Time Series Forecasting - 101

WHAT IS A TIME SERIES?

- A time series is a series of data points indexed in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.
- TS data are collected and used in every type of businesses.
- Example of time series:
- Monthly sales
 Hourly stock closing prices
 Quarterly unemployment rate
 Annual GDP
 Daily airline filled seats

OUR DATASET

	Month	Air RPM (000s)	Rail PM	VMT (billions)
0	Jan-90	35153577	454115779	163.28
1	Feb-90	32965187	435086002	153.25
2	Mar-90	39993913	568289732	178.42
3	Apr-90	37981886	568101697	178.68
4	May-90	38419672	539628385	188.88
				,
67	Dec-03	57795908	489403554	237.60
68	Jan-04	53447972	410338691	217.30
69	Feb-04	52608801	389778365	210.40
70	Mar-04	63600019	453014590	247.50
71	Apr-04	61887720	471116666	245.40

- Number of miles travelled by air, rail and road since 1990 January
- Type of data monthly

Pre-processing steps

- Remember, time-series data must have:
- an index with equal increments.
- must be of datetime type, when working with Python
- Daterange is a pandas function that is handy in redefining time series indexes.
- Check <u>pandas.date_range</u> <u>pandas 1.5.3 documentation (pydata.org)</u>
- Here, we perform the following:

```
# Always convert the time column to a datetime format
df['Month'] = pd.date_range(start='1990/01/01', end='2004/04/01',freq='MS')
```


Time series components

A time series can be decomposed into the following components:

Level – the mean of all points

SIMPLE LINEAR REGRESSION FOR TIME SERIES

- ◆Target variable y(t)
- Predictor indexed
- t (1,2,3....t)
- Y(t) is expected to function the trendline
- Evaluation of predictors, model like traditional linear regression
- Con Does not capture seasonality

Dep. Variable:	VMT (billions)	R-squared:	0.662
Model:	OLS	Adj. R-squared:	0.660
Method:	Least Squares	F-statistic:	333.3
Date:	Fri, 10 Feb 2023	Prob (F-statistic):	6.46e-42
Time:	22:13:24	Log-Likelihood:	-703.55
No. Observations:	172	AIC:	1411.
Of Residuals:	170	BIC:	1417.
Df Model:	1		
Covariance Type:	nonrohuet		

MULTIPLE LINEAR REGRESSION FOR TIME SERIES

	coef	std err	t	P> t	[0.025	0.975]	
const	154,0111	0.842	182,993	0.000	152.346	155.676	
2	-7.3464	1,078	-6.812	0.000	-9.480	-5.213	
3	20.2113	1.079	18.740	0.000	18.078	22.345	
4	19.7548	1.079	18.315	0.000	17,621	21.889	
5	31.9059	1.079	29.579	0.000	29.772	34.040	
6	30.9345	1.079	28.675	0.000	28.800	33.069	
7	38.3655	1.079	35.558	0.000	36.231	40.500	
8	38,7308	1.079	35.891	0.000	36.596	40.865	
9	19.7352	1.079	18.285	0.000	17.600	21.870	
10	26.0437	1.080	24.125	0.000	23.908	28.179	
11	11,0023	1.080	10.189	0.000	8.866	13.138	
12	11.9242	1.080	11.040	0.000	9.788	14,061	
t	0.4273	0.005	80,401	0.000	0.417	0.438	

2 – 12 Represent seasons taking binary values (0 or 1).

- Target − y(t)
- •Predictors indexed t, seasons (dummied), sometimes other exogenous variables.
- Exogenous variables are independent predictors.
- For example, if we
 use number of bananas sold
 at time t-1
 to predict number of apples
 at time t, number of
 bananas becomes an
 exogenous variable
- Captures seasonality

INTRODUCTION TO ACF AND PACF

Lags are time series n times removed. For example, lag 1 (y(t-1)) for a time series 1,2,3,4 would be NaN, 1, 2, 3

0.411188 0.662701 1.00000

AC – Auto correlation, as its name suggests, represents correlation between lags. For example, it represents the correlation of the time series with itself in a way.

The ACF – autocorrelation function is a visual representation of the table above

PACF

	y(t)	y(t-1)	y(t-2)
y(t)	1.000000	0.662715	0.411188
y(t-1)	0.662715	1.000000	0.662701
y(t-2)	0.411188	0.662701	1.000000

- Suppose the variable y(t) is correlated to both y(t-1) and y(t-2) (lag 1 and lag 2 series). This would mean that y(t-1) and y(t-2) would also be correlated. What if we want to know the true effect of y(t-2) on y(t), removing its relationship with y(t-1)?
- The PACF does exactly that! It indicates the "true correlation" between a series and its n-lag.

STATIONARITY

 A time series is said to be stationary if the statistical properties such as mean, variance, and autocorrelation do not change over time.

• ADF (Augmented Dickey-Fuller) test is a statistical significance test which means the test will give results in hypothesis tests with null and alternative hypotheses. As a result, we will have a p-value from which we will need to make inferences about the time series, whether it is stationary or not.

AUTO-REGRESSIVE MODEL

- The AR model, as its name suggests, is a regression model with significant lags acting as predictors of y(t).
- The conditions to fit an AR model are:
- The time series should be stationary. If not, it should be differences and made stationary
- The lag variables should be significant. The number of lags to be included in the model is picked using the PACF
- ACFs whose lags' significance reduces geometrically indicate that a time series is good to model with the AR model.

AR MODEL EXAMPLE

Consider the railways data's original series, and its differenced plot.

- Performing the ADF test on the differenced data
- Visualizing the acf and pacf of the differenced data

• There is no geometric decrease of lag-significance in the ACF. This is enough to assume that we won't get a great AR model

In [94]: from statsmodels.tsa.stattools import adfuller
 df_stationarityTest = adfuller(df_rail['y(t)'].diff().dropna())
 df_stationarityTest[1]

Out[94]: 1.781590161039216e-08

AR MODEL – MODELLING AND PERFORMANCE

- Not all variables are significant
- Performance of the model not that great as expected

ARIMA

- ARIMA is a combination of the AR and MA model.
- The MA (moving average) model is a category of models that attempts to reduce the prediction errors by taking the error of the previous time index as an input.
- The AR model has already been covered
- The ARIMA model takes in 3 hyperparameters (p,d,q)
- P is the number of significant lags as seen in the PACF. This is for the AR part
- D is the order of differencing required to make the series stationary
- Q is the number of significant lags as seen in the ACF. This is for the MA part

ARIMA example

- Let us model the same time series and see if we get improved results
- Since both ACF and PACF show 4
 significant lags after differencing of 1 to
 make the series stationary, we set (p,d,q)
 to (4,1,4)
- Note that ideally, the ACF and/or PACF would show a geometric trend
- Observe how the model fails in the validation part. It fails to capture the seasonality.


```
import statsmodels.api as sm
ma_model = sm.tsa.arima.ARIMA(X_train, order=(0,1,4))
res = ma model.fit()
print(res.summary())
______
Dep. Variable:
                                    No. Observations:
                                    Log Likelihood
Model:
                     ARIMA(0, 1, 4)
                                                              -2749.466
Date:
                                                               5508.931
Time:
                          21:29:17
                                                               5523.745
Sample:
                        01-01-1990
                                                               5514.951
                      - 12-01-2001
Covariance Type:
                                            P> | z |
                                                      [0.025
ma.L1
             -0.0829
                        0.088
                                 -0.937
                                            0.349
                                                      -0.256
                                                                  0.090
ma.L2
             0.1990
                                                       0.052
                                                                  0.346
             -0.0934
                                                                  0.029
             0.3751
                                                       0.258
                                                                  0.492
          2.694e+15
                     1.05e-17
                               2.56e+32
                                                    2.69e+15
                                                               2.69e+15
```

SARIMA

- SARIMA stands for seasonal ARIMA. ARIMA fails to capture seasonality by itself. So, we add a seasonal component.
- Y(t) = ay(t-1) + by(t-2) + s1y(t-12) + beta + error
- Along with the (p,d,q) we also need to tune the seasonal order (P,D,Q,S). For this we observe the signifiance of the lags at a seasonal
 level. For example, if the frequency of the data is 12 (12 months in a year),
 we observe what the ACF and PACF say about lag 12.

SARIMA example

Again, let us attempt to improve our results on the rail time series

- In SARIMA, when the frequency is 12, differencing by 12 is equivalent to seasonal differencing by 1.
- ACF and PACF both show significant lag-12
- Setting seasonal order to (1,1,1,12)

SARIMA example

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
sarimax_model = SARIMAX(X_train, order=(4,1,4),seasonal_order=(1,1,1,12))
res = sarimax_model.fit()
print(res.summary())
```

						=======	
		coef	std err	z	P> z	[0.025	0.975]
	ar.L1	0.4628	0.335	1.381	0.167	-0.194	1.119
	ar.L2	0.0793	0.327	0.242	0.808	-0.562	0.720
	ar.L3	-0.6833	0.229	-2.985	0.003	-1.132	-0.235
	ar.L4	-0.1010	0.205	-0.492	0.623	-0.503	0.301
	ma.L1	-0.6294	0.340	-1.849	0.064	-1.296	0.038
	ma.L2	-0.0021	0.319	-0.007	0.995	-0.627	0.623
	ma.L3	0.7875	0.235	3.344	0.001	0.326	1.249
	ma.L4	-0.1099	0.220	-0.500	0.617	-0.541	0.321
	ar.S.L12	0.4878	0.084	5.803	0.000	0.323	0.653
	ma.S.L12	-0.7377	0.104	-7.107	0.000	-0.941	-0.534
	sigma2	6.662e+14	2.94e-15	2.26e+29	0.000	6.66e+14	6.66e+14

Though not all the features are significant, observe how the results improved

Smoothing Methods

- Smoothing methods are involve averaging out past and present observations to get a ball-park forecast. Hence, 'smoothing'.
- The simplest smoothing method would just be averaging out, let us say, the previous 5 observation. 1,2,3,2,2 in the past points would yield a prediction of 10/5 = 2
- There are variations of smoothing:
- Simple Exponential Smoothing
- Double Exponential Smoothing
- Holt-Winter's Smoothing

Simple Exponential Smoothing

```
from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt

X_train = df['VMT (billions)'][:144]
X_test = df['VMT (billions)'][144:]

ses_model = SimpleExpSmoothing(X_train).fit(
    smoothing_level=0.2, optimized=False)
```


- Form of weighted average where recent observations are given highest weights
- Larger the value of T, lesser is (1-alpha)^T
- Alpha is the learning rate, which is defined by the user.

Double Exponential Smoothing

$$F_{t+k} = L_t + kT_t$$

$$L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta)T_{t-1}.$$

- Simple Exponential does not account for trend and yields flat forecasts.
- Double exponential smoothing factors in a trend component

```
holt_model = Holt(X_train).fit(
    smoothing_level=0.2, smoothing_trend=0.2, optimized=False
)
```

- The Lt equation means that the level at time t is a weighted average of the actual value at time t and the level in the previous period, adjusted for trend
- The Tt equation means that the trend at time t is a weighted average of the trend in the previous period and the more recent information on the change in level.3

Triple (Holt-Winter's) Exponential Smoothing

$$F_{t+k} = (L_t + kT_t) S_{t+k-M}$$

$$L_{t} = \alpha Y_{t}/S_{t-M} + (1-\alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1-\beta)T_{t-1}$$

$$S_{t} = \gamma Y_{t}/L_{t} + (1-\gamma)S_{t-M}.$$

- Holt-Winter's smoothing factors in level, trend, and seasonality.
- The trend equation now includes adjustment for seasonality
- The seasonality equation is added to the forecast function

Additive vs Multiplicative Trend/Seasonality

 Additive means linear (straight line), and multiplicative means there are changes to widths or heights of periods over time (percentage increase).

WHAT NEXT?

- Auto ARIMA
- Complex time-series data
- Deep Learning models for Time-series

APPENDIX - EQUATIONS

- Simple linear regression Y(t) = beta0 + beta1*t
- Multiple Linear Regression beta0 + beta1*t + beta2*season1....beta13*season12
- AR Model Y(t) = ay(t-1)+by(t-2)....+beta+error
- MA Model Y(t) = beta + ay(t-1)+be(t-1) + error
- Simple Exponential smoothing- $\sum_{\hat{y}_{T+1|T}=\sum_{i=1}^{T-1}\alpha(1-\alpha)^{j}y_{T-j}+(1-\alpha)^{T}\ell_{0}}$
- **Double Exponential Smoothing**

$$L_t = \alpha Y_t + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = \beta (L_t - L_{t-1}) + (1 - \beta)T_{t-1}.$$

Triple Exponential Smoothing

$$L_{t} = \alpha Y_{t}/S_{t-M} + (1-\alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1-\beta)T_{t-1}$$

$$S_{t} = \gamma Y_{t}/L_{t} + (1-\gamma)S_{t-M}.$$

