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WHAT IS A TIME SERIES?

« A time series is a series of data points indexed
In time order. Most commonly, a time series Is a
sequence taken at successive equally spaced
points In time.

« TS data are collected and used in every type of
businesses.

« Example of time series:

* Monthly sales
Hourly stock closing prices
Quarterly unemployment rate
Annual GDP

Dalily airline filled seats
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OUR DATASET

Month Air RPM (000s) Rail PM VMT (billions)

0 Jan-90 35153577 454115779 163.28

1 Feb-90 32965187 435086002 153.25

2 Mar-90 39993913 568289732 178.42

3 Apr-90 37981886 568101697 178.68 . . .

e . * Number of miles travelled by air, rail and
road since 1990 January

|67 Dec-03 57795908 489403554 237.60

168 Jan-04 53447972 410338691 217.30 * Type Of data — mOntth

169 Feb-04 52608801 389778365 210.40
|70 Mar-04 63600019 453014590 247.50

171 Apr-04 61887720 471116666 245.40
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Pre-processing steps

= Remember, time-series data must have:
» anindex with equal increments.
= must be of datetime type, when working with Python

» Daterangeis a pandasfunction thatis handy in redefining time
series indexes.

= Check pandas.date range — pandas 1.5.3 documentation (pydata.org)

= Here, we perform the following:

# Always convert the time column to a datetime format

df[ "Month'] = pd.date_range(start='1998/01/01"', end='2004/04/01',freq="MS")
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https://pandas.pydata.org/docs/reference/api/pandas.date_range.html

Time series components

VMT (billions)

0 1992 1994 1996 1998 2000 2002

225
1

990 1992 1994 1996 1998 2000 2002
be decomposed

into the following § ;NWWWWM

Component5: 1990 1992 1994 1996 1998 2000 2002
% 0
& -5 1

1990 1992 1994 1996 1998 2000 2002

Level - the mean of all points
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SIMPLE LINEAR REGRESSION FOR TIME SERIES

eTarget variable — y(t)
e Predictor — indexed = e e O
t ( 1, 2, 3 ses .t) Method: Least Squares F-statistic: 333.3

Date: Fri, 10 Feb 2023 Prob (F-statistic): 6.46e-42

Dep. Variable: VMT (billions) R-squared: 0.662

.Y(t) iS expeCted to Time: 22:13:24  Log-Likelihood: -703.55
function the trendline No. Observations: arc:
eEvaluation of e o
predictors, Covariance e

model like traditional
linear regression
eCon — Does not
capture seasonality
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MULTIPLE LINEAR REGRESSION FOR TIME SERIES

eTarget — y(t)

ePredictors —indexed t, seasons
(dummied), sometimes other
exogenous variables.

coef id erv t PR [0.02% 0.97%

2~ FORRVE

2 - 12 Represent seasons taking
binary values (0 or 1).

eCaptures seasonality

Exogenous variables are
independent predictors.

For example, if we

use number of bananas sold
at time t-1

to predict number of apples
at time t, number of
bananas becomes an
exogenous variable
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INTRODUCTION TO ACF AND PACF

Lags are time series n times removed. For example, lag 1 (y(t-
1)) for a time series 1,2,3,4 would be NaN, 1,2, 3

What are lags?

8]: df_rail = pd.DataFrame()
df_r‘ail['_, :.:'-] = df[3:A; F‘.i']

df_rail['y(t-1)'] = [float('nan')]+list(df
df_rail['y(t-2)'] = [float('nan’')]+list(df
[89]: df_rail
y(t) y(t-1) y(t-2)
Month
1990-01-01 454‘15779\ NaN NaN
WO | —"
1990-02-01 435086002 4541157 «“J.L\ NaN

454115779.0

1990-03-01 56528973Y35386032.0
1990-04-01 568101687 568289732 Q\ 435086002.0

1990-05-01 539628385 568101697.0 568289732.0

? PURDUE
UNIVERSITY. 4/18/2023 | 8




ACF

Correlation between y(t) and its lags

AC - Auto correlation, as its name suggests, represents
correlation between lags. For example, it represents the
correlation of the time series with itself in a way.

The ACF - autocorrelation functionis a
visual representation of the table above
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PACF

y(t) y(t-1) y(t-2)
y(t) 1.000000 0.662715 0.411188

y(t-1) m 1.000000 0.662701
y(t-2) 0.411188 [0.662701 | 1.000000

« Suppose the variable y(t) is correlated to both y(t-1) and y(t-2)
(lag 1 and lag 2 series). This would mean that y(t-1) and y(t-2)
would also be correlated. What if we want to know the true
effect of y(t-2) on y(t), removing its relationship with y(t-1)?

 The PACF does exactly that! It indicates the "true correlation”
between a series and its n-lag.
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STATIONARITY

* Atime series is said to be stationary if the statistical
properties such as mean, variance, and auto-
correlation do not change over time.

Stationary Time Series

 ADF (Augmented Dickey-Fuller) test is a statistical
significance test which means the test will give results
in hypothesis tests with null and alternative hypotheses. As
a result, we will have a p-value from which we will need
to make inferences about the time series, whether it is
stationary or not.
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https://analyticsindiamag.com/importance-of-hypothesis-testing-in-data-science/

AUTO-REGRESSIVE MODEL

« The AR model, as its name suggests, is a regression model
with significantlags acting as predictors of y(t).

 The conditionsto fit an AR model are:

« The time series should be stationary. If not, it should be
differences and made stationary

« The lag variables should be significant. The number of lags to
be included in the model is picked using the PACF

« ACFs whose lags'significance reduces geometrically indicate
that a time series is good to model with the AR model.

£ | i L2 ' .  Tn |
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AR MODEL EXAMPLE

Consider the railways data's original series, and its
differenced plot.

Performing the ADF test on the differenced data

Visualizing the acf and pacf of the differenced data

There is no geometric decrease of lag-significance in the ACF.
This is enough to assume that we won't get a great AR model

2
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AR MODEL - MODELLING
AND PERFORMANCE

* Not all variables are significant

« Performance of the model not that
great as expected
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ARIMA

ARIMA is a combination of the AR and MA model.

The MA (moving average) model is a category of models that attempts toreduce
the prediction errors by taking the error of the previous time index as an input.

The AR model has already been covered

The ARIMA model takes in 3 hyperparameters - (p,d,q)

P is the number of significant lags as seen in the PACF. This is for the AR part
D is the order of differencing required to make the series stationary

Q is the number of significant lags as seen in the ACF. This is for the MA part
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ARIMA example

Let us model the same time series and
see if we get improved results

Since both ACF and PACF show 4
significant lags after differencing of 1 to
make the series stationary, we set (p,d,q)
to (4,1,4)

Note that ideally, the ACF and/or PACF
would show a geometric trend

Observe how the model fails in the
validation part. It fails to capture the
seasonality.

? PURDUE
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import statsmodels.api as sm

ma_model = sm.tsa.arima.ARIMA(X_train, order=(e,1,4))
res = ma_model.fit()

print(res.summary())

SARIMAX Results

Dep. Variable: Rail PM No. Observations:

Model: ARIMA(®, 1, 4) Log Likelihood -2749.466
Date: Sat, 11 Feb 2823 AIC 5508.931
Time: 21:29:17 BIC 5523.745
Sample: ©1-01-199@ HQIC 5514.951
- 12-@1-2001
Covariance Type: opg
coef std err z P>|z| [e.025 9.975]
ma.Ll 8.e829 6.088 8.937 09.349 0.256 0.090
ma.L2 @.19%0 ©.075 2.656 ©.008 ©.052 0.346
ma.L3 0.0934 ©.062 1.4%99 0.134 9.215 0.029
ma.L4 8.3751 6.060 6.266 0.6000 8.258 0.492
gma2 2.694e+15 1.85e-17 2.56e+32 0.6000 2.69e+15 2.69e+15
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SARIMA

« SARIMA stands for seasonal ARIMA. ARIMA fails to capture seasonality
by itself. So, we add a seasonal component.
* Y(t) = ay(t-1)+by(t-2)....+s1y(t-12)....beta+error

* Along with the (p,d,q) we also need to tune the seasonal order -
(P,D,Q,S). For this we observe the signifiance of the lags at a seasonal
level. For example, if the frequency of the data is 12 (12 months in a year),
we observe what the ACF and PACF say about lag 12.
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SARIMA example

» Agalin, let us attempt to improve our results on the rail time series

plt.plot(df_raill'y(t)'].diff().diff(12)) 100 Partial Autocorrelation Loo Autocorrelation
df_stationarityTest = adfuller(df_raill'y(t)'].diff().diff(12).dropna())
df_stationarit yTest[1] -
4444444444444444444
05
\ .
| ‘,“ 0.0
| i |
‘ \ \ 0.2
hr‘ \ f [
IR 05
| -0.7
| 0
~1.0( T T T T T =1.00 T T T T T
- 6 8 10 12 0 2 4 6 8 10

* In SARIMA, when the frequency is 12, differencing by 12 is equivalent tq
seasonal differencing by 1.

« ACF and PACF both show significant lag-12
 Setting seasonal order to (1,11,12)
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SARIMA example

from statsmodels.tsa.statespace.sarimax import SARIMAX

sarimax_model = SARIMAX(X_train, order=(4,1,4),seasonal_order=(1,1,1,12))
res = sarimax_model.fit()

print(res.summary())

coef std err z P>|z| [e.e25 ©.975] _
------------------------------------------------------------------------------ 1e8
ar.L1 e.4628 2.335 1.381 e.167 -0.1%4 1.119 7
ar.L2 @.0793 e.327 9.242 ©.8e8 -0.562 9.720 fitted
ar.L3 -0.6833 8.229 -2.985 ©.003 -1.132 0.235 8 actual train
ar.L4 -@.1e010 e.205 -9.492 9.623 -0.5e3 9.3e1 actual test
ma.Ll -8.6294 8.34e -1.849 ©.064 -1.296 9.0e38 e A
ma.L2 -9.e021 e.31¢9 -9.0087 ©.995 -0.627 9.623 | [)!Ed cted test
ma.L3 8.7875 8.235 3.344 9.001 0.326 1.249 = .
ma.L4 -@.108¢ e.220 -0.5e0 e.617 -0.541 9.321 X \“ | | i :'
ar.S.L12 ©.4878 8.884 5.803 ©.000 0.323 9.653 | ' _,'| | L‘
ma.S.L12 -0.7377 e.1e4 -7.187 ©.000 -0.941 -8.534 ' ' | 'AJ ﬂ
sigma2 6.662e+14 2.94e-15 2.26e+29 ©.000 6.66e+14 6.66e+14 4 \ v | v d U
__________________________________________________________________________________ |
Though not all the features are ;
significant, observe how the results
improved N —
1990 1992 1994 1996 1998 2000 2002 2004

E PURDUE

UNIVERSITY. 4/18/2023 | 19




» Smoothing methods are involve
averaging out past and present
observations to get a ball-park forecast.
Hence, 'smoothing.

* The simplest smoothing method would
just be averaging out, let us say, the
previous 5 observation. 1,2,3,2,2 in the
past points would yield a prediction
of 10/5 =2

* There are variations of smoothing:

» Simple Exponential Smoothing
* Double Exponential Smoothing

@ PURDUE - Holt-Winter's Smoothing
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Simple Exponential
Smoothing

from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt

i o r |
X_train = df['VMT (billions)'][:144] " LIA/LY N \ |
X_test = df['VMT (billions)*]1[144:] a0 ‘

ses_model = SimpleExpSmoothing(X_train).fit(
smoothing_level=0.2, optimized=False)

« Form of weighted average where recent
observations are given highest weights

» Larger the value of T, lesser is (1-alpha)*T
? PURDUE ° Alphais the learning rate, which is defined by
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« Simple Exponential does not

DOUbIE EXpﬂnential SmOOthlng account for trend and yields flat

forecasts.

* Double exponential
smoothing factors in a trend
component

F eu— Z + A‘ Z holt_model Holt(X_train).fit(
[, _+— A) [ E [ smoothing_level=0.2, smoothing trend=9.2, optimized=False
)

* The Lt equation means that the
level at time t is a weighted average
. 7 il T of the actual value at time t and the
Iy = a¥y+ (1 —a)llpga+1¢s) level in the previous period,
| _ 3 adjusted for trend
Iy = p(Le— Li-1) + (1 = B)Ti-1.  The Tt equation means that the
trend at time t is a weighted
average of the trend in the previous
period and the more recent

information on the change in level.3

@ UPI:I[IJ\]I%]R:L)SIIJ'-I‘EY:@ 4/18/2023 |



f i

| it « Holt-Winter's smoothing
1 /] A factors in level, trend, and
Frow = (Ly + KT}) Seie—m ol e 1 | ] seasonality.

* The trend equation now
includes adjustment for

| seasonality
exp_model = ExponentialSmoothing( : The Seasonallty equatlon 1S
X_train, added to the forecast
seasonal_periods=12, funCtion
trend="add", L, = (}:}”1/51_3‘[ + (1 — (}Z)(Lt_l + Tf,_l)
seasonal="add",
use_boxcox=True, T, = B(Ly—Liq)+ (1= 8T
initialization_method="estimated", ) 3
). Fit() St = Y/Li+ (1 —7)S-um-
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Additive vs Multiplicative Multiplicative Relationship
Trend/Seasonality

Year

» Additive means linear (straightline),
and multiplicative means there are
changes to widths or heights of
periods over time (percentage
increase).

Additive Relationship
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WHAT NEXT?

 Auto ARIMA
« Complex time-series data
* Deep Learning models for Time-series
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APPENDIX - EQUATIONS

Simple linear regression - Y(t) = beta0 + betal*t
Multiple Linear Regression - betaO +

betal*t + beta2*seasonl.....betal3*seasonl12

AR Model - Y(t) = ay(t-1)+by(t-2)....+beta+error
MA Model - Y(t) = beta + ay(t-1)+be(t-1) + error
Simple Exponential smoothing- =~

- Lu(l a)yr_;j+ (1 a)T¥,.
=0

Double Exponential Smoothing

a¥; + (1 — )Ly + Tos)

Lo I
| |

B Ly — Ty g )41 — BT} -3,
Triple Exponential Smoothing S (1l T
it = QX /Ot—M — t—1 t—1
Ty = B(Li—Liy)+ (1 —B)T;,4
Sy = /Ly + (1 —7)Si—m-
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