
UNIX 202

Ryan DeRue, Senior Computational Scientist

1

Unix 202
O u t l i n e

2

What to expect from Unix 202

Objectives

§ Learn about the different Shell start-up files, the order in which they
are sourced, and how they affect your environment

§ Discuss common uses for Bash scripts, the way they are organized,
and common constructs within them

§ Discuss how to schedule Bash scripts to run even when we aren’t
logged into the system

3

Unix 202
S h e l l S t a r t - U p F i l e s

4

BASH Start-Up Files

What do we mean by Start-Up files?

§ Files that are sourced every time we login to our shell
• To source a file is to execute within your current shell every line of code one at a time

• A built-in for modifying a shell: source

• Usage: source filename [arguments]

• Can also use: . filename [arguments]

§ By creating files that are sourced every time we login to our shell we can
perform the work of configuring our shell a single time

§ System-wide and User-level start-up files
• /etc/profile: System-wide profile for all users

• ~/.bash_profile: User-level profile sourced by BASH

• ~/.bash_login: Legacy file sourced to conform to /bin/csh

• ~/.profile: Legacy file sourced to conform to /bin/sh

5

BASH Start-Up Files

What do we use Start-Up files for?

§ Exporting important environment variables to our shell
• Example: export PATH=$PATH:/home/rderue/bin/

• Ensures that the bin/ directory in my home directory is checked for
executable files

§ Creating shortcuts for our most frequently used commands
• A built-in for creating shortcuts: alias

• Usage: alias [-p] [name[=value]]

• Causes name to perform the command with arguments given by value

• Example alias ll=“ls —l”

• Allows me to use ls in long mode just by typing “ll”

6

BASH Start-Up Files

What if we don’t want to run our start-up files?

§ When might we not want to use a login shell?
• Many times, certain applications which connect to a server running a *nix

OS do not want our modifications to our shell to get in their way

• When we are trying to fix our start-up files

§ Login Shells vs. Non-login Shells
• bash –l vs. bash

• Non-login shells will not source the files we have talked about

• Non-login shells source a file named ~/.bashrc instead

• It’s common that as part of your .bash_profile, you source
~/.bashrc

7

BASH Start-Up Files

In Summary

§ We use BASH start-up files to ensure
we have a consistent environment
every time we log into our shell

§ A shell sets up its environment
differently depending on whether its
in login or non-login mode

• In non-login mode, only ~/.bashrc is
sourced. In login mode
/etc/profile/ and one of the user
profiles is sourced

§ We can also have a
~/.bash_logout file that will be
sourced when we exit our shell

8

/bin/bash -l

/etc/profile

/bin/bash

~/.bash_profile ~/.bash_login ~/.profile ~/.bashrc

~/.bash_logout

Unix 202
S h e l l S c r i p t s

9

Shell Scripts

What is a Shell Script and what do we use them for?

§ Shell scripts are files containing instructions we want the shell
to perform

§ Shell scripts are useful for re-using work that you might need
to do repetitively

§ They provide a quick and easy method for sharing your useful
tools with your colleagues

§ We can also program a script to do a task that we want
performed at regular intervals using “cronjobs”

10

Shell Scripts

The Anatomy of a Shell Script

§ The “Shebang”
• Very first line of the script and is used to denote the program that should

interpret the file

• Looks like: #!/bin/bash or #!/bin/python

§ Lines starting with a ‘#’ character are not interpreted and are called
comment lines
• We use comment lines to explain in non-programmatic language what is

going on

§ Other lines will be interpreted as code for the interpreter given in the
“shebang”

§ A script must also have executable permissions set
• A command for changing a file’s mode: chmod

• Usage: chmod [OPTION] MODE[,MODE] FILE

• Example: chmod u+x,g+x myscript.sh

12

Shell Scripts

How do we run a shell script and what happens when we
do?

§ There are two ways to execute a shell script
1. ./example.sh

• Searches my current working directory for the script
example.sh and execute it

2. example.sh

• Searches for a file called example.sh in each of the directories
in my $PATH and executes the first one it finds

§ When we execute a script, a child shell is created in order to
run that script
• The child shell is replaced by the program specified in the ”shebang”

and the name of script is given as an argument to that program

• This implies the program does not need to be a shell

13

Shell Scripts

Passing Arguments to Scripts

§ When possible, it can be more efficient to read
input that comes with the script than waiting for
input during execution

§ There are special variables which are part of the
built-in variables for dealing with arguments
• $#: The number of arguments passed

• $@: The arguments that were passed
• $1: The first argument

• ${n}: The nth argument. When n is multiple digits
the curly braces are mandatory!

§ This is how programs like ls know to handle
the options you give them!

14

$./example.sh this is an argument

Built-In
Variable

Value

$# 4

$@ this is an argument

$0 ./example.sh

$1 this

$2 is

$3 an

$4 argument

Shell Scripts

Utilizing Subshells

§ We can break up multiple commands that are meant to
run together into their own subshells

• Special built-in BASH variable: $BASH_SUBSHELL

• Keeps track of the number of subshells we are “deep”

§ Subshells inherit a copy of the parent’s variables, but
modifying their copies does not affect the parents.

§ We usually use subshells for one of two things

• Command substitution

• Creating subtasks within a script

15

Shell Scripts

Command Substitution

§ A lot of times we may want to save the output of a
command into a variable

• We can do this by spawning a subshell to perform that
command, and substituting that output somewhere

§ Syntax: $(command)

• Means execute command and replace $(command) with
its output

• An alternative syntax: `command`

16

$ date
Fri Feb 10 01:24:23 EST 2023
$ echo "The current date and time is: $(date)”
The current date and time is: Fri Feb 10 01:30:38 EST 2023

Shell Scripts

Parallelization Within Scripts using Subshells

§ We can also run code in a subshell without substituting its
output as in command substitution!
• Syntax: (command)

§ Just like with background processes, we can run multiple
lines of code at the same time
• We can use the exact same ampersand (&) syntax!

§ When we parallelize our code, there is no guarantee that
the individual tasks will complete in order
• This can lead to some strange behavior

§ A built-in for synchronization: wait
• Pauses execution until the previous task finishes

17

Unix 202
S c h e d u l i n g S c r i p t s

18

Scheduling Scripts

Dealing with the crond daemon

§ The crond daemon checks every minute for scheduled scripts

• A daemon is a system process that is always running

• We can interact with the daemon by leaving it instructions within a
file

§ A command for scheduling scripts: crontab

• Usage: crontab [-u user] [-l | -r | -e] [-i] [–s]

• If you don’t specify a user, you will by default open your own

• Typically, you will use: crontab –e

§ What happens when you use this command?

• Opens your cron job table to edit/add scheduled tasks

19

Scheduling Scripts

Interacting with your crontab

§ If you’ve never interacted with crontab before, it will create a new one for you

§ It expects each line to be formatted as:
• m h dom mon dow command

• m=minute; 1-60

• h=hour; 0-23

• dom=day of the month; 1-31

• mon=month; 1-12

• dow=day of the week; 0-6 (Sunday-Saturday)

• command=script or command to run

§ You can use * to wildcard each column

§ Example
• 0 0 1 * * command # Run at midnight on the first of every month

20

Unix 202
C o n c l u s i o n s

21

THANK YOU
Feel free to reach out to rderue@purdue.edu with questions.

Slides are posted at:
https://www.rcac.purdue.edu/training/unix201

22

mailto:rderue@purdue.edu
https://www.rcac.purdue.edu/training/unix101

