
UNIX 201

Ryan DeRue, Senior Computational Scientist

1

Unix 201
O u t l i n e

2

What to expect from Unix 201

Objectives

§ Develop an intuition for Unix processes and the data structures related
to them

§ Discuss the concepts of subprocesses and subshells and the
implications their designs bring to everyday use

§ Become comfortable with the concept of Bash variables and the
nuances between shell variables and environment variables

3

Unix 201
U n i x P r o c e s s e s

4

Unix Processes

What is a Unix process?

§ A single instance of a running program for a given user
• Program could be a command, a shell script, or an executable

• Built-in commands do not create a process because they are part of the
shell!

§ Properties of a Process
• PID: Process ID

• PPID: Parent Process ID

• UID: User’s ID

• TTY: Teletype Writer

• File Descriptor Table

5

Unix Processes

How is a process created?

§ All commands start out as a shell

§ The fork and exec paradigm
• fork(): Create a copy of me
• exec(): Become something else

§ What spawned the shell?
• The init process

• A special process created upon operating
system start-up to spawn the first shell

§ Can I spawn a shell from another shell?
• Subshells

6

command

fork() exec()

fork() wait() ... $>

Time

Unix Processes

What information can we find about
processes?
§ A command for viewing processes: ps
• Usage: ps [-options]

• Lists all the requested information about running
processes

§ A command for analyzing processes: top
• Usage: top [-options]

• Lists resource usage of running processes

§ Exit codes of processes
• Zero exit codes report successful execution

• Non-zero exit codes report non-standard behavior

7

command

fork() exec()

fork() wait() ... $>

Time

Unix Processes

Can we execute commands without
waiting for them to complete?
§ Foreground processes
• Interactive commands connected to your

keyboard for input

• Must wait for them to finish

§ Background processes
• Background processes, also called jobs,

run while you continue to work

• Run a command as a background process
by appending an ampersand to the end of
the line (&)

• Returns a job ID and a process ID for the
background job

• New Built-in: jobs

• list all current jobs

8

command &

fork() exec()

fork() command & fork $>

Time

fork() exec()

Unix Processes

Can we send a foreground process
to the background?
§ Sending a process to the

background

• Execution can be paused using ctrl+z

• Pausing a process gives it a job ID

§ Built-ins for interacting with jobs

• bg <jobid>: Resume the job with the
specified jobID in the background

• fg <jobid>: Resume the job with the
specified jobID as a foreground process

• stop <jobid>: Put a backgrounded
job into the stopped state

9

Foreground Background

Stopped

fg <jobid>

fg <jobid>

ctrl+z stop
<jobid>

bg <jobid>

Unix Processes

Why did Ctrl-Z pause the process?

§ Signals are Unix defined interrupts which indicate a
specific event has occurred
• Signals can be raised for errors or to indicate user

intervention

§ A command for sending signals: kill
• Usage: kill [-options] <pid>

• Use the -s option to send a specific signal

§ Common signals
• 2) SIGINT & 3) SIGQUIT

• Sent by the user as an interrupt

• 9) SIGKILL & 15) SIGTERM

• Sent by the kill command

• 4)SIGILL & 11) SIGSEGV

• Sent by the kernel upon error

10

rderue@gilbreth-fe02:~ $ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
...

Unix 201
V a r i a b l e s i n B A S H

11

Variables in BASH

Introduction to Shell variables

§ A variable is a string that refers to some data
• We say that we initialize a variable when we assign it

a value

• We say that we reference a variable when we use its
value

§ Variable initialization:
• VARIABLE=value

§ Variable reference:
• $VARIABLE

§ Variables are transient and only exist for the life of
the shell

12

Variables in BASH

Environment Variables in BASH

§ Environment variables are a specific type of variable
• They are inherited by child shells
• This implies that programs executed from a shell will have access to

the environment variables
• Often time these are critical to the operation of the shell or

programs being executed by the shell

§ Commands for interacting with environment variables
• A command for viewing environment variables: printenv
• Usage: printenv [-options] [variable]

• A built-in for creating an environment variable: export

• Usage: export [variable[=value]]

13

Variables in BASH

Important Environment Variables to Know

§ Variables related to shell state
• $USER: The owner of the shell

• $HOME: The home directory of the shell

• $PWD: The present working directory of the shell

• $SHELL: The program your shell is running

• $PS1: A variable which controls the prompt for your shell

§ Variables related to search paths
• Often these variables are colon delimited lists of directories which are checked in order

• $PATH: A list of directories which will be checked for executable files

14

Unix 201
W h a t C o m e s N e x t ?

15

What Comes Next?

Upcoming Seminars

§ Unix 202: February 10th

16

THANK YOU
Feel free to reach out to rderue@purdue.edu with questions.

Slides are posted at:
https://www.rcac.purdue.edu/training/unix201

17

mailto:rderue@purdue.edu
https://www.rcac.purdue.edu/training/unix101

