
Biocontainers 101
Using Containers in Bioinformatics

Yucheng Zhang
Senior Life Science Scientist

ITaP Research Computing

ITaP Research Computing Virtual Workshop Series

Yucheng Zhang, Lev Gorenstein
Feb. 25, 2022

Outline
• What are containers and why should we use them?
• Singularity basics
• Public container repositories
• Pull and use public biocontainers
• Deployed biocontainers on RCAC clusters
• Build your own biocontainers

What are containers?

A container is an abstraction for a set of technologies that aim to solve the
problem of how to get software to run reliably when moved from one computing
environment to another.
A container image is simply a file (or collection of files) saved on disk that
stores everything you need to run a target application or applications.
Registry is a place to store (and share) container images.

Why should we use containers?

Ø Getting organized: containers keep things
organized by isolating programs and their
dependencies inside containers.

Ø Build once, run almost anywhere: containers
allow us to package up our complete software
environment and ship it to numerous operating
systems.

Ø Reproducibility: containers can ensure identical
versions of apps, libraries, compliers, etc.

Source: https://support.terra.bio/hc/en-
us/articles/360037340472-Docker-container-overview

A real example

Why should we use containers on our clusters?
Enable you to install and use software easier

v Some software or packages has specific requirements for certain libraries
such as GLIBC. Because our cluster’s OS version is old, its libraries may not
be compatible with your software. In such case, installing software into our
clusters will be very challenging.

v However, if you build a container, you can get the latest everything and
aren't limited by the cluster's OS version. You are the master of your
containers.

source: https://github.com/harvardinformatics/bioinformatics-coffee-hour/blob/master/singularity/images/installing_software.gif

Docker

The concept of containers emerged in 1970s, but they were
not well known until the emergence of Docker containers in
2013.

Docker is an open source platform for building, deploying,
and managing containerized applications.

Some concerns about the security of
Docker containers on HPC: Docker gives
superuser privileges, but we do not want
users to have full, unrestricted admin/ root
access.

Singularity
v Singularity was developed in 2015 as an open-source project

by researchers at Lawrence Berkeley National Laboratory led
by Gregory Kurtzer.

v Singularity is emerging as the containerization framework of
choice in HPC environments.
1. Enable researchers to package entire scientific workflows,

libraries, and even data.
2. Users do not need to ask their system admin (e.g., RCAC)

to install software for them.
3. Can use docker images.
4. Secure!
5. Does not require root privileges.

Singularity basics
Detailed singularity user guide is available
at: sylabs.io/guides/3.8/user-guide

v Build
v Pull
v Shell
v Exec

The main singularity command
singularity [options] <subcommand> [subcommand options …]

https://sylabs.io/guides/3.8/user-guide/

Singularity workflow on HPC

1 (Optional). Build singularity containers on a
computer system where you have root or sudo
privilege, e.g., your personal computer with singularity
installed.

2. Pull the public containers or transfer your own
containers to HPC.

3. Run singularity containers on the HPC system.

singularity pull
Download a container from a given URI.

singularity pull [output file] <URI>

Supported URIs include:
vLibrary: pull an image from singularity library

library://<user>/<collection>/<image>[:tag]
vDocker hub: pull an image from Docker Hub.

docker://<repository>/<image>[:tag]
vQuay.io: pull an image from Quay.io registry

docker://quay.io/<repository>/<image>[:tag]
vhttp, https: pull an image using the http(s?) protocol

e.g., https://library.sylabs.io/v1/imagefile/library/default/alpine:latest

Three useful image registries
1. Docker Hub (https://hub.docker.org)

v Online repository of Docker container images.
v As of Feb. 17, 2022, 8,842,825 available container images.

2. BioContainers (https://biocontainers.pro/registry)
v A community-driven project for bioinformatics containers.
v 10.6K tools,45.4K versions,222.5Kcontainers and packages.
v The Bioconda package index lists all software available.
v The Biocontainers registry provides a searchable interface.

3. GALAXY project (https://depot.galaxyproject.org/singularity/)
v The BioContainers community also stored each singularity image in Galaxy

depot.
v Can be pulled or ran using the HTTP protocol.

https://hub.docker.org/
https://biocontainers.pro/registry
https://bioconda.github.io/conda-package_index.html
https://biocontainers.pro/registry
https://depot.galaxyproject.org/singularity/

singularity pull example

Let’s pull bowtie2 from three different resources.
Ø Docker hub (https://hub.docker.com/r/biocontainers/bowtie2/tags)

singularity pull bowtie.2.4.1.sif docker://biocontainers/bowtie2:v2.4.1_cv1
Ø Bioconda package index (https://bioconda.github.io/recipes/bowtie2/README.html)

singularity pull bowtie.2.4.5.sif docker://quay.io/biocontainers/bowtie2: 2.4.5--py37hafa4d4c_1
Ø GALAXY project (https://depot.galaxyproject.org/singularity)

singularity pull bowtie.2.4.5.sif https://depot.galaxyproject.org/singularity/bowtie2:2.4.5--py39hbb4e92a_0

Recommendation: add the --disable-cache option to prevent image layers from being cached in
${HOME}/.singularity/cache
singularity pull --disable-cache name_to_save.sif URI

singularity pull [options] name_to_save.sif URI

https://hub.docker.com/r/biocontainers/bowtie2/tags
https://bioconda.github.io/recipes/bowtie2/README.html
https://depot.galaxyproject.org/singularity

singularity shell
Go inside the container and start an interactive shell
singularity shell myimage.sif

Type “exit” in the interactive shell to go back to host system

Bind mounts
v Programs running inside a container will not have access to directories

and files outside of your home and the current directory.
v Singularity allows you to map directories on your host system to

directories within your container using bind mounts.
singularity shell --bind hostdir1:containerdir1 --bind hostdir2:containerdir2 myimage.sif

Singularity binds several directories into the container image
automatically. $HOME, /tmp and $PWD is the default list.

We also configured singularity to bind /apps, /depot, and /scratch on our
clusters.

singularity exec
Run a command within a container

singularity exec myimage.sif command
For example:

singularity exec blast.2.11.0.sif blastx -query input.fasta -db swissprot -out blast.out

--bind option is also very useful for singularity exec

For example:

singularity exec --bind $HOME/data/:/data/ blast.2.11.0.sif blastx -query /data/input.fasta -db nr

input.fasta is located in the host directory $HOME/data/

RCAC Biocontainers

For example:
$ module load biocontainers
$ module load bamtools/2.5.1
$ bamtools -h

A collection of pre-downloaded container
images wrapped into handy modulefiles so
they look and feel like native applications.

Alphafold
Deployed in all clusters, support both CPU and GPU.
$ module load biocontainers
$ module load alphafold/2.1.1

https://github.com/deepmind/alphafold

The full database (~2.2TB) has been downloaded and setup for users.

Usage:

run_alphafold.sh --flagfile=$AlphaDB --fasta_paths=XX --output_dir=XX ...

$AlphaDB (/depot/itap/datasets/alphafold/full_db.ff) is a configuration file passed to AlphaFold
containing the location of the database. Typically it should not be edited. Users can add other
parameters based on your needs.

HOMER

$ module load biocontainers
$ module load homer/4.11

Selected database have been downloaded for users.

ORGANISMS: yeast, worm, mouse, arabidopsis, zebrafish, rat, human and fly.

PROMOTERS: yeast, worm, mouse, arabidopsis, zebrafish, rat, human and fly.

GENOMES: hg19, hg38, mm10, ce11, dm6, rn6, danRer11, tair10, and sacCer3.

Check installed databases:
$ configureHomer.pl -list

Software for motif discovery and next-gen sequencing analysis

$ module load biocontainers
$ module load gtdbtk/1.7.0

GTDB-Tk reference data (R202) has been downloaded for users.

Example usage:
$ gtdbtk identify --genome_dir genomes --out_dir identify --extension gz --cpus 8

$ gtdbtk align --identify_dir identify --out_dir align --cpus 8

$ gtdbtk classify --genome_dir genomes --align_dir align --out_dir classify --extension gz --cpus 8

Toolkit for assigning objective taxonomic classifications to
bacterial and archaeal genomes based on the Genome Database
Taxonomy GTDB.

https://gtdb.ecogenomic.org/

HUMAnN 3

$ module load biocontainers
$ module load humann/3.0.0

Full ChocoPhlAn, UniRef90, EC-filtered UniRef90, UniRef50, EC-filtered UniRef50, and
utility_mapping databases have been downloaded for users.

Check the database and config by:

$ humann_config --print
HUMAnN Configuration (Section : Name = Value)
database_folders : nucleotide = /depot/itap/datasets/humann/chocophlan
database_folders : protein = /depot/itap/datasets/humann/uniref
database_folders : utility_mapping = /depot/itap/datasets/humann/utility_mapping

Quantify species’ contributions to community function

Run_dbcan

$ module load biocontainers
$ module load run_dbcan/3.0.2

Latest version of database has been downloaded and setup, including CAZyDB.09242021.fa,
dbCAN-HMMdb-V10.txt, tcdb.fa, tf-1.hmm, tf-2.hmm, and stp.hmm.

Usage:
$ run_dbcan protein.faa protein --out_dir test1_dbcan
$ run_dbcan genome.fasta prok --out_dir test2_dbcan

Automated CAZyme annotation

https://github.com/linnabrown/run_dbcan

R-RNAseq

$ module load biocontainers
$ module load r-rnaseq/4.1.1-1

OR $ module load r-rnaseq/4.1.1-1-rstudio
Commands:
1. R
2. Rscript
3. rstudio (only exist in rstudio version)

Customized R container for RNAseq analysis.

BiocManager 1.30.16 readr 2.0.2
ComplexHeatmap 2.9.4 readxl 1.3.1
DESeq2 1.34.0 purrr 0.3.4
edgeR 3.36.0 dplyr 1.0.7
DEXSeq 1.40.0
pheatmap 1.0.12 stringr 1.4.0

limma 3.48.3 forcats 0.5.1
tibble 3.1.5 ggplot2 3.3.5
tidyr 1.1.4 openxlsx 4.2.5

Thanks to Lev Gorenstein’s r/4.1.1 base image, users can also install other packages, same
with non-containerized R.

R-scRNAseq

$module load biocontainers
$module load r-scrnaseq/4.1.1-1

OR $module load r-scrnaseq/4.1.1-1-rstudio
Commands:
1. R
2. Rscript
3. rstudio (only exist in rstudio version)

Customized R container for scRNAseq analysis.

BiocManager 1.30.16 schex 1.8.0 tidyr 1.1.4
Seurat 4.1.0 CoGAPS 3.14.0 readr 2.0.2
SeuratObject 4.0.4 celldex 1.4.0 readxl 1.3.1
SeuratWrappers 0.3.0 dittoSeq 1.6.0 purrr 0.3.4
monocle3 1.0.0 DropletUtils 1.14.2 dplyr 1.0.7
SingleCellExperiment 1.16.0 miQC 1.2.0 stringr 1.4.0
scDblFinder 1.8.0 Nebulosa 1.4.0 forcats 0.5.1
SingleR 1.8.1 tricycle 1.2.0 ggplot2 3.3.5
scCATCH 3.0 pheatmap 1.0.12 openxlsx 4.2.5
scMappR 1.0.7 limma 3.48.3, 3.50.0
rliger 1.0.0 tibble 3.1.5

Thanks to Lev Gorenstein’s r/4.1.1 base image, users can also install other packages, same with non-containerized R.

Build your own containers with singularity

The first step is to install singularity on your personal computer.

We have singularity version 3.8.0 on the cluster. To guarantee
compatibility, please be sure to follow the installation guide for version
3.8 on your system (https://sylabs.io/guides/3.8/user-
guide/quick_start.html).

$ sudo singularity build image.sif image.def
v Need to build using a computer with elevated privileges, then copy to cluster.
v If no access to such a computer, can also build in the cloud.

https://sylabs.io/guides/3.8/user-guide/quick_start.html

Remote builder
If you need to build an image from a system where you don’t have admin privileges, we can build
remotely using the Sylabs Remote Builder.

To remotely build an image using singularity, go through the following steps:
1. Go to: https://cloud.sylabs.io/, and create a Sylabs account.
2. Create a new “Access Token”, and copy it to clipboard.
3. Login to our clusters, and run `singularity remote login` in terminal and paste the access token at

the prompt.
4. Then you can remotely build your own singularity image on the cluster.

singularity build -r myimage.sif myimage.def
or singularity build --remote myimage.sif myimage.def

Once finished, the image will be downloaded automatically so that it’s ready to use.

https://cloud.sylabs.io/builder
Go%20to:%20https:/cloud.sylabs.io

Singularity definition file
A definition file, or def file, is a recipe to build a
container image with singularity. It is divided
into two parts:
1. Header: the Header describes the core

operating system to build within the
container.

2. Section: each section is defined by
a % character followed by the name of the
particular section. Different sections add
different content or execute commands at
different times during the build process.

def file for prokka 1.14.6 prepared by NIH HPC staff

Header

Section

Detailed instruction on how to prepare a definition
file is available at
https://sylabs.io/guides/latest/user-
guide/definition_files.html.

https://sylabs.io/guides/latest/user-guide/definition_files.html

Preferred bootstrap agents

1. library: images hosted in Sylabs Cloud Library
2. docker: images hosted in Docker Hub
3. localimage: images saved on your machine

Information about more bootstrap agents can be found in Singularity user guide.

https://cloud.sylabs.io/library
https://hub.docker.com/
https://sylabs.io/guides/3.8/user-guide/definition_files.html

Bootstrap: docker
From: ubuntu:20.04
%labels
Author "Yucheng Zhang <zhan4429@purdue.edu>"
Version v0.935
%help
Singularity container with ANGSD v0.935. This container also installed htslib and samtools.

%post
update the system and install building essentials
apt-get -y update
apt-get -y install --no-install-recommends --no-install-suggests libssl-dev libcurl4-gnutls-dev libbz2-dev \

liblzma-dev libz-dev samtools gcc g++ git ca-certificates build-essential make zip wget unzip locales locales-all
clean up
apt-get -y autoremove && apt-get clean. && rm -rf /var/lib/apt/lists/*
Install htslib
SRC=/usr/local/src
mkdir -p $SRC && cd $SRC
git clone --recursive https://github.com/samtools/htslib.git
cd htslib && make
Install angsd
cd $SRC && git clone https://github.com/ANGSD/angsd.git
cd angsd && make HTSSRC=$SRC/htslib
#Symbolic link
chmod +x $SRC/angsd/misc/realSFS
cd /usr/local/bin
ln -s $SRC/angsd/angsd . && ln -s $SRC/angsd/misc/realSFS .

ANGSD
Program for analyzing NGS data

aTRAM
automated target restricted
assembly method

Bootstrap: docker
From: continuumio/miniconda3

%labels
Author "Yucheng Zhang <zhan4429@purdue.edu>"
Version 2.4.3

%help
This container contains the latest version (v2.4.3) of aTRAM.

%post
conda install git
cd /opt/ && git clone https://github.com/juliema/aTRAM.git
cd aTRAM && chmod +x *.py

conda install python=3 numpy biopython psutil
conda install -c bioconda blast velvet trinity abyss spades exonerate

%environment
export PATH=/opt/aTRAM/:$PATH

Bootstrap: localimage
From: r-base:4.1.1.sif

%post
Rscript -e "install.packages('tidyverse')"

Rscript -e "install.packages('openxlsx', dependencies = TRUE)"

Rscript -e 'if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")' \

&& Rscript -e
'BiocManager::install(c("limma","edgeR","DESeq2","ComplexHeatmap","DEXSeq"))'

If users want to build your own R containers, welcome to use our r-base images and recipes that are
stored in /depot/itap/biocontainers/recipes/

Bootstrap: localimage
From: r_4.1.1_rstudio.sif

%post
update the system and install building essentials
apt-get -y update
apt-get install -y gdal-bin libgdal-dev libudunits2-dev ## here you install required libraries
clean up
apt-get -y autoremove && apt-get clean && rm -rf /var/lib/apt/lists/*

Seurat3
Rscript -e "install.packages('Seurat')"

monocle3
Rscript -e 'if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")' \
&& Rscript -e "BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats','limma',
'S4Vectors', 'SingleCellExperiment','SummarizedExperiment', 'batchelor','Matrix.utils'))"
Rscript -e "devtools::install_github('cole-trapnell-lab/leidenbase')"
Rscript -e "devtools::install_github('cole-trapnell-lab/monocle3’)”

Cluster user guide
Singularity section contains instructions for using Singularity on RCAC clusters.
Biocontainer collection section contains instructions and examples for running
bioinformatic containers.
Email
rcac-help@purdue.edu is our email support address. Send us an email any time.
Coffee hour consultations
In response to COVID-19, we are temporarily switching all our Coffee Hour
Consultations to online only (https://www.rcac.purdue.edu/coffee). We offer several slots
(2:00 to 3:30pm) each afternoon (Monday to Thursday) for private one-on-one
consultations or questions of up to 30 minutes.
Additional bioinformatic tools
Contact me (zhan4429@purdue.edu) or Lev (lev@purdue.edu), if you want additional
software added into RCAC biocontainers.

https://www.rcac.purdue.edu/knowledge/bell/run/examples/apps/singularity
https://www.rcac.purdue.edu/knowledge/bell/run/examples/apps/biocontainers
mailto:rcac-help@purdue.edu
https://www.rcac.purdue.edu/coffee
mailto:zhan4429@purdue.edu
mailto:lev@purdue.edu

