwItFAQAAAAAAAAAVllMh+ldffaWJEyfKarXq8ssvV4sWLeTv7+/q2gAAAAAAAAAA8CinQvS3335bNWvW1Pvvv68WLVq4uiYAAAAAAAAAALyCUyH64cOHNWDAAAJ0AECZmUwmt24/NDRUERERbm0DAAAAAABUHk6F6A0aNFBubq6rawEA+LDckxmSwU+JiYlubSewepB2p5gI0gEAAAAAgEs4FaLfdtttmj17tk6cOKFatWq5uCQAgC/Ks5ySrAVqNGyqAsMj3dJG9uE92pc0XmazmRAdAAAAAAC4hFMh+vDhw3XgwAHdcccduv/++xUdHa2QkJBil23QoMFFFQgA8C2B4ZEKjojxdBkAAAAAAACl4lSILknNmjXTN998o8cee8zhMgaDQbt27XK2CQAAAAAAAAAAPMqpEH3OnDmaPHmyAgIC1K5dO4WFhSkgwOk8HgAAAAAAAAAAr+RU8v3hhx+qXr16mjt3rurXr+/qmgAAAAAAAAAA8Ap+zqxkNpvVvXt3AnQAAAAAAAAAgE9zKkSPiIjQ6dOnXV0LAAAAAAAAAABexakQfejQofrpp5908OBBV9cDAAAAAAAAAIDXcGpM9IiICLVp00b9+/fXXXfdpejoaIWEhBS7bJs2bS6qQAAAAAAAAAAAPMWpEH3w4MEyGAyyWq2aOXOmDAaDw2VNJpPTxQEAAAAAAAAA4ElOheijRo26YHAOAAAAAAAAAIAvcCpE/+9//+vqOgAAcJny+BZUaGioIiIi3N5OWlqazGaz29spr/0BAAAAAKCicSpEBwDAG+WezJAMfkpMTHR7W4HVg7Q7xeTW4DktLU1R0U2VbclyWxs25bE/AAAAAABURIToAACfkWc5JVkL1GjYVAWGR7qtnezDe7QvabzMZrNbQ2ez2axsS5bP7A8AAAAAABWRUyF6dHR0qcZENxgM2rVrlzNNAADgtMDwSAVHxHi6DJfxtf0BAAAAAKAicSpEb9OmTbHTMzMztX//flksFkVHR6tGjRoXVRwAAAAAAAAAAJ7kVIg+Z84ch/MsFoumTZumX375RbNnz3a6MAAAAAAAAAAAPM3P1RusXr26nnzySYWEhOiVV15x9eYBAAAAAAAAACg3bnuxaEJCgpYsWeKuzQMAgAomLS1NZrPZ7e2EhobyglQAAAAAgMu4LUQ/fvy4srKy3LV5AABQgaSlpSkquqmyLe7/2SCwepB2p5gI0gEAAAAALuHyEL2goEBLlizRsmXLFBsb6+rNAwCACshsNivbkqVGw6YqMDzSbe1kH96jfUnjZTabCdEBAAAAAC7hVIjetWvXYqfn5+fr2LFjysvLU0BAgMaNG3dRxQEAAN8SGB6p4IgYT5cBAAAAAECpORWiW63W4jcWEKAmTZqoefPmSkxMVJMmTS6qOAAAAAAAAAAAPMmpEH3FihWurgMAAAAAAAAAAK/j5+kCAAAAAAAAAADwVi5/sSgAAICnmUwmt7cRGhrKy0sBAAAAoBIodYg+ceLEMm/cYDBo8uTJZV4PAADAGbknMySDnxITE93eVmD1IO1OMRGkAwAAAICPK3WIvmjRolJv1GAwyGq1EqIDAIBylWc5JVkL1GjYVAWGR7qtnezDe7QvabzMZjMhOgAAAAD4uFKH6PPmzSvVcn/99ZfeeOMNpaWlOV0UAADAxQgMj1RwRIynywAAAAAA+IBSh+gtW7a84Pzjx4/rzTff1Pz585Wbm6v4+HiNHz/+ogsEAAAAAAAAAMBTLvrFohaLRbNmzVJSUpLOnDmjJk2aaOzYserSpYsr6gMAAAAAAAAAwGOcDtHz8/M1d+5cvf322zKbzapfv74ef/xx9evXT35+fq6sEQAAAAAAAAAAj3AqRF+2bJlmzJihtLQ01ahRQw8//LCGDBmiatWqubo+AAAAAAAAAAA8pkwh+oYNGzR16lTt3LlTVapU0bBhwzRy5EjVrFnTXfUBAAAAAAAAAOAxpQ7R7777bv3666/y8/NT37599dBDD6l+/frurA0AAAAAAAAAAI8qdYi+Zs0aGQwGhYeHy2w263//+1+J6xgMBr333nsXVSAAAAAAAAAAAJ5SpuFcrFar/v77b/3999+lWt5gMDhVFAAAAAAAAAAA3qDUIfpPP/3kzjoAAAAAAAAAAPA6pQ7RGzZs6M46AAAAAAAAAADwOn6eLgAAAAAAAAAAAG9FiA4AAAAAAAAAgANlerFoedixY4e++uorbdiwQQcPHlStWrXUsmVLjRkzRo0aNSq07N69ezV58mRt3bpVVapUUadOnTRx4kTVrl3bQ9UDAAAAAAAAAHyJ14XoH3zwgbZu3aqePXsqKipKGRkZ+vTTT3XLLbdo3rx5MhqNkqT09HTdeeedqlGjhsaOHausrCzNnj1bqamp+uKLL1S1alUP7wkAAAAAAAAAoKLzuhB96NChmjp1aqEQvHfv3rrpppv03nvvaerUqZKkd955RxaLRQsXLlSDBg0kSS1atNCwYcO0aNEiDRw40CP1AwAAAAAAAAB8h9eNid66desiT5FfccUVatKkif7880/7tOXLl+u6666zB+iSdPXVV+uKK67QsmXLyq1eAAAAAAAAAIDv8roQvThWq1Vms1mXXnqpJOnIkSM6duyYYmNjiyzbokULmUym8i4RAAAAAAAAAOCDvG44l+IsWbJER44c0YMPPihJOnr0qCQpLCysyLJhYWE6ceKEcnJyyjQuen5+vmuKrUBs+1xQUODhSgCgYvr999/d+vmRkpLitm0XJz8/323746ufs+6+BkJDQxURESHp/4+hrx5LoLKibwO+ib4N+Cb6tu8p7bn0+hB97969evbZZxUXF6d+/fpJks6ePStJxYbk1apVkyRlZ2eXKURPTk52QbUV0549ezxdAgBUKLknMySDn4YMGeLpUlwqNTVVfn7u+ZJaamqqW7brKeV1DVQLDNSCL79U/fr17dMq888sgC+jbwO+ib4N+Cb6duXj1SF6RkaG7rvvPtWoUUMzZ86Uv7+/pP8PynNycoqsYwvYAwMDy9RW8+bN7duvLPLz85WcnKzIyEhPlwIAFUqe5ZRkLVCjYVMVGO6+e+jJ5JU69PUMt23/fEajUa1atXLLtn3tW0/lcQ1kH96jfUnjVbduXbVq1cr+uV0Zf2YBfBl9G/BN9G3AN9G3fY/tnJbEa0P006dP65577tHp06f16aefql69evZ5devWlfRvyH6+jIwM1apVq0xPoUuSv79/pb343fXUIQD4usDwSAVHxLht+5b0vW7bdnHc+Vnoq5+x7r4GpKLnpTL/zAL4Mvo24Jvo24Bvom9XPl4Zop89e1YjR47U/v37lZSUVORJ6Xr16ql27drauXNnkXV37Nih6Ojo8ioVAAAAAAAAAODDvO4R5Pz8fI0ZM0bbt2/XzJkzFRcXV+xy3bt318qVK3X48GH7tHXr1mn//v3q2bNneZULAAAAAAAAAPBhXvck+osvvqgVK1aoc+fOOnHihBYvXlxo/s033yxJGjlypL777jsNGTJEQ4YMUVZWlmbNmiWj0aj+/ft7onQAACo0k8lUIbeNiiMtLU1ms9nt7YSGhioiIsLt7QAAAACoHLwuRE9JSZEk/fzzz/r555+LzLeF6OHh4frkk0/04osvatq0aapSpYo6deqkCRMmlHk8dAAAKrPckxmSwU+JiYmeLgU+LC0tTVHRTZVtyXJ7W4HVg7Q7xUSQDgAAAMAlvC5EnzNnTqmXbdKkiWbNmuXGagAA8H15llOStUCNhk1VYHhkySs44WTySh36eoZbto2KwWw2K9uS5dbrTJKyD+/RvqTxMpvNhOgAAAAAXMLrQnQAAOAZgeGRCo6Iccu2Lel73bJdVDzuvM4AAAAAwB287sWiAAAAAAAAAAB4C0J0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwI8HQBAAAAADwrLS1NZrPZrW2EhoYqIiLCrW0AAAAA7kCIDgAAAFRiaWlpiopuqmxLllvbCawepN0pJoJ0AAAAVDiE6AAAAEAlZjablW3JUqNhUxUYHumWNrIP79G+pPEym82E6AAAAKhwCNEBAAAAKDA8UsERMZ4uAwAAAPA6vFgUAAAAAAAAAAAHCNEBAAAAAAAAAHCAEB0AAAAAAAAAAAcYEx0AAMCLmUwmSVJ+fr5SU1NVUFAgf39/l7YRGhrKyx4BAAAAwAFCdAAAAC+UezJDMvgpMTHR7W0FVg/S7hQTQToAAAAAFIMQHQAAwAvlWU5J1gI1GjZVgeGRbmsn+/Ae7UsaL7PZTIgOAAAAAMUgRAcAAPBigeGRCo6I8XQZAAAAAFBp8WJRAAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwI8HQBAAAAQEWTlpYms9ns9nZCQ0MVERHh9nYAAAAAOEaIDgAAAJRBWlqaoqKbKtuS5fa2AqsHaXeKiSAdAAAA8CBCdAAAAKAMzGazsi1ZajRsqgLDI93WTvbhPdqXNF5ms5kQHQAAAPAgQnQAAADACYHhkQqOiPF0GQAAAADcjBeLAgAAAAAAAADgACE6AAAAAAAAAAAOEKIDAAAAAAAAAOAAY6IDAABAJpOpQm8fKG9paWkym80XvZ38/HylpqaqoKBA/v7+ReaHhobyYlkAAAAPI0QHAACoxHJPZkgGPyUmJnq6FKDCSEtLU1R0U2VbstzeVmD1IO1OMRGkAwAAeBAhOgAAQCWWZzklWQvUaNhUBYZHuq2dk8krdejrGW7bPlCezGazsi1Zbu832Yf3aF/SeJnNZkJ0AAAADyJEBwAAgALDIxUcEeO27VvS97pt24CnuLvfAAAAwDvwYlEAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHGBMdAAAAPgck8lUIbft68rj2J09e1bVqlVzaxtcAwAAAJULIToAAAB8Ru7JDMngp8TERE+XgnOU63kx+EnWAve3AwAAgEqDEB0AAAA+I89ySrIWqNGwqQoMj3RLGyeTV+rQ1zPcsm1fVR7nRfr/c1Ne7QAAAKByIEQHAACAzwkMj1RwRIxbtm1J3+uW7VYG7jwv0v+fm/JqBwAAAJUDLxYFAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAa8L0c+cOaPXXntNI0aMUNu2bRUVFaWFCxcWu+zevXs1YsQIxcXFqW3btnrkkUd0/Pjxcq4YAAAAAAAAAOCrvC5E/+eff/Tmm2/qzz//VFRUlMPl0tPTdeeddyotLU1jx47V8OHDtWrVKg0bNkw5OTnlWDEAAAAAAAAAwFcFeLqA89WtW1dr1qxRWFiYkpOTNWDAgGKXe+edd2SxWLRw4UI1aNBAktSiRQsNGzZMixYt0sCBA8uzbAAAAAAAAACAD/K6J9GrVq2qsLCwEpdbvny5rrvuOnuALklXX321rrjiCi1btsydJQIAAAAAAAAAKgmvC9FL48iRIzp27JhiY2OLzGvRooVMJpMHqgIAAAAAAAAA+BqvG86lNI4ePSpJxT6xHhYWphMnTignJ0dVq1Yt9Tbz8/NdVl9FYdvngoICD1cCAAAAR/Lz8936s2pl/Dm4onH3NQDA9Wx9lr4L+Bb6tu8p7bmskCH62bNnJanYkLxatWqSpOzs7DKF6MnJya4prgLas2ePp0sAAACAA6mpqfLzc98XSFNTU922bbiGu68BAO5TmbMGwJfRtyufChmi24LynJycIvNsAXtgYGCZttm8eXP5+/tffHEVSH5+vpKTkxUZGenpUgAAAOCA0WhUq1at3LZ9vpXo/dx9DQBwPdvv25UxawB8GX3b99jOaUkqZIhet25dSVJGRkaReRkZGapVq1aZnkKXJH9//0p78fNUCwAAgPdy98+plfVn4IqkMv+uAlR09F/AN9G3K58KmZ7Wq1dPtWvX1s6dO4vM27Fjh6Kjoz1QFQAAAAAAAADA11TIEF2SunfvrpUrV+rw4cP2aevWrdP+/fvVs2dPD1YGAAAAAAAAAPAVXjmcyyeffKJTp07p6NGjkqSff/5Z6enpkqTBgwerRo0aGjlypL777jsNGTJEQ4YMUVZWlmbNmiWj0aj+/ft7snwAAADAZUwmU4XePgDYpKWlyWw2u7WN0NBQRUREuLUNAEDl45Uh+uzZs3Xw4EH7v5cvX67ly5dLkvr06aMaNWooPDxcn3zyiV588UVNmzZNVapUUadOnTRhwoQyj4cOAAAAeJvckxmSwU+JiYmeLgUALlpaWpqiopsq25Ll1nYCqwdpd4qJIB0A4FJeGaKvWLGiVMs1adJEs2bNcnM1AAAAQPnLs5ySrAVqNGyqAsMj3dbOyeSVOvT1DLdtHwAkyWw2K9uS5dZ7WvbhPdqXNF5ms5kQHQDgUl4ZogMAAAD4V2B4pIIjYty2fUv6XrdtGwDO5+57GgAA7lBhXywKAAAAAAAAAIC7EaIDAAAAAAAAAOAAIToAAAAAAAAAAA4wJjoAAAAAVGJpaWkym81ubyc0NJSXPZYR58Z7lXRu8vPzlZqaqoKCAvn7+zvdDufGe5VH/+T8A96DEB0AAAAAKqm0tDRFRTdVtiXL7W0FVg/S7hQTgVApcW68F+cG5XUNcP4B70GIDgAAAACVlNlsVrYlS42GTVVgeKTb2sk+vEf7ksbLbDYTBpUS58Z7cW5QHtcA5x/wLoToAAAAAFDJBYZHKjgixtNloBicG+/FuQHXAFB58GJRAAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABxgTHQAAAAAAMogLS1NZrPZrW2YTCa3bh8VR3lcC6Ghoby8EgAugBAdAAAAAIBSSktLU1R0U2VbsjxdCnxc7skMyeCnxMREt7cVWD1Iu1NMBOkA4AAhOgAAAAAApWQ2m5VtyVKjYVMVGB7ptnZOJq/Uoa9nuG378H55llOStcDt11r24T3alzReZrOZEB0AHCBEBwAAAACgjALDIxUcEeO27VvS97pt26hY3H2tAQBKxotFAQAAAAAAAABwgBAdAAAAAAAAAAAHCNEBAAAAAAAAAHCAMdEBAAAAAOXCZDK5vY2zZ8+qWrVqbtt+eewD4IvS0tJkNpvd3k5oaKhPvSDVF+6bNr52blC5EKIDAAAAANwq92SGZPBTYmKi+xsz+EnWAve3A6DU0tLSFBXdVNmWLLe3FVg9SLtTTBU+rPXF+6avnBtUToToAAAAAAC3yrOckqwFajRsqgLDI93WzsnklTr09Qy3tmNrA0Dpmc1mZVuy3H4PyD68R/uSxstsNlf4oNaX7puSb50bVE6E6AAAAACAchEYHqngiBi3bd+Svtft7djaAFB27r4H+CJfuG8CvoAXiwIAAAAAAAAA4AAhOgAAAAAAAAAADhCiAwAAAAAAAADgAGOiAwAAAIAXM5lMFXLbACoW7jUA4BghOgAAAAB4odyTGZLBT4mJiZ4uBYAP414DACUjRAcAAAAAL5RnOSVZC9Ro2FQFhke6pY2TySt16OsZbtk2gIqBew0AlIwQHQAAAAC8WGB4pIIjYtyybUv6XrdsF0DFw70GABzjxaIAAAAAAAAAADhAiA4AAAAAAAAAgAMM5wIAAAAAQCVnMpkq9PbLs63y3BcAlVtaWprMZrPb2wkNDVVERITb26nICNEBAAAAAKikck9mSAY/JSYmerqUi+ZL+wIAaWlpiopuqmxLltvbCqwepN0pJoL0CyBEBwAAAACgksqznJKsBWo0bKoCwyPd1s7J5JU69PUMt21f8q19AQCz2axsS5bb72nZh/doX9J4mc1mQvQLIEQHAAAAAKCSCwyPVHBEjNu2b0nf67Ztn8+X9gUA3H1PQ+nwYlEAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAAUJ0AAAAAAAAAAAcIEQHAAAAAAAAAMABQnQAAAAAAAAAABwgRAcAAAAAAAAAwAFCdAAAAAAAAAAAHCBEBwAAAAAAAADAgQBPFwAAAAAAAAC4islkqtDb92XlcezOnj2ratWquWXb+fn5Sk1NVe3atdWoUSO3tAHvRIgOAAAAAACACi/3ZIZk8FNiYqKnS8F5yvXcGPwka4FbmwisHqTdKSZFRES4tR14D0J0AAAAAAAAVHh5llOStUCNhk1VYHik29o5mbxSh76e4bbt+6LyPjfubCf78B7tSxovs9lMiF6JEKIDAAAAAADAZwSGRyo4IsZt27ek73Xbtn1deZ0bd7eDyocXiwIAAAAAAAAA4AAhOgAAAAAAAAAADhCiAwAAAAAAAADgACE6AAAAAAAAAAAOEKIDAAAAAAAAAOBAhQ7Rc3Jy9Morr6hDhw5q0aKFbr31Vv3666+eLgsAAAAAAAAA4CMqdIg+YcIEffjhh7rpppv0xBNPyN/fX/fee682b97s6dIAAAAAAAAAAD6gwoboO3bs0Lfffqtx48bpscce08CBA/XRRx+pQYMGmjp1qqfLAwAAAAAAAAD4gAobon/33Xfy9/fXwIED7dOqVaumAQMGaNu2bTp8+LAHqwMAAAAAAAAA+IIKG6KbTCZdccUVCgkJKTS9RYsW9vkAAAAAAAAAAFyMAE8X4KyMjAyFhYUVmW6bdvTo0VJtx2q1Svr3JaX+/v6uK7ACyM/PlyQVFBQoODhYBvM+5QcY3NKW/8l0t7dBO97bhq+140v74mvt+NK++Fo7vrQv5dWOL+2Lr7XjS/tSXu340r74Wju+tC/l1Y4v7YuvteNL++Jr7fjSvpRXO760L77WjsG8T8HBwTKZTPZszR1SU1PL5ZjZ9ic/P185OTlua8db2c6hLSN2xGAtaQkv1a1bNzVq1Ejvv/9+oekHDhxQt27dNHHiRA0dOrTE7eTk5Cg5OdlNVQIAAAAAAAAAvFnz5s1VtWpVh/Mr7JPogYGBxf515OzZs/b5pREQEKDmzZvLz89PBoP7/qoDAAAAAAAAAPAeVqtVBQUFCgi4cExeYUP0sLAwHTlypMj0jIwMSVLdunVLtR0/P78L/pUBAAAAAAAAAFB5VdgXi0ZHR2v//v3KzMwsNP23336TJDVt2tQTZQEAAAAAAAAAfEiFDdF79uyp/Px8zZv3f+3deVBUVxYG8I9VVDAIARRUdExoGTZRA5hyQVDAFbdyXKBNRHEFRdyIpoy4ZsaFiCYuwBDcA4ILwmB0tAaRkYCIGo1GwaUNIKgomyzy5g+LN7ZNK6gIbb5fVcp47nm3bzc5uXr69e0DYqyyshKxsbGws7ND+/btm3B1RERERERERERERPQhUNnjXOzs7ODh4YGNGzfiwYMHMDc3R1xcHO7du4fVq1c39fKIiIiIiIiIiIiI6AOgJgiC0NSLeFMVFRUICQnB0aNH8fjxY0gkEsydOxd9+/Zt6qURERERERERERER0QdApZvoRERERERERERERESNSWXPRCciIiIiIiIiIiIiamxsohMRERERERERERERKcEmugoqLS3F5s2b4ePjAwcHB0gkEsTGxtaZe/PmTfj4+MDe3h4ODg5YuHAhHj58qJBXU1ODnTt3wsXFBTY2Nhg+fDji4+Pfak4iapj61HZNTQ1iY2MxY8YM9O/fH927d8ewYcPw/fffo6Kios55o6OjMXjwYNjY2MDNzQ27du2qMy8/Px9z585Fr1690KNHD8ycORN3795958+T6M+mIft2raqqKgwZMgQSiQTh4eEK49y3iZpeQ2q7pqYGe/fuhaenJ2xtbeHo6AipVIrffvtNIY+1TdS0GlLbCQkJGDduHHr16gVHR0d4eXnh9OnTCnmsbaKmdfHiRQQHB2Po0KHo3r07nJ2dMXfuXOTk5Cjkso9Gymg29QKo4R49eoStW7fC1NQUEokEaWlpdebl5eVh0qRJ0NPTQ0BAAMrKyhAREYHr168jOjoa2traYu6mTZuwY8cOjBs3DjY2Njh58iQCAwOhpqaGoUOHvtGcRNQw9ant8vJyBAUFoXv37hg/fjwMDQ2RmZmJ0NBQpKamIioqCmpqamL+/v37sXz5cri7u+PLL79Eeno6Vq1ahfLycvj6+op5paWlkEqlKC4uxvTp06GlpYXIyEh4eXnh0KFDaNu27Xt5DYg+RPXdt1+0e/du5ObmKh3nvk3U9BpS21999RWOHj0KT09PeHl5oaysDFevXsWDBw/k8ljbRE2vvrW9a9curFq1Cs7OzggMDERFRQXi4uIwffp0hIaGws3NTcxlbRM1rbCwMJw/fx4eHh6QSCQoKCjAnj17MHr0aBw4cAAWFhYA2Eej1xBI5VRUVAj3798XBEEQLl68KFhYWAgHDx5UyFu+fLlga2sr3Lt3T4ylpKQIFhYWwv79+8VYXl6eYGVlJaxYsUKM1dTUCBMnThT69esnVFdXN3hOImq4+tR2RUWFkJGRoXBtaGioYGFhIaSkpIix8vJywcHBQfD19ZXLDQwMFLp37y4UFRWJsR07dggWFhZCVlaWGLtx44ZgaWkpbNiw4Z08P6I/q/ru27UKCwuFnj17Clu2bBEsLCyEsLAwuXHu20TNQ31r+9ixY4KFhYVw/PjxV87H2iZqHupb225ubsKYMWOEmpoaMVZcXCx0795dmDFjhhhjbRM1vYyMDKGiokIulpOTI1hbWwuBgYFijH00ehUe56KCtLW1YWRk9Nq848ePw9nZGaampmLs888/R+fOnZGYmCjGTpw4gaqqKkycOFGMqampYcKECcjLy0NmZmaD5ySihqtPbWtra6NHjx4K8UGDBgF4/jGxWufOnUNRUZFcbQPApEmTUFZWJvdR06SkJNjY2MDW1laMde3aFb1792ZtE72l+u7btdavX48uXbpgxIgRdY5z3yZqHupb25GRkbC1tcWgQYNQU1ODsrKyOvNY20TNQ31ru6SkBIaGhnKfAtXV1UXr1q2ho6MjxljbRE2vR48eCnd8d+7cGZ9++imys7PFGPto9Cpson+g8vPz8eDBA1hbWyuM2dra4urVq+Lvr169ilatWqFr164KebXjDZ2TiN6vwsJCAJA7duXKlSsAoFCzVlZWUFdXF2u2pqYG165dq7O2bWxscOfOHZSUlDTW0onoBRcvXsShQ4fw1Vdfyf2l/EXct4lUR0lJCS5evAgbGxts3LgRPXv2hL29PVxdXZGQkCCXy9omUi0ODg5ITk7Grl27IJPJcPPmTaxYsQLFxcWQSqViHmubqHkSBAGFhYXi36HZR6PX4ZnoH6j79+8DQJ3voBsZGaGoqAiVlZXQ1tZGQUGBwjvoL15bO1dD5iSi9yssLAy6urro16+fGCsoKICGhgYMDQ3lcrW1taGvry/WdG3tKqtt4Hn96+rqNuIzICJBELBy5UoMGTIE9vb2kMlkdeZx3yZSHXfu3IEgCDh27Bg0NTWxcOFC6OnpISoqCvPnz5fbu1nbRKpl2bJlePToEVatWoVVq1YBeH5DS2RkJOzt7cU81jZR83TkyBHk5+fD398fAPto9Hpson+gKioqAKDOQmzRogUA4OnTp9DW1hZ/fVVeQ+ckovdn27ZtOHv2LJYvX442bdqI8adPn0JLS6vOa1q0aNGg2q7NIaLGExsbi+vXr2Pz5s2vzOO+TaQ6ao9uKSoqwk8//QQ7OzsAgIuLC1xdXfHDDz+ITXTWNpFq0dHRQZcuXdCuXTs4OzujtLQUkZGR8PPzw549e2Bubg6AtU3UHN28eRPBwcGwt7fHqFGjALCPRq/HJvoHqrYYKysrFcZqi7j2nDYdHZ165TVkTiJ6PxISEhASEoKxY8cqnH2uo6ODqqqqOq+rqKhoUG3X5hBR4ygpKcHGjRvh4+OD9u3bvzKX+zaR6qitww4dOogNdABo3bo1BgwYgKNHj6K6uhqampqsbSIVM3fuXGhqamLbtm1izNXVFe7u7ti0aRNCQkIAcN8mam4KCgowffp06Onp4bvvvoOGhgYA9tHo9Xgm+gfK2NgYwPP/ObysoKAA+vr64jtdRkZGKCwshCAICnkvztWQOYmo8aWkpGDRokVwdnbGihUrFMaNjIzw7NkzPHjwQC5eWVmJoqIisaZra1dZbQP/r38iahzh4eGoqqrCkCFDIJPJIJPJkJeXBwB48uQJZDKZ+Idv7ttEqqO2Dj/++GOFMUNDQ1RVVaG8vBwAa5tIldy9exfJyclwcXGRi+vr66NHjx44f/68GGNtEzUfxcXFmDZtGoqLixEWFgYTExNxjH00eh020T9QJiYmMDAwwOXLlxXGLl68iG7duom/t7S0RHl5OW7evCmXl5WVJY43dE4ialxZWVmYM2cOrK2tERISAk1NxQ8W1dbuyzV7+fJl1NTUiDWrrq4OCwsLpbXdsWNHnodO1Mhyc3Px+PFjDB06FK6urnB1dcWkSZMAPD+yydXVVdynuW8TqQ4TExMYGRkhPz9fYez+/fto0aIFWrduDYC1TaRKCgsLAQDPnj1TGKuurpaLs7aJmoeKigrMmDEDt27dwrZt2/DJJ5/IjbOPRq/DJvoHzM3NDadPn0Zubq4YS01Nxa1bt+Dh4SHGXF1doaWlhb1794oxQRCwf/9+mJiYyH0pSn3nJKLGc/PmTfj6+sLMzAzbt29X+vEvJycn6OvrY9++fXLxffv2oWXLlnB2dhZj7u7uuHTpEi5duiTGsrOz8d///pe1TfQeeHt7Y+vWrXL/BAcHAwBGjx6NrVu3okOHDgC4bxOpmsGDByM3NxcpKSli7OHDhzh58iScnJygrv78r2SsbSLVYW5uDnV1dSQkJMjdiZqXl4f09HSxgQawtomag2fPnmHevHm4cOECvvvuO7m6exH7aPQqPBNdRe3evRtPnjwRv+n31KlT4se+vb29oaenhxkzZuBf//oXpFIppFIpysrKEB4eDgsLC4wZM0acq127dpBKpQgPD0d1dTVsbGxw4sQJpKenY/369eL5UADqPScRvZnX1baamhp8fHzw5MkT+Pj44PTp03LXd+rUSdywdXR04O/vj+DgYPj7+6Nv375IT0/HkSNHEBAQAH19ffG6iRMnIjo6GtOnT8eUKVOgqamJyMhIGBoaYsqUKe/luRN9yF5X21ZWVrCyspK7RiaTAQA++eQTDBw4UIxz3yZqPurzZ/Lp06cjMTERfn5++PLLL6Gnp4d9+/ahuroa8+fPF+dibRM1H6+rbQMDA4wZMwbR0dGYPHky3NzcUFpair1796KiogLTp08X52JtEzW9devW4d///jcGDBiAoqIiHD58WG7c09MTQP1rkHX956QmvHyAD6kEFxcX3Lt3r86xkydPiner/f7771i3bh0yMjKgpaWF/v37Y8mSJQrnMtbU1GDnzp04cOAA7t+/j86dO8PX1xcjRoxQmL++cxJRw72utoHn73orM2rUKKxbt04u9tNPPyEiIgIymQzt27fHpEmTMHnyZKipqcnl5eXlYc2aNUhJSUFNTQ0cHR0RFBQEc3Pzt3xWRFTffftFMpkMrq6uWLRoEXx8fOTGuG8TNQ/1re27d+/i22+/RWpqKqqrq9G9e3cEBgbC1tZW7hrWNlHzUJ/arq6uxv79+xETE4Pbt28DAGxsbDBr1iw4OTnJXcPaJmpa3t7eSEtLUzp+7do18d/ZRyNl2EQnIiIiIiIiIiIiIlKCZ6ITERERERERERERESnBJjoRERERERERERERkRJsohMRERERERERERERKcEmOhERERERERERERGREmyiExEREREREREREREpwSY6EREREREREREREZESbKITERERERERERERESnBJjoRERERERERERERkRJsohMRERERERERERERKcEmOhERERFRI1qyZAkkEglkMllTL+WdOHPmDMaPH4/PPvsMEokEs2bNeu9rkEgk8Pb2fu+PS0RERER/TppNvQAiIiIiovqQyWRwdXUFAPTp0wfh4eEKORcuXMDf/vY3jBo1CuvWrXvfS/zgyWQyzJo1C23atMHo0aOhq6uLv/zlL3XmxsbGIigoqN5z82dGRERERM0Vm+hEREREpHLOnDmD1NRU9O7du6mX8qeSmpqKiooKLF68GMOHD39lrqWlJebMmSMXu3fvHuLi4tCtWzcMHDhQIZ+IiIiIqDliE52IiIiIVIqZmRlyc3Oxfv16xMTEQE1NramX9KeRn58PADA2Nn5trqWlpUJj/Ny5c4iLi4OlpSX8/PwaZY1ERERERO8az0QnIiIiIpXSpUsXeHp64vLly0hMTKzXNS4uLnBxcalzzNvbGxKJRC4WGhoKiUSCc+fO4eDBgxg+fDhsbW3h4uKCqKgoAIAgCIiIiIC7uztsbGzg5uaGQ4cOKV2DIAjYuXMn3NzcYGNjAxcXF2zZsgVVVVV15v/yyy+YMWMGHB0dYW1tDTc3N2zatAnl5eVyeefOnYNEIkFoaCjOnz+PKVOmoFevXgrPSZnr169j7ty56N27N6ytreHi4oLVq1fj0aNHYo5MJhMfAwCkUikkEon4Gr0LGRkZ8PX1hYODA2xsbODh4YHNmzcrPF9lBEHAmjVrIJFIEBgYKL6ugiAgJiYG48ePR48ePWBnZ4fRo0cjJiZGYY4Xf+5Hjx6Fp6cnbG1t0adPH6xatQpPnz5VuCYpKQleXl7o3bs3bGxs0KdPH3zxxRdISkp6uxeEiIiIiJoN3olORERERCrH398fx44dQ0hICAYNGgQtLa1GeZwff/wRaWlpcHV1haOjI44fP47Vq1ejZcuWuHLlCo4fPw5nZ2doaWkhISEBixcvhpmZGT777DOFuVavXo3MzEx4eHigVatWOHXqFEJDQ3H9+nVs3rxZLnfv3r0IDg5GmzZtMGDAABgYGODy5cvYtm0bzp07h6ioKGhra8tdk5mZie3bt8PR0RHjxo1Dbm7ua59feno6pk6diqqqKri7u8PMzAwXLlxAVFQUTp8+jQMHDsDAwABt2rTBnDlzkJaWhrS0NIwaNQpmZmYAIP76NhITExEYGAhtbW0MHjwYhoaGSElJwdatW3HmzBns2rULLVq0UHp9VVUVlixZgvj4eEyePBlBQUFQU1ODIAhYsGAB4uPj0blzZwwbNgza2tpISUnB0qVLcfPmTSxevFhhvj179iA5ORkuLi5wcnJCcnIydu3ahUePHmHDhg1i3t69e7FixQoYGRlh0KBB0NfXR0FBAS5duoSff/4Z7u7ub/3aEBEREVHTYxOdiIiIiFSOqakpvLy8EBERgQMHDsDLy6tRHicjIwNxcXHo2LEjAMDHxweDBg3Ct99+C0NDQxw9ehQGBgYAnn8x5rhx4xAeHl5nEz0rKwuHDx9Gu3btAAABAQGYMmUKkpKSkJSUJDZcb9y4gdWrV0MikSAyMhJt27YV59ixYwc2bNiA3bt3Y8qUKXLzp6SkYM2aNRgzZky9nltNTQ2CgoJQXl6OsLAw9O3bVxz7+9//jvDwcKxfvx5r1qxBmzZt4Ofnh9DQULGJ7ujo2IBXUrmSkhJ8/fXX0NDQwP79+9GtWzcAwPz58xEYGIiEhASEhYVh9uzZdV5fWloKf39/nDlzBoGBgfD19RXHoqOjER8fj9GjRyM4OFh8s6WyshL+/v6IiIjA0KFDYW1tLTfn2bNncfDgQfFLUwMCAuDp6YmEhAQsWrQIJiYmAICYmBhoaWnh8OHDMDQ0lJvjxTv5iYiIiEi18TgXIiIiIlJJM2bMQJs2bfD999+jtLS0UR7D29tbbKADQPv27dGzZ08UFxdj5syZYgMdAOzs7NCxY0dcu3atzrmkUqnYQAcAbW1tzJs3DwAQFxcnxvfv34/q6mp8/fXXcg10AJg6dSoMDAwQHx+vML+VlVW9G+gAcP78edy5cwf9+vWTa6ADwOzZs6Gvr4/4+HhUVlbWe843ceLECRQXF2PMmDFiAx0A1NXVsXDhQmhqasq9Pi96+PAhJk+ejNTUVKxZs0augQ4Au3fvRqtWrbB8+XK5Tytoa2sjICAAAHDs2DGFeaVSqdhABwAdHR0MGzYMNTU1+PXXX+VytbS0oKmpeG/Syz87IiIiIlJdvBOdiIiIiFTSRx99hGnTpmHDhg2IiIholC+qfPmLMQHAyMgIAOQavi+OXbx4sc65evXqpRCzt7eHpqYmrly5IsaysrIAAMnJyUhNTVW4RlNTEzk5OQrxl++mfp3ax3RwcFAYa926NaytrXHmzBnk5OTU+3z1N3H16lWl6zA1NUWHDh1w69YtlJSUQFdXVxwrLCzEhAkTkJeXhy1btiiceV9eXo7r16/D2NgYO3fuVJi7uroaAJCdna0wZmVlpRCrfQPkyZMnYmzIkCH4xz/+gWHDhmHYsGFwcnJCz5495dZJRERERKqPTXQiIiIiUllSqRR79uxBREQEJk6c+M7nr6sZWnvXsbKx2ubsy14+7gMANDQ0oK+vj+LiYjH2+PFjAMC2bdsatNaPP/64QfklJSWvvK72zYLavMbyunUYGxvj1q1bKC0tlXvNCwoKUFJSAnNzc9jZ2Slc9+TJEwiCgPz8fGzZskXp45eVlSnE6vrZamhoAHh+DE4tHx8f6OvrY9++ffjnP/+JiIgIaGpqon///ggKCpL7FAMRERERqS420YmIiIhIZeno6MDPzw9Lly7Fli1b4OnpWWeempoaqqqq6hx7sYHdmB48eCB3RAgAPHv2DEVFRXIN9toGbkZGRoPuaFZTU2vQemrnLiwsrHO8oKBALq+x1HcdrVu3lotbWlpi5MiRWLZsGaRSKX788Ue5RnxtvpWVFWJjYxtj6VBTU8PYsWMxduxYPHr0CBkZGYiPj0diYiJu376NI0eOiM13IiIiIlJdPBOdiIiIiFTaqFGj8OmnnyI6Ohq3b9+uM+ejjz7Cw4cPFe4SLysrU3rNu5aenq4Qy8zMRHV1Nf7617+KMVtbWwD/P9alsdQ+ZlpamsJYWVkZLl++DB0dHXTp0qVR11F7ZE5d68jNzcXdu3fRsWPHOpv5Y8aMwdq1a5GdnQ2pVCrXiNfV1UXXrl2RnZ0tdwRLY2nbti0GDhyIkJAQODk54caNG+/tvy0iIiIialxsohMRERGRStPQ0EBAQACqqqqUHtthbW2NqqoqHD16VIwJgoCNGzfWeZxHY4iKikJeXp74+8rKSoSEhAB4/kZArYkTJ0JTUxMrV67EH3/8oTDPkydP5M5Qf1M9evRAp06d8J///Adnz56VG/vhhx9QVFSEoUOHQltb+60f61UGDhwIPT09xMbG4vfffxfjgiBg/fr1qK6ulnt9XjZy5EisXbsWOTk58Pb2Fu9cB55/MWx5eTmWLVtW58/57t27kMlkb7z2c+fOQRAEuVhVVZV4JE+LFi3eeG4iIiIiaj54nAsRERERqTxXV1f07NkTGRkZdY57eXkhNjYWy5YtQ0pKCgwMDJCeno7i4mJ069YNv/32W6Ov0c7ODp6enhg8eDBatmyJU6dOIScnB25ubnB3dxfzLCwssHz5cnzzzTfw8PBA//790bFjR5SWlkImkyEtLQ2jRo1CcHDwW61HXV0da9euxdSpU+Hr6wt3d3eYmZkhMzMTaWlp6NSpExYsWPC2T/u1dHV1sXLlSgQGBmLcuHEYPHgwDAwMcPbsWfz666+wtbXF1KlTXznHyJEjoa6ujiVLlsDb2xtRUVEwNjbG+PHjkZWVhbi4OJw/fx6ff/45jI2N8eDBA2RnZyMrKwsbNmxAhw4d3mjts2fPhq6uLuzs7GBqaorq6mqcPXsWN27cEF9PIiIiIlJ9bKITERER0QdhwYIFmDBhQp1jFhYWCAsLw8aNG5GUlIRWrVqhf//+WLx4MebNm/de1rd06VIkJiYiJiYGf/zxB4yNjeHn5wdfX1+F3HHjxqFbt26IjIzEL7/8glOnTkFXVxempqb44osvMHLkyHeypl69euHAgQPYunUrUlJSUFJSAmNjY0ilUsycORMGBgbv5HFeZ/DgwTAyMsL27dvx888/o7y8HGZmZpg1axamTZtWrzu6R4wYAXV1dSxatEg8I93ExATr1q1Dv379EB0djdOnT6OsrAwGBgYwNzfH4sWL0bt37zde9/z585GcnIxLly7h1KlTaNmyJTp16oRvvvkGY8eOfeN5iYiIiKh5URNe/vwhEREREREREREREREB4JnoRERERERERERERERKsYlORERERERERERERKQEm+hEREREREREREREREqwiU5EREREREREREREpASb6ERERERERERERERESrCJTkRERERERERERESkBJvoRERERERERERERERKsIlORERERERERERERKQEm+hEREREREREREREREqwiU5EREREREREREREpASb6ERERERERERERERESrCJTkRERERERERERESkBJvoRERERERERERERERK/A9t+qvPyfVpKwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ], "source": [ "#Combine Tokens Count\n", "plot_distribution(combine_tokens_count, \"Distribution of the tokens count for combined Instruction + Output Column\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "sYzE1V-mbsBT", "outputId": "8263a4ca-9fe5-43ee-acb8-61f5c5efaed4" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " instruction \\\n", "0 Let's come up with a rich and complex alien wo... \n", "1 Let\\n$$p(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a... \n", "2 Given the code below, refactor it, add comment... \n", "3 Find the area of the region described by $x \\g... \n", "4 Let $P$ be the plane passing through the origi... \n", ".. ... \n", "995 Hello. My name is Mike. I have a message left ... \n", "996 Given a prime $p$ and an integer $a$, we say t... \n", "997 Let $f$ be defined by \\[f(x) = \\left\\{\\n\\begi... \n", "998 BEGININPUT\\nBEGINCONTEXT\\ndate: August 5, 2021... \n", "999 BEGININPUT\\nBEGINCONTEXT\\ndate: August 14, 201... \n", "\n", " output \n", "0 Planet Name: Xylothar\\n\\nXylothar is a diverse... \n", "1 Observe that \\begin{align*}\\np(0,0) &= a_0 = ... \n", "2 Here is the refactored and commented version:\\... \n", "3 Let $n = \\lfloor x \\rfloor,$ and let $\\{x\\} = ... \n", "4 Let $\\mathbf{v} = \\begin{pmatrix} x \\\\ y \\\\ z ... \n", ".. ... \n", "995 Hello Mike, it's nice to meet you. As an AI la... \n", "996 To find the primitive roots $\\pmod 7$, I need ... \n", "997 The number $f^{-1}(-3)$ is the value of $x$ su... \n", "998 Dr. Eleanor Thompson's study found that partic... \n", "999 Charles Leroux won the Golden Bread Award in 1... \n", "\n", "[1000 rows x 2 columns]" ], "text/html": [ "\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
instructionoutput
0Let's come up with a rich and complex alien wo...Planet Name: Xylothar\\n\\nXylothar is a diverse...
1Let\\n$$p(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a...Observe that \\begin{align*}\\np(0,0) &= a_0 = ...
2Given the code below, refactor it, add comment...Here is the refactored and commented version:\\...
3Find the area of the region described by $x \\g...Let $n = \\lfloor x \\rfloor,$ and let $\\{x\\} = ...
4Let $P$ be the plane passing through the origi...Let $\\mathbf{v} = \\begin{pmatrix} x \\\\ y \\\\ z ...
.........
995Hello. My name is Mike. I have a message left ...Hello Mike, it's nice to meet you. As an AI la...
996Given a prime $p$ and an integer $a$, we say t...To find the primitive roots $\\pmod 7$, I need ...
997Let $f$ be defined by \\[f(x) = \\left\\{\\n\\begi...The number $f^{-1}(-3)$ is the value of $x$ su...
998BEGININPUT\\nBEGINCONTEXT\\ndate: August 5, 2021...Dr. Eleanor Thompson's study found that partic...
999BEGININPUT\\nBEGINCONTEXT\\ndate: August 14, 201...Charles Leroux won the Golden Bread Award in 1...
\n", "

1000 rows × 2 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", "
\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"dataset['train']\",\n \"rows\": 1000,\n \"fields\": [\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1000,\n \"samples\": [\n \"BEGININPUT\\nBEGINCONTEXT\\ndate: September 15, 2021\\nurl: www.telecomhistory.com/evolution-video-transcript\\nauthor: Patricia Williams\\ntitle: The Evolution of Telecommunication: A Video Transcript\\nENDCONTEXT\\nIn this video transcript, we will explore the fascinating journey of telecommunication from its humble beginnings to the advanced technologies we use today. Our story begins in the early 19th century with Samuel Morse's invention of the electric telegraph.\\n\\nThe electric telegraph was invented by Samuel Morse in 1837 and became operational in 1844. This revolutionary device allowed people to send messages over long distances using a series of electrical signals. Messages were sent in Morse code, a system of dots and dashes that represented letters and numbers. The first message sent via telegraph was \\\"What hath God wrought?\\\" on May 24, 1844, between Washington D.C. and Baltimore.\\n\\nAlexander Graham Bell is credited with inventing the telephone in 1876. His invention revolutionized communication by allowing people to speak directly to each other over long distances. On March 10, 1876, Bell made the first successful telephone call to his assistant, Thomas Watson, saying, \\\"Mr. Watson, come here; I want you.\\\" By the end of the 19th century, telephone lines had been installed across the United States and Europe.\\n\\nWireless communication took a significant leap forward in 1895 when Guglielmo Marconi developed the wireless telegraph, also known as the radio. Marconi's invention used electromagnetic waves to transmit messages without wires. In 1901, he successfully sent a wireless signal across the Atlantic Ocean, proving that radio could be used for long-distance communication.\\n\\nTelevision emerged as a new form of telecommunication in the 1920s. Scottish inventor John Logie Baird demonstrated the first working television system on January 26, 1926. Early television sets were large and expensive, but by the 1950s, they had become more affordable and widespread.\\n\\nThe development of satellites in the 1960s allowed for global communication on an unprecedented scale. On July 10, 1962, Telstar 1, the first active communications satellite, was launched into orbit. This satellite enabled live transatlantic television broadcasts and telephone calls between the United States and Europe.\\n\\nIn the 1980s, mobile phones began to gain popularity. The first commercially available cell phone, the Motorola DynaTAC 8000X, was released in 1983. It weighed nearly two pounds and cost $3,995. Over time, mobile phones became smaller, lighter, and more affordable, leading to their widespread adoption around the world.\\n\\nThe invention of the internet in the late 20th century revolutionized telecommunication once again. Developed initially as a military project in the 1960s, the internet became publicly accessible in the 1990s. Today, it serves as a platform for countless applications, including email, social media, video conferencing, and online gaming.\\n\\nAs we look to the future, advancements in telecommunication technology continue to evolve at a rapid pace. From 5G networks to virtual reality, the possibilities are endless. One thing is certain: the history of telecommunication is a testament to human ingenuity and our desire to connect with one another.\\nENDINPUT\\n\\nBEGININSTRUCTION\\n- Summarize the key milestones in the evolution of telecommunication from the electric telegraph to the internet.\\nENDINSTRUCTION\",\n \"For each following Query, return a series of clear, factual and concise Summary Bullet Points of the Query using only information available in the Query.\\n###\\nQuery:\\nArtificial intelligence (AI) is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals, which involves consciousness and emotionality. The distinction between the former and the latter categories is often revealed by the acronym chosen. 'Strong' AI is usually labelled as AGI (Artificial General Intelligence) while attempts to emulate 'natural' intelligence have been called ABI (Artificial Biological Intelligence). Leading AI textbooks define the field as the study of \\\"intelligent agents\\\": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.3 Colloquially, the term \\\"artificial intelligence\\\" is often used to describe machines (or computers) that mimic \\\"cognitive\\\" functions that humans associate with the human mind, such as \\\"learning\\\" and \\\"problem solving\\\".[4]\\n\\nAs machines become increasingly capable, tasks considered to require \\\"intelligence\\\" are often removed from the definition of AI, a phenomenon known as the AI effect.[5] A quip in Tesler's Theorem says \\\"AI is whatever hasn't been done yet.\\\"[6] For instance, optical character recognition is frequently excluded from things considered to be AI,[7] having become a routine technology.[8] Modern machine capabilities generally classified as AI include successfully understanding human speech,[9] competing at the highest level in strategic game systems (such as chess and Go),[10] autonomously operating cars, intelligent routing in content delivery networks, and military simulations.[11]\\n\\nSummary:\\n- The text discusses artificial intelligence (AI) and its various applications. \\n- It defines AI as intelligence demonstrated by machines\\n- AI is often distinguished from natural intelligence by its lack of consciousness and emotionality. \\n- Discusses the AI effect, which is the tendency for tasks to be removed from the definition of AI as machines become increasingly capable.\\n###\\nQuery:\\nFishing is the activity of trying to catch fish. Fish are often caught as wildlife from the natural environments, but may also be caught from stocked bodies of water such as ponds, canals, park wetlands and reservoirs. Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping, as well as more destructive and often illegal techniques such as electrocution, blasting and poisoning.\\n\\nThe term fishing broadly includes catching aquatic animals other than fish, such as crustaceans (shrimp/lobsters/crabs), shellfish, cephalopods (octopus/squid) and echinoderms (starfish/sea urchins). The term is not normally applied to harvesting fish raised in controlled cultivations (fish farming). Nor is it normally applied to hunting aquatic mammals, where terms like whaling and sealing are used instead.\\n\\nFishing has been an important part of human culture since hunter-gatherer times, and is one of the few food production activities that have persisted from prehistory into modern age, surviving both the Neolithic Revolution and successive Industrial Revolutions. In addition to being caught to be eaten for food, fish are caught as recreational pastimes. Fishing tournaments are held, and caught fish are sometimes kept long-term as preserved or living trophies. When bioblitzes occur, fish are typically caught, identified, and then released.\\n\\nAccording to the United Nations FAO statistics, the total number of commercial fishers and fish farmers is estimated to be 38 million. Fishing industries and aquaculture provide direct and indirect employment to over 500 million people in developing countries.[1] In 2005, the worldwide per capita consumption of fish captured from wild fisheries was 14.4 kilograms (32 lb), with an additional 7.4 kilograms (16 lb) harvested from fish farms.[2]\\n\\nSummary:\\n- Fishing is the activity of trying to catch fish.\\n- Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping.\\n- The term \\\"fishing\\\" broadly includes catching aquatic animals other than fish, such as crustaceans, shellfish, cephalopods and echinoderms.\\n- The term fishing is not normally applied to hunting aquatic mammals.\\n- Fishing has been an important part of human culture since hunter-gatherer times\\n###\\nQuery: {}\\n\\nSummary:\",\n \"Develop a C++ program that implements a simple ray-tracing algorithm to render 3D scenes with basic shapes (spheres, planes) and lighting. The program should output the rendered image as a PNG file.\\nPLAINFORMAT\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"output\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1000,\n \"samples\": [\n \"The key milestones in the evolution of telecommunication include:\\n\\n1. Invention of the electric telegraph by Samuel Morse in 1837, which became operational in 1844 and allowed long-distance communication using Morse code.\\n2. Alexander Graham Bell's invention of the telephone in 1876, enabling direct speech over long distances.\\n3. Guglielmo Marconi's development of the wireless telegraph (radio) in 1895, using electromagnetic waves for wire-free messaging.\\n4. The emergence of television as a new form of telecommunication in the 1920s, with John Logie Baird demonstrating the first working system in 1926.\\n5. Launch of Telstar 1, the first active communications satellite, in 1962, allowing global communication through live transatlantic broadcasts and phone calls.\\n6. The rise of mobile phones in the 1980s, starting with the release of the Motorola DynaTAC 8000X in 1983.\\n7. The invention of the internet in the late 20th century, initially developed as a military project and becoming publicly accessible in the 1990s, leading to various applications like email, social media, and video conferencing.\",\n \"Thank you for the examples, I'm ready to summarize now. \\n\\nWhat is your query?\",\n \"```cpp\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\\"stb_image_write.h\\\"\\n\\nusing namespace std;\\nusing namespace Eigen;\\n\\nclass Vector3 {\\npublic:\\n Vector3(float x = 0, float y = 0, float z = 0) : v(x, y, z) {}\\n\\n float x() const { return v.x(); }\\n float y() const { return v.y(); }\\n float z() const { return v.z(); }\\n\\n Vector3 operator+(const Vector3 &other) const {\\n return Vector3(v + other.v);\\n }\\n\\nprivate:\\n Vector3(const Eigen::Vector3f &v) : v(v) {}\\n\\n Eigen::Vector3f v;\\n};\\n\\nclass Ray {\\npublic:\\n Ray(const Vector3 &origin, const Vector3 &direction)\\n : origin(origin), direction(direction.normalized()) {}\\n\\n Vector3 origin;\\n Vector3 direction;\\n};\\n\\nclass Shape {\\npublic:\\n virtual bool intersect(const Ray &ray, float &t) const = 0;\\n};\\n\\nclass Sphere : public Shape {\\npublic:\\n Sphere(const Vector3 ¢er, float radius) : center(center), radius(radius) {}\\n\\n bool intersect(const Ray &ray, float &t) const override {\\n // ... (intersection algorithm)\\n }\\n\\n Vector3 center;\\n float radius;\\n};\\n\\nclass Plane : public Shape {\\npublic:\\n Plane(const Vector3 &point, const Vector3 &normal)\\n : point(point), normal(normal.normalized()) {}\\n\\n bool intersect(const Ray &ray, float &t) const override {\\n // ... (intersection algorithm)\\n }\\n\\n Vector3 point;\\n Vector3 normal;\\n};\\n\\nclass Light {\\npublic:\\n Light(const Vector3 &position, float intensity)\\n : position(position), intensity(intensity) {}\\n\\n Vector3 position;\\n float intensity;\\n};\\n\\nclass Scene {\\npublic:\\n void addShape(unique_ptr shape) {\\n shapes.push_back(move(shape));\\n }\\n\\n void addLight(const Light &light) {\\n lights.push_back(light);\\n }\\n\\n const Shape *intersect(const Ray &ray, float &t) const {\\n // ... (find the closest intersection)\\n }\\n\\n vector> shapes;\\n vector lights;\\n};\\n\\nVector3 shade(const Ray &ray, const Scene &scene) {\\n float t;\\n const Shape *shape = scene.intersect(ray, t);\\n\\n if (!shape) {\\n return Vector3(0); // background color\\n }\\n\\n // Compute the shading based on the intersection and lighting\\n // ...\\n\\n return color;\\n}\\n\\nvoid render(const Scene &scene, const string &outputFile) {\\n int width = 800;\\n int height = 600;\\n\\n vector pixels(width * height * 3);\\n\\n for (int y = 0; y < height; ++y) {\\n for (int x = 0; x < width; ++x) {\\n // Cast a ray through the pixel\\n Ray ray = ...;\\n\\n Vector3 color = shade(ray, scene);\\n\\n int index = (y * width + x) * 3;\\n pixels[index] = color.x() * 255;\\n pixels[index + 1] = color.y() * 255;\\n pixels[index + 2] = color.z() * 255;\\n }\\n }\\n\\n stbi_write_png(outputFile.c_str(), width, height, 3, pixels.data(), width * 3);\\n}\\n\\nint main() {\\n // Create your 3D scene with shapes and lights\\n // ...\\n\\n // Render the scene and save it as a PNG file\\n render(scene, \\\"output.png\\\");\\n\\n return 0;\\n}\\n```\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 24 } ], "source": [ "\n", "# Read as pandas DataFrame\n", "dataset['train'].to_pandas()" ] }, { "cell_type": "markdown", "source": [ "**Chat template**" ], "metadata": { "id": "1k1EkmzEe3hV" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ "b16f12ccbbcc46d29327c134d84652de", "90eb36d1ec334903af89b238acf80ef5", "baf7a796df514b22a35138adaaed3cae", "e1d1aa12229c4e51aa773cdc8ad0e814", "7f85fb39d1c24f808a4763de18cd712a", "fcb50e9def6c4886ac6955bf3e56ffda", "adc341dc0cd04729bd660ae4debb9040", "a087c38e5b0e4920bb9ea09210ee1896", "5289fda84aa648bfad773e6f54e48d0c", "bba89b70ea6541e8bddc689710676b6a", "2c1cd8a9de7d44208ac7e61bf292dc73" ] }, "id": "1CLdxLwcbt-W", "outputId": "10c24308-7be6-4f63-b514-c3beb6cc53c2" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Map: 0%| | 0/1000 [00:00\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
instructionoutput
0### Instruction:\\nLet's come up with a rich an...Planet Name: Xylothar\\n\\nXylothar is a diverse...
1### Instruction:\\nLet\\n$$p(x,y) = a_0 + a_1x +...Observe that \\begin{align*}\\np(0,0) &= a_0 = ...
2### Instruction:\\nGiven the code below, refact...Here is the refactored and commented version:\\...
3### Instruction:\\nFind the area of the region ...Let $n = \\lfloor x \\rfloor,$ and let $\\{x\\} = ...
4### Instruction:\\nLet $P$ be the plane passing...Let $\\mathbf{v} = \\begin{pmatrix} x \\\\ y \\\\ z ...
.........
995### Instruction:\\nHello. My name is Mike. I ha...Hello Mike, it's nice to meet you. As an AI la...
996### Instruction:\\nGiven a prime $p$ and an int...To find the primitive roots $\\pmod 7$, I need ...
997### Instruction:\\nLet $f$ be defined by \\[f(x...The number $f^{-1}(-3)$ is the value of $x$ su...
998### Instruction:\\nBEGININPUT\\nBEGINCONTEXT\\nda...Dr. Eleanor Thompson's study found that partic...
999### Instruction:\\nBEGININPUT\\nBEGINCONTEXT\\nda...Charles Leroux won the Golden Bread Award in 1...
\n", "

1000 rows × 2 columns

\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "summary": "{\n \"name\": \"dataset[\\\"train\\\"]\",\n \"rows\": 1000,\n \"fields\": [\n {\n \"column\": \"instruction\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1000,\n \"samples\": [\n \"### Instruction:\\nBEGININPUT\\nBEGINCONTEXT\\ndate: September 15, 2021\\nurl: www.telecomhistory.com/evolution-video-transcript\\nauthor: Patricia Williams\\ntitle: The Evolution of Telecommunication: A Video Transcript\\nENDCONTEXT\\nIn this video transcript, we will explore the fascinating journey of telecommunication from its humble beginnings to the advanced technologies we use today. Our story begins in the early 19th century with Samuel Morse's invention of the electric telegraph.\\n\\nThe electric telegraph was invented by Samuel Morse in 1837 and became operational in 1844. This revolutionary device allowed people to send messages over long distances using a series of electrical signals. Messages were sent in Morse code, a system of dots and dashes that represented letters and numbers. The first message sent via telegraph was \\\"What hath God wrought?\\\" on May 24, 1844, between Washington D.C. and Baltimore.\\n\\nAlexander Graham Bell is credited with inventing the telephone in 1876. His invention revolutionized communication by allowing people to speak directly to each other over long distances. On March 10, 1876, Bell made the first successful telephone call to his assistant, Thomas Watson, saying, \\\"Mr. Watson, come here; I want you.\\\" By the end of the 19th century, telephone lines had been installed across the United States and Europe.\\n\\nWireless communication took a significant leap forward in 1895 when Guglielmo Marconi developed the wireless telegraph, also known as the radio. Marconi's invention used electromagnetic waves to transmit messages without wires. In 1901, he successfully sent a wireless signal across the Atlantic Ocean, proving that radio could be used for long-distance communication.\\n\\nTelevision emerged as a new form of telecommunication in the 1920s. Scottish inventor John Logie Baird demonstrated the first working television system on January 26, 1926. Early television sets were large and expensive, but by the 1950s, they had become more affordable and widespread.\\n\\nThe development of satellites in the 1960s allowed for global communication on an unprecedented scale. On July 10, 1962, Telstar 1, the first active communications satellite, was launched into orbit. This satellite enabled live transatlantic television broadcasts and telephone calls between the United States and Europe.\\n\\nIn the 1980s, mobile phones began to gain popularity. The first commercially available cell phone, the Motorola DynaTAC 8000X, was released in 1983. It weighed nearly two pounds and cost $3,995. Over time, mobile phones became smaller, lighter, and more affordable, leading to their widespread adoption around the world.\\n\\nThe invention of the internet in the late 20th century revolutionized telecommunication once again. Developed initially as a military project in the 1960s, the internet became publicly accessible in the 1990s. Today, it serves as a platform for countless applications, including email, social media, video conferencing, and online gaming.\\n\\nAs we look to the future, advancements in telecommunication technology continue to evolve at a rapid pace. From 5G networks to virtual reality, the possibilities are endless. One thing is certain: the history of telecommunication is a testament to human ingenuity and our desire to connect with one another.\\nENDINPUT\\n\\nBEGININSTRUCTION\\n- Summarize the key milestones in the evolution of telecommunication from the electric telegraph to the internet.\\nENDINSTRUCTION\\n\\n### Response:\\n\",\n \"### Instruction:\\nFor each following Query, return a series of clear, factual and concise Summary Bullet Points of the Query using only information available in the Query.\\n###\\nQuery:\\nArtificial intelligence (AI) is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals, which involves consciousness and emotionality. The distinction between the former and the latter categories is often revealed by the acronym chosen. 'Strong' AI is usually labelled as AGI (Artificial General Intelligence) while attempts to emulate 'natural' intelligence have been called ABI (Artificial Biological Intelligence). Leading AI textbooks define the field as the study of \\\"intelligent agents\\\": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.3 Colloquially, the term \\\"artificial intelligence\\\" is often used to describe machines (or computers) that mimic \\\"cognitive\\\" functions that humans associate with the human mind, such as \\\"learning\\\" and \\\"problem solving\\\".[4]\\n\\nAs machines become increasingly capable, tasks considered to require \\\"intelligence\\\" are often removed from the definition of AI, a phenomenon known as the AI effect.[5] A quip in Tesler's Theorem says \\\"AI is whatever hasn't been done yet.\\\"[6] For instance, optical character recognition is frequently excluded from things considered to be AI,[7] having become a routine technology.[8] Modern machine capabilities generally classified as AI include successfully understanding human speech,[9] competing at the highest level in strategic game systems (such as chess and Go),[10] autonomously operating cars, intelligent routing in content delivery networks, and military simulations.[11]\\n\\nSummary:\\n- The text discusses artificial intelligence (AI) and its various applications. \\n- It defines AI as intelligence demonstrated by machines\\n- AI is often distinguished from natural intelligence by its lack of consciousness and emotionality. \\n- Discusses the AI effect, which is the tendency for tasks to be removed from the definition of AI as machines become increasingly capable.\\n###\\nQuery:\\nFishing is the activity of trying to catch fish. Fish are often caught as wildlife from the natural environments, but may also be caught from stocked bodies of water such as ponds, canals, park wetlands and reservoirs. Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping, as well as more destructive and often illegal techniques such as electrocution, blasting and poisoning.\\n\\nThe term fishing broadly includes catching aquatic animals other than fish, such as crustaceans (shrimp/lobsters/crabs), shellfish, cephalopods (octopus/squid) and echinoderms (starfish/sea urchins). The term is not normally applied to harvesting fish raised in controlled cultivations (fish farming). Nor is it normally applied to hunting aquatic mammals, where terms like whaling and sealing are used instead.\\n\\nFishing has been an important part of human culture since hunter-gatherer times, and is one of the few food production activities that have persisted from prehistory into modern age, surviving both the Neolithic Revolution and successive Industrial Revolutions. In addition to being caught to be eaten for food, fish are caught as recreational pastimes. Fishing tournaments are held, and caught fish are sometimes kept long-term as preserved or living trophies. When bioblitzes occur, fish are typically caught, identified, and then released.\\n\\nAccording to the United Nations FAO statistics, the total number of commercial fishers and fish farmers is estimated to be 38 million. Fishing industries and aquaculture provide direct and indirect employment to over 500 million people in developing countries.[1] In 2005, the worldwide per capita consumption of fish captured from wild fisheries was 14.4 kilograms (32 lb), with an additional 7.4 kilograms (16 lb) harvested from fish farms.[2]\\n\\nSummary:\\n- Fishing is the activity of trying to catch fish.\\n- Fishing techniques include hand-gathering, spearing, netting, angling, shooting and trapping.\\n- The term \\\"fishing\\\" broadly includes catching aquatic animals other than fish, such as crustaceans, shellfish, cephalopods and echinoderms.\\n- The term fishing is not normally applied to hunting aquatic mammals.\\n- Fishing has been an important part of human culture since hunter-gatherer times\\n###\\nQuery: {}\\n\\nSummary:\\n\\n### Response:\\n\",\n \"### Instruction:\\nDevelop a C++ program that implements a simple ray-tracing algorithm to render 3D scenes with basic shapes (spheres, planes) and lighting. The program should output the rendered image as a PNG file.\\nPLAINFORMAT\\n\\n### Response:\\n\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"output\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 1000,\n \"samples\": [\n \"The key milestones in the evolution of telecommunication include:\\n\\n1. Invention of the electric telegraph by Samuel Morse in 1837, which became operational in 1844 and allowed long-distance communication using Morse code.\\n2. Alexander Graham Bell's invention of the telephone in 1876, enabling direct speech over long distances.\\n3. Guglielmo Marconi's development of the wireless telegraph (radio) in 1895, using electromagnetic waves for wire-free messaging.\\n4. The emergence of television as a new form of telecommunication in the 1920s, with John Logie Baird demonstrating the first working system in 1926.\\n5. Launch of Telstar 1, the first active communications satellite, in 1962, allowing global communication through live transatlantic broadcasts and phone calls.\\n6. The rise of mobile phones in the 1980s, starting with the release of the Motorola DynaTAC 8000X in 1983.\\n7. The invention of the internet in the late 20th century, initially developed as a military project and becoming publicly accessible in the 1990s, leading to various applications like email, social media, and video conferencing.\",\n \"Thank you for the examples, I'm ready to summarize now. \\n\\nWhat is your query?\",\n \"```cpp\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\\"stb_image_write.h\\\"\\n\\nusing namespace std;\\nusing namespace Eigen;\\n\\nclass Vector3 {\\npublic:\\n Vector3(float x = 0, float y = 0, float z = 0) : v(x, y, z) {}\\n\\n float x() const { return v.x(); }\\n float y() const { return v.y(); }\\n float z() const { return v.z(); }\\n\\n Vector3 operator+(const Vector3 &other) const {\\n return Vector3(v + other.v);\\n }\\n\\nprivate:\\n Vector3(const Eigen::Vector3f &v) : v(v) {}\\n\\n Eigen::Vector3f v;\\n};\\n\\nclass Ray {\\npublic:\\n Ray(const Vector3 &origin, const Vector3 &direction)\\n : origin(origin), direction(direction.normalized()) {}\\n\\n Vector3 origin;\\n Vector3 direction;\\n};\\n\\nclass Shape {\\npublic:\\n virtual bool intersect(const Ray &ray, float &t) const = 0;\\n};\\n\\nclass Sphere : public Shape {\\npublic:\\n Sphere(const Vector3 ¢er, float radius) : center(center), radius(radius) {}\\n\\n bool intersect(const Ray &ray, float &t) const override {\\n // ... (intersection algorithm)\\n }\\n\\n Vector3 center;\\n float radius;\\n};\\n\\nclass Plane : public Shape {\\npublic:\\n Plane(const Vector3 &point, const Vector3 &normal)\\n : point(point), normal(normal.normalized()) {}\\n\\n bool intersect(const Ray &ray, float &t) const override {\\n // ... (intersection algorithm)\\n }\\n\\n Vector3 point;\\n Vector3 normal;\\n};\\n\\nclass Light {\\npublic:\\n Light(const Vector3 &position, float intensity)\\n : position(position), intensity(intensity) {}\\n\\n Vector3 position;\\n float intensity;\\n};\\n\\nclass Scene {\\npublic:\\n void addShape(unique_ptr shape) {\\n shapes.push_back(move(shape));\\n }\\n\\n void addLight(const Light &light) {\\n lights.push_back(light);\\n }\\n\\n const Shape *intersect(const Ray &ray, float &t) const {\\n // ... (find the closest intersection)\\n }\\n\\n vector> shapes;\\n vector lights;\\n};\\n\\nVector3 shade(const Ray &ray, const Scene &scene) {\\n float t;\\n const Shape *shape = scene.intersect(ray, t);\\n\\n if (!shape) {\\n return Vector3(0); // background color\\n }\\n\\n // Compute the shading based on the intersection and lighting\\n // ...\\n\\n return color;\\n}\\n\\nvoid render(const Scene &scene, const string &outputFile) {\\n int width = 800;\\n int height = 600;\\n\\n vector pixels(width * height * 3);\\n\\n for (int y = 0; y < height; ++y) {\\n for (int x = 0; x < width; ++x) {\\n // Cast a ray through the pixel\\n Ray ray = ...;\\n\\n Vector3 color = shade(ray, scene);\\n\\n int index = (y * width + x) * 3;\\n pixels[index] = color.x() * 255;\\n pixels[index + 1] = color.y() * 255;\\n pixels[index + 2] = color.z() * 255;\\n }\\n }\\n\\n stbi_write_png(outputFile.c_str(), width, height, 3, pixels.data(), width * 3);\\n}\\n\\nint main() {\\n // Create your 3D scene with shapes and lights\\n // ...\\n\\n // Render the scene and save it as a PNG file\\n render(scene, \\\"output.png\\\");\\n\\n return 0;\\n}\\n```\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 26 } ], "source": [ "dataset[\"train\"].to_pandas()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "2PBjwceVbzXU" }, "outputs": [], "source": [ "! pip install huggingface_hub --q" ] }, { "cell_type": "code", "source": [ "!huggingface-cli login" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wpakk8XZXGq4", "outputId": "6ecf5d9c-953b-4ef0-c7c9-667c667b9109" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\n", " _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n", " _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n", " _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n", " _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n", "\n", " A token is already saved on your machine. Run `huggingface-cli whoami` to get more information or `huggingface-cli logout` if you want to log out.\n", " Setting a new token will erase the existing one.\n", " To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .\n", "Enter your token (input will not be visible): \n", "Add token as git credential? (Y/n) Y\n", "Token is valid (permission: write).\n", "\u001b[1m\u001b[31mCannot authenticate through git-credential as no helper is defined on your machine.\n", "You might have to re-authenticate when pushing to the Hugging Face Hub.\n", "Run the following command in your terminal in case you want to set the 'store' credential helper as default.\n", "\n", "git config --global credential.helper store\n", "\n", "Read https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more details.\u001b[0m\n", "Token has not been saved to git credential helper.\n", "Your token has been saved to /root/.cache/huggingface/token\n", "Login successful\n" ] } ] }, { "cell_type": "code", "source": [ "dataset.push_to_hub(\"malikashish997/create_data\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 165, "referenced_widgets": [ "a483c0a16dcb49e2b6c0ed1efde812ec", "8ad76bfc294d4d2eba603b1c63a593eb", "83367458a23846af9bd0025718e7cf92", "bf7bfc8d0cd64b41b33e8704a6788511", "3ecc3790ef3247879e1482ad9bf23c5c", "18f3aa61d0f9421d8d9fb4a92c7168ea", "b63703383f0e44b2892b080417aa5f67", "f4282b102b08424288f4002df39edbd0", "a2ad711017fb4163b6074796259701ca", "afcba75ef48246fd8423a80720fad93f", "f54356387e29418e99a6c253343c25a8", "56dce288c36b40d689624aa797a52b80", "9e823d22d8f7488aa57cdf6d2d73c289", "c85d8c4777624178a8fd22520cd2d394", "9632e1b42cbb4c31b8effaee5f27b756", "a463e5d0d6ca44d8999a080d9f382754", "d3e421b8175e4e4ba4c1225300f9827c", "0ac9e346db82466d8589293a17dc063a", "8c91776b86b84a6387afe470fd8b1da4", "248b88d276ab46e18efb400044d7ea5b", "6a24018566b54ff4863d98ca7c1986a9", "54f42ae47acc446bb78f923bb9e25f9d", "b0e99bfdaa8c4f6fb5b70ea352cf978e", "0766923c897b4cfbaecd25699cfd3d61", "7fb9cf16f8c849fcafe4125bf596568b", "8e341f0ec58648cd8fb5b51b9d1f0785", "373cfeefe9d14d2b9f371e72cb5e697d", "fd3d3939b097468cbcb8951455ec0671", "7c3b1c3115dd4b1ca058ad56581708ba", "55a99fa7b55a4c29b0f53a5bfa66621b", "a9c0c7a8cdc64bc1951dae84cde4e14f", "5dcec221666e4875a615f5760a8590df", "4dad7ce1edde417e9c9eeee461a6dcdb" ] }, "id": "XIywJYeRXWVU", "outputId": "91d01b62-02a3-4ea3-c6cd-27777c4ee077" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Uploading the dataset shards: 0%| | 0/1 [00:00