
Managing Jupyter Kernels on ITaP Community Clusters

Geoffrey Lentner
Senior Research Data Scientist

ITaP Research Computing

ITaP Research Computing Virtual Workshop Series

June 12, 2020

An intermediate level discussion of how the Jupyter system (JupyterHub, Jupyter Notebook, etc.)
function at an application level on a distributed computing cluster. The workshop explains how
Jupyter Kernels function and how to extend them.

Other topics related to Jupyter are open for discussion.

A brief listing of possible topics is included at the end for reference.

Prerequisites

•Basic Linux/Unix command-line knowledge.

•Basic understanding of Computing Clusters.

•Familiarity with Python

Content

•What is Jupyter

•Where does Jupyter Look for Kernels

•How do Kernels Work

•Anatomy of a Jupyter Kernel

•Extending and Customizing a Kernel

•Other Topics

What is Jupyter

JupyterHub Jupyter
notebook

kernel

browser

JupyterHub only does login and
redirection. It will start a Jupyter
Notebook server on your behalf
on one of the front-ends and
redirect you.

The notebook server is
fundamentally a web server that
responds to requests from your
browser and communicates with
the kernel process its babysitting.

The browser is doing all of the
user interface. When you execute
a code cell it sends a request to
the notebook server.

The kernel process is merely the
interpreter running in a headless
state (Python, R, etc…).

cluster.notebook.rcac.purdue.edu

cluster-feXX.rcac.purdue.edu Your Laptop

Jupyter[Hub] is a Python application. It behaves, responds, and can be debugged
as such. To understand problems that arise in the Jupyter ecosystem you need to
identify at which layer the issue is occurring.

Where Does Jupyter Look for Kernels

~ jane@cluster-fe03

❯ tree /opt/anaconda3

.

├── bin/

│ ├── &&...

│ ├── jupyter*

│ └── jupyterhub*

├── etc/

├── include/

├── lib/

├── var/

└── share/

 └── jupyter/

 └── kernels/

 ├── bash/

 │ ├── &&...

 │ └── kernel.json

 ├── ir/

 │ ├── &&...

 │ └── kernel.json

 └── python3/

 ├── &&...

 └── kernel.json

~ jane@cluster-fe03

❯ tree ~/.local

.

├── bin/

├── etc/

├── include/

├── lib/

├── var/

└── share/

 └── jupyter/

 └── kernels/

 └── my_env/

 ├── &&...

 └── kernel.json

Jupyter looks for kernels in the
system location it neighbors
and in a fixed location in your
home directory.

A kernel is installed when it is
discoverable by Jupyter in one
of these locations.

The kernel.json file specifies both
how to launch the program and
its environment.

How Do Kernels Work

~ jane@cluster-fe03

❯ $CONDA_ENVS_PATH/my_env/python -m ipykernel_launcher -f my_session.json

&&...

~ jane@cluster-fe03

❯ cat my_session.json

{

 "shell_port": 36368,

 "iopub_port": 37524,

 "stdin_port": 46088,

 "control_port": 49141,

 "hb_port": 48572,

 "ip": "127.0.0.1",

 "key": "bc624cbf-5be3e02b2dbf13507a005a45",

 "transport": "tcp",

 "signature_scheme": "hmac-sha256",

 "kernel_name": ""

}

Jupyter is merely one of many clients
that can manage an interactive Python
session running in a headless state.A kernel can be implemented in most languages (dozens are). Python is pretty easy to setup, only

requiring a launch point. Others (e.g., R) can be more tricky and require detailed configuration.

Python can install its own kernel.

If you have your environment activated and IPython installed in that environment:

(my_env) $ ipython kernel install "--user "--name my_env "--display-name “Python 3.7 (my_env)”

~ jane@cluster-fe03

❯ tree ~/.local

.

├── bin/

├── etc/

├── include/

├── lib/

├── var/

└── share/

 └── jupyter/

 └── kernels/

 └── my_env/

 ├── &&...

 └── kernel.json

The kernel.json file specifies both
how to launch the program and
its environment.

Anatomy of a Jupyter Kernel

~ jane@cluster-fe03

❯ cat ~/.local/share/jupyter/kernels/my_env/kernel.json

{

 "argv": [

 "/home/jane/.conda/envs/cent7/5.3.1-py37/my_env/bin/python",

 "-m",

 "ipykernel_launcher",

 "-f",

 "{connection_file}"

],

 "display_name": "Python 3.7 (my_env)”,

 "language": "python"

}

The “argv” section is literally the
command-line arguments that will
be invoked on your behalf.

Extending and Customizing a Kernel

~ jane@cluster-fe03

❯ cat ~/.local/share/jupyter/kernels/my_env/kernel.json

{

 "argv": [

 "/home/jane/.conda/envs/cent7/5.3.1-py37/my_env/bin/python",

 "-m",

 "ipykernel_launcher",

 "-f",

 "{connection_file}"

],

 "display_name": "Python 3.7 (my_env)”,

 "language": "python",

 "env": {

 "PROJ_HOME": “/home/jane/.conda/envs/cent7/5.3.1-py37/my_env/share/proj"

 }

}

The “argv” section is literally the
command-line arguments that will
be invoked on your behalf.

The “env” section is not present by
default. You can add this section to
define environment variables that
you need for the libraries in the
environment.

Many libraries require environment variables defined to function properly. When you install
libraries with Anaconda these variables will be present after you activate the environment.

Jupyter doesn’t know anything about Anaconda.

Thank You

Other Topics

• Non-Python Kernels

• Integrating Modules with Jupyter Notebooks

• Distributing Computing from Jupyter Notebooks

• Notebook Extensions

• Customizing Notebooks with HTML/CSS/Javascript

• Debugging Jupyter, Notebooks, and Kernels

• OnDemand and Jupyter

• Running your own Jupyter from Backend Nodes

• Git and Jupyter

• JupyterLab

• Notebook Size and Visualization Libraries

ITaP Community Cluster Specifics

Technical Specifics

Features and Extensions

