
FUNDAMENTALS OF JOB
MANAGEMENT

Ryan DeRue, Senior Computational Scientist

1

Job
Management

O u t l i n e

2

What to expect from Fundamentals of Job Management

Objectives

§ Spend some time talking about developing robust workflows

§ Discuss a few of the tools available on our clusters for analyzing
resource utilization over the duration of a job

§ Spend some time discussing Slurm’s mechanisms for job management
and building pipelines as it relates to creating workflows

§ Look at a few of Slurm’s other constructs related to job/task
management

3

Job
Management

H e a l t h y C o m p u t a t i o n a l W o r k f l o w s

4

Workflows

What is a “Workflow”?

§ A workflow is a of set of steps taken to achieve some objective

§ An example scientific workflow might look like:

• Staging input data to a faster file system

• Pre-processing that input data

• Performing a simulation using that input data

• Post-processing the output data

• Archiving the output data to permanent storage

§ Crucially, a workflow should be easily repeatable

5

Workflows

How to Establish a Robust “Workflow”?

§ You need to understand the computational resource
requirements for each of the steps in your workflow

§ We want to encapsulate the workflow into code where
applicable. This enables automation and provides a degree of
self-documentation

§ As much as possible, we want to automate our workflow by
building pipelines where each discrete computational step
automatically triggers the next

6

Job
Management

J o b R e s o u r c e s

7

Job Resources

Gauging Resource Requirements

§ Frequently we are asked, “How can I know how much memory
to request for my job ahead of time?”

• You probably can’t

§ Probing resource requirements

• Request a lot of resources once and use accounting information to
inform your subsequent requests

• Jobs with less resources not only “cost” less but are also start
more quickly because of Slurm backfilling

§ This requires telemetry tools to monitor resource consumption

8

Job Resources

Tools for Monitoring Resource Consumption

§ Slurm Accounting Data
• Slurm maintains a database of data about previous jobs

• We can query Slurm with the appropriate sacct commands

• Use the jobinfo command which makes these calls for you

• Syntax: jobinfo <job_id>

• Useful for post-mortem analysis

§ Resource Monitoring Software
• There is also software installed on the system which can monitor

utilization in real-time (nvidia-smi, top/htop, etc.)

• RCAC deploys a wrapper to this software as a module named “monitor”

9

Job Resources

The Monitor Utility

§ Brief reproducible example:

1. Use “module load monitor” to expose the tool to your shell**

1. Use ”man monitor” to consult the available options

2. Use “monitor cpu percent --all-cores” to begin logging cpu
utilization to standard output

§ Typically, you will want to run this monitor utility alongside
your application code and redirect the output to a separate
log file

• Options also exist to change how frequently telemetry data is
sampled as well as the format of the data

10

#!/bin/bash

<Slurm options>

module load monitor
monitor cpu memory > cpu-memory.log &
CPU_PID=$!

<Application code>

kill -s INT $CPU_ID

Typical Job Script Layout

** On Purdue Community Clusters such as Negishi, you
Will first need to load the utilities module as well

Job Resources

How Should Resource Utilization Data Inform my Request?

§ Scenario: “I see very low utilization across my cores, but my
memory utilization is close to the amount of memory I
requested. What is going on?”

• On Purdue’s community clusters as well as on Anvil, allocation of
memory and cores are made proportional to one another.

• You can query this ratio by examining the value of
“DefMemPerCPU” for the partition you are submitting to using
“scontrol show partition <partition_name>”

• In this case a reduction in CPUs would likely cause a job to fail with
an Out of Memory (OOM) error, however you have identified an
opportunity for parallelism!

11

Job Resources

How Should Resource Utilization Data Inform my Request?

§ Scenario: “I see I am using about 8GB of memory, and I am
running a serial application.”

• Using the DefMemPerCPU value we examined in the last scenario, I
can tailor my request to use slightly above 8GB of memory and reap
the scheduling benefits of small resource requests.

12

Job
Management

S l u r m J o b D e p e n d e n c i e s

13

Slurm Job Dependencies

Job Dependencies

§ A method of adding control flow logic to a batch
workflow made up of many steps

§ Job dependencies allow us to queue jobs to start
conditionally rather than as soon as resources are
available

§ Syntax:

• --dependency=<type>:job_id[:job_id]

14

Type Holds Job Until
after After job_id starts
afternotok After job_id terminates

with an error

afterok After job_id terminates
with an exit code of zero

afterany After job_id terminates
with any status

singleton After “my” jobs with the
same name terminate

Table outlining some of the most common dependency
types used. For a complete list, see the documentation.

https://slurm.schedmd.com/sbatch.html

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

§ We can use job dependencies to break our workflow
into steps, but submit these steps in a single script

• This is useful because we can use fewer resources for
tasks like data transfer

§ Let’s assume we have the following steps:

1. Data transfer

2. Data pre-processing

3. Simulation

4. Data post-processing

5. Data archival

15

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

16

#!/bin/bash
…

<directory Set up>

#Perform data transfer
source=/depot/labname/data/dataset1.tar.gz
target=$SCRATCH/experiment1/data/dataset1.tar.gz

#Extract dataset from the tarball
tar –xf $target --directory=$(dirname $target)

stage_data.sub
§ This script could take quite awhile to run if the

dataset is very large

• By excluding the computationally intensive part of my
workflow from this script, I am not charged for the
large number resources required to perform that work
for a step that requires very little resources.

• I could submit this job with a request of only a single
core or two.

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

17

#!/bin/bash
…

#Activate my anaconda environment
module load anaconda
conda activate experiment1

raw_data_dir=$SCRATCH/experiment1/data/dataset1
clean_data_dir=$SCRATCH/experiment1/data/cleaned/

python preprocess.py $data_dir $clean_data_dir

preprocess.sub
§ This script may require more resources than a

simple data transfer, but will require less than my
simulation step

• Again, I save the difference in resources while this
step runs.

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

18

#!/bin/bash
…

#Activate my anaconda environment
module load anaconda
conda activate experiment1

input_data=$SCRATCH/experiment1/data/cleaned/
output_data=$SCRATCH/experiment1/data/output/
python simulate.py $input_data

simulate.sub
§ This step represents the bulk of my computational

work, and it will require the most amount of
resources

• However, I am charged for those resources only when
I need them

§ By breaking it up this way, if I encounter an error, I
can debug my code and more easily re-run this
section of my workflow while avoiding redundant
work

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

19

#!/bin/bash
…

#Activate my anaconda environment
module load anaconda
conda activate experiment1

input_dir=$SCRATCH/experiment1/data/output/
output_dir=$SCRATCH/experiment1/data/processed/

python postprocess.py $input_dir $output_dir

postprocess.sub
§ This step is logically symmetric to the reasoning

behind using a separate preprocessing step.

• I can scale down my resource consumption
immediately after my work is finished

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

20

#!/bin/bash
…

<directory Set up>

#Define directories
output_dir=$SCRATCH/experiment1/data/
destination=/depot/labname/data/experiment1/

#Create tarball of output in permanent storage
tar –czvf $destination/experiment1_output.tar.gz \
$output_dir

archive_data.sub
§ Because scratch storage is not backed up and is

regularly purged, a robust workflow immediately
backs up output to a more permanent location

Slurm Job Dependencies

Examples of Using Job Dependencies to Support Workflows

21

#!/bin/bash
#Define directory containing previous scripts
submission_script_dir=/depot/labname/data/experiment1/scripts/

#1. Stage Data
stage_id=$(sbatch –N 1 –n 1 $submission_script_dir/stage_data.sub)

#2. Preprocess Data
preprocess_id=$(sbatch --dependency=afterok:$stage_id –N 1 –n 4 $submission_script_dir/preprocess.sub)

#3. Run Simulation
simulate_id=$(sbatch --dependency=afterok:$preprocess_id –N 1 –n 128 $submission_script_dir/simulate.sub)

#4. Postprocess Data
postprocess_id=$(sbatch --dependency=afterok:$simulate_id –N 1 –n 4 $submission_script_dir/postprocess.sub)

#5. Archive Data
sbatch --dependency=afterany:$postprocess_id –N 1 –n 1 $submission_script_dir/archive_data.sub)

experiment1.sh

Slurm Job Dependencies

Other Ways to use job dependencies

§ Restarting jobs from a checkpoint file that timed out
• --dependency=notok:<job_id>

• Be advised this will run for any non-zero exit code!

§ Starting jobs after a job serving a database has
started
• --dependency=after:<job_id>+<time>

§ Ensuring that jobs which require a license do not
attempt to check out more copies of a license than
you own
• --dependency=singleton

22

Job
Management

S l u r m J o b A r r a y s

23

Slurm Job Arrays

Job Arrays
§ A mechanism for launching many similar jobs at once all with identical parameters

• Job arrays have many use cases, but one of the most common is parameter sweeps

• Instead of having 100 workflow scripts testing different inputs, have 1 that launches 100 pipelines!

§ Syntax:
• --array=<indices>

• Valid indices are 0 through MaxArraySize -1 :

• “1-32” Create 32 jobs with indices between 1 and 32

• “2,4,8,16,32” Create 5 jobs with indices equal to 2,4,8,16,32 respectively

• “1-31:2” Create 16 jobs with indices 1,3,5,7,…,31

• You can limit the number of array jobs which are allowed to run at once by using the “%” character
when specifying indices.

• “1-16%2” Create 16 jobs, but only allow two to run at a time

• You can query MaxArraySize using scontrol show conf | grep MaxArraySize

24

Slurm Job Arrays

Job Arrays

§ If all the jobs in the array are launched with identical
parameters, how do I accomplish different work?

§ Important environment variable: $SLURM_ARRAY_TASK_ID

• This variable is equal to the index of the job in the array

• We can have jobs fetch their input parameters based on this value

• We can separate jobs into different directories named by this
value

25

Environment Variable Format Code Description
$SLURM_ARRAY_JOB_ID %A JobID of overarching array submission
$SLURM_ARRAY_TASK_ID %a JobID of the current array index

Slurm Job Arrays

Example

26

/depot/labname/data/experiment2/inputs/
 -input_1.in
 -input_2.in
 -input_3.in
 …
 -input_10.in

--dt=0.0025 –x 10 –y 10 –z 10

#!/bin/bash
…
#SBATCH --array=1-10
#SBATCH --output=example_%a.out

input_dir=/depot/labname/data/experiment2/inputs
output_dir=$SCRATCH/experiment2/outputs/

#Create Job Array working directory
mkdir –p $output_dir/$SLURM_ARRAY_TASK_ID

#Launch application code
input_file=$input_dir/input_$SLURM_ARRAY_TASK_ID.in
./mdapplication $(cat $input_file)

array_submission.sub

Slurm Job Arrays

Job Arrays

§ Job arrays can also be used with job dependencies

• The “types” of dependencies behave slightly differently with job
arrays.

• When dependent upon a jobID specifying a Slurm job array:

§ An example of when this might be useful is when a workflow
may make a comparative analysis of a parameter sweep

• An “afterok” dependency could launch a job that plots the results of
using different parameters after a post-processing step

27

Type Holds Job Until
after job begins after all tasks in the job

array begin

afternotok job begins after all tasks in the job
array terminate with at least one
non zero exit code

afterok job begins after all tasks in the job
array terminate with exit code zero

afterany job begins after all tasks in the job
array terminate

Job
Management

J o b L e v e l P a r a l l e l i s m

28

Job Level Parallelism

Carving up a Slurm Allocation

§ Up until now, every example I have shown has dedicated all
the resources under the Slurm allocation to each command

§ We can also execute several commands simultaneously each
using a portion of the resources within a job script

§ The “srun” command allows us to specify the resources we
want to allocate to a particular task using the same syntax as
“sbatch”

• The constraint is that across all our tasks, we cannot allocate more
resources than was given to us in our original request

29

#!/bin/bash
…
#SBATCH –N1 –n12

…

srun –n 6 ./scriptA &
srun –n 2 ./scriptB &
srun –n 2 –c 2 ./scriptC &
wait

Job Level Parallelism

Heterogeneous Jobs

§ In the previous example, all jobs shared from the same pool of
resources and had the same Slurm parameters

§ It is possible to define a job which consists of many different job
components each with its own Slurm parameters
• Such a job is referred to as a heterogeneous job

§ This works by defining different “hetgroups” within a jobscript and
launching commands under the hetgroup you wish them to be a
part of

§ Heterogeneous jobs are a relatively recent addition to Slurm and
have some nuances which can cause unexpected results so take
care when using them.

30

#!/bin/bash
…
#SBATCH –N1 –p wholenode
#SBATCH –n128
#SBATCH hetjob
#SBATCH –p shared
#SBATCH –n 8
…

srun -hetgroup 0 –n 128 \
./largeScript &

srun –hetgroup 1 –n 2 \
./smallScript &

srun –hetgroup 1 –n 6 \
./mediumScript &

Job
Management

C o n c l u s i o n

31

Conclusion

§ Developing workflows which can be broken into discrete steps
is not only more maintainable but also more computationally
efficient

§ Slurm provides constructs like Job Dependencies and Job
Arrays for the purpose of making the creation of these
pipelines easier

§ Constructs also exist for command level parallelism in both
homogeneous and heterogeneous jobs using Slurm tooling

32

Takeaways

THANK YOU
Feel free to reach out to rderue@purdue.edu with questions.

Slides are posted at:
https://www.rcac.purdue.edu/training/jobmanagement

33

mailto:rderue@purdue.edu
https://www.rcac.purdue.edu/training/

