
Container 101

Yucheng Zhang
Senior Life Science Scientist

ITaP Research Computing

ITaP Research Computing Virtual Workshop Series

Yucheng Zhang, Lev Gorenstein

Outline

• What are containers and why should we use them?
• Docker and Singularity
• Singularity basics
• Using containers on RCAC clusters
• Deployed containers on RCAC clusters

What are containers?

v The arrival of modern shipping containers
changed our transportation industry.

v Container is a standardized way to package
items together into one shipment.

1.Standard packaging
2.Isolation and efficiency
3.Portable
4.Separation of concerns

What are containers?

A container is an abstraction for a set of
technologies that aim to solve the problem of how
to get software to run reliably when moved from
one computing environment to another.
A container image is simply a file (or collection of
files) saved on disk that stores everything you
need to run a target application or applications.
Registry: a place to store (and share) container
images.

Source: https://support.terra.bio/hc/en-us/articles/360037340472-Docker-container-overview

Why should we use containers?
Getting organized

Source: Docker in Action by jeff nickoloff (2nd edition)

vWithout containers, a computer can end up looking like a junk drawer. Applications
have all sorts of dependencies.

vContainers keep things organized by isolating programs and their dependencies
inside containers.

Why should we use containers?
Build once, run almost anywhere

Source: https://medium.com/mindful-engineering/docker-setup-once-run-anywhere-3bb536fd7157

An application’s dependencies typically include a specific operating system.
Portability between operating systems is a major problem for software users.
Although it’s possible to have compatibility between Linux software and
macOS, using that same software on Windows can be more difficult.

Containers allow us to package up
our complete software environment
and ship it to numerous operating
systems.

Why should we use containers?
Reproducibility

v Rising concerns about lack of repeatability, replicability and reproducibility in
science and engineering.

vNot only “wet-lab” papers, but also “dry lab” papers, even published in high
impact journals can seldom be repeated, due to variation in data collection
methodologies, experimental environments, computational configuration,
etc.

vContainers can ensure identical versions of apps, libraries, compliers,
etc.

Docker

The concept of containers emerged in 1970s, but they were
not well known until the emergence of Docker containers in
2013.

Docker is an open source platform for building, deploying,
and managing containerized applications.

Some concerns about the security of
Docker containers on HPC: Docker gives
superuser privileges, but we do not want
users to have full, unrestricted admin/ root
access.

Singularity
v Singularity was developed in 2015 as an open-source project

by researchers at Lawrence Berkeley National Laboratory led
by Gregory Kurtzer.

v Singularity is emerging as the containerization framework of
choice in HPC environments.
1. Enable researchers to package entire scientific workflows,

libraries, and even data.
2. Users do not need to ask their system admin (e.g., RCAC)

to install software for them.
3. Can use docker images.
4. Secure!
5. Does not require root privileges.

Singularity basics
Detailed singularity user guide is available
at: sylabs.io/guides/3.8/user-guide

v Build
v Pull
v Shell
v Run
v Exec

The main singularity command
singularity [options] <subcommand> [subcommand options …]

https://sylabs.io/guides/3.8/user-guide/

Singularity workflow on HPC

1 (Optional). Build singularity containers on a
computer system where you have root or sudo
privilege, e.g., your personal computer with singularity
installed.

2. Pull the public containers or transfer your own
containers to HPC.

3. Run singularity containers on the HPC system.

Build your own containers by singularity

The first step is to install singularity on your personal computer.

We have singularity version 3.8.0 on the cluster. To guarantee
compatibility, please be sure to follow the installation guide for version
3.8 on your system (https://sylabs.io/guides/3.8/user-
guide/quick_start.html).

https://sylabs.io/guides/3.8/user-guide/quick_start.html

singularity build

1. Build from URI
singularity build myown_gatk.sif docker://broadinstitute/gatk:latest

2. Build using a singularity definition file
singularity build myown_container.sif definition.def

v Need to build using a computer with elevated privileges, then copy to cluster.
v If no access to such a computer, can also build in the cloud.

These two ways allow us to use containers that someone else created, or to create
our own containers if we need to.

Remote builder
If you need to build an image from a system where you don’t have admin privileges, we can build
remotely using the Sylabs Remote Builder.

To remotely build an image using singularity, go through the following steps:
1. Go to: https://cloud.sylabs.io/, and generate a Sylabs account.
2. Create a new “Access Tokens”, and copy it to clipboard.
3. SSH login to our clusters, and run `singularity remote login` in terminal and paste the access

token at the prompt.
4. Then you can remotely build your own singularity image in the cluster.

singularity build -r myimage.sif myimage.def
or singularity build --remote myimage.sif myimage.def

Once finished, the image will be downloaded automatically so that it’s ready to use.

https://cloud.sylabs.io/builder
Go%20to:%20https:/cloud.sylabs.io

Singularity definition file
A definition file, or def file, is a recipe to build a
container image with singularity. It is divided
into two parts:
1. Header: the Header describes the core

operating system to build within the
container.

2. Section: each section is defined by
a % character followed by the name of the
particular section. Different sections add
different content or execute commands at
different times during the build process.

def file for prokka 1.14.6 prepared by NIH HPC staff

Header

Section

Detailed instruction on how to prepare a definition
file is available at
https://sylabs.io/guides/latest/user-
guide/definition_files.html.

https://sylabs.io/guides/latest/user-guide/definition_files.html

Build your own containers by docker
Using docker to build containers is another option:

1. Docker has a large, active, and stable ecosystems of container
images.

2. Singularity can use docker images.

You can follow the installation guide for install Docker in your personal
computer (https://docs.docker.com/get-docker/).

https://docs.docker.com/get-docker/

docker build

Build an image from the Dockerfile in the current directory and tag the image.

docker build -t NAME[:TAG] .

An example Dockerfile for building the container for the bioinformatics tool samtools.

Docker Hub
Docker Hub is a cloud-based public registry service to host both public and
private images

Users get access to free public repositories for storing and sharing images or
can choose a subscription plan for private repositories.

https://hub.docker.com

https://hub.docker.com/

docker push

To push an image to a Docker registry, go through the following steps:
1. Begin by tagging the image using the docker image tag command with the
appropriate user or organization in the Docker Hub, as shown in the following
code:

docker image tag myimage:tag username/myimage:tag
2. Logging into the Docker Hub registry

docker login
3. Push the image to Docker Hub

docker push username/myimage:tag

$ docker login
$ docker image tag macs:2.1.2.1 zhan4429/macs:2.1.2.1
$ docker push zhan4429/macs:2.1.2.1

$ singularity pull macs2.sif docker://zhan4429/macs:2.1.2.1

singularity pull
Download or build a container from a given URI.

singularity pull [output file] <URI>

Supported URIs include:
vLibrary: pull an image from singularity library

library://<user>/<collection>/<image>[:tag]
vDocker: pull an image from Docker Hub.

docker://<repository>/<image>[:tag]
vQuay.io: pull an image from Quay.io registry

docker://quay.io/<repository>/<image>[:tag]
vhttp, https: pull an image using the http(s?) protocol

e.g., https://library.sylabs.io/v1/imagefile/library/default/alpine:latest

Two useful image hubs

1. DockerHub (https://hub.docker.org)
Ø Online repository of Docker container images.
Ø As of Oct. 16, 2021, 8,435,580 available container images.

2. Biocontainers (https://biocontainers.pro/registry)
Ø A community-driven project for bioinformatics containers.
Ø 10.3K tools,41.1K versions,202.6Kcontainers and packages.
Ø For some reason, loading of the registry website is slow.

https://hub.docker.org/
https://biocontainers.pro/registry

singularity pull example

Pull the image from Docker Hub (docker://
repository/image:tag)
For example:
singularity pull bowtie2_v2_4_1.sif
docker://biocontainers/bowtie2:v2.4.1_cv1

singularity shell
Start an interactive shell, and go inside the container
singularity shell myimage.sif

Type “exit” in the interactive shell to go back to host system

Bind mounts
v Programs running inside a container will not have access to directories

and files outside of your home and the current directory.
v Singularity allows you to map directories on your host system to

directories within your container using bind mounts.
singularity shell --bind hostdir1:containerdir1 --bind hostdir2:containerdir2 myimage.sif

Singularity binds several directories into the container image
automatically. $HOME, /tmp and $PWD is the default list.

We also configured singularity to bind /apps, /depot, and /scratch on our
clusters.

singularity run
Run the user-defined default command(launch the runscript) within a
container.
This will run the default command set for containers based on the specific image. This
default command is set within the image runscript when the image is built. You do not
specify a command to run when using singularity run, you simply specify the image
name. All arguments following the image name will be passed directly to the runscript.

To check the runscript for a container, enter:

singularity inspect --runscript myimage.sif

singularity run myimage.sif [arguments]

singularity exec
Run a command within a container

singularity exec myimage.sif command
For example:

singularity exec blast.2.11.0.sif blastx -query input.fasta -db swissprot -out blast.out

--bind option is also very useful for singularity exec

For example:

singularity exec --bind $HOME/data/:/data/ blast.2.11.0.sif blastx -query /data/input.fasta -db nr

input.fasta is located in the host directory /$HOME/data/

GPU acceleration
For many applications, CPU compute resources provide sufficient
performance. However, for a certain class of applications, the massively
parallel compute power offered by GPUs can speed up operations by
orders of magnitude.

Run a container with GPU acceleration
For AMD GPUs:
singularity shell/run/exec --rocm myimage.sif [command] [argument]
For NVIDIA GPUs:
singularity shell/run/exec --nv myimage.sif [command] [argument]

Deployed container collections on RCAC clusters
1. NVIDIA NGC: GPU-optimized tools for deep learning, machine

learning, and high-performance computing.

2. Biocontainers: frequently used bioinformatic tools.

3. ROCm: AMD GPU software containers for HPC, AI & machine
learning.

We already wrapped these containers into convenient software
modules. These modules wrap underlying complexity and provide
the same commands that are expected from non-containerized
versions of each application.

NGC

Deployed in Gilbreth, Scholar and Anvil.

For example:
$ module load ngc
$ module load relion/2.1.b1
$ relion

Biocontainers

Deployed in all clusters except Gilbreth. We will keep deploying new
tools or versions into this collection.
For example:

$ module load biocontainers
$ module load bamtools/2.5.1
$ bamtools -h

ROCm

Deployed only in Bell.

For example:
$ module load rocmcontainers
$ module load pytorch/1.8.1-rocm4.2-ubuntu18.04-py3.6

Get help
User guide
Singularity contains instructions for using Singularity on RCAC clusters.
Biocontainer collection contains instructions and examples for running bioinformatic
containers.
ROCm container collection contains instructions and examples for running AMD GPU
containers.
NGC container collection contains instructions and examples for running NVIDIA GPU
containers.
Email
rcac-help@purdue.edu is our email support address. Send us an email any time.
Coffee hour consultations
In response to COVID-19, we are temporarily switching all our Coffee Hour
Consultations to online only. We offer several slots (2:00 to 3:30pm) each afternoon
(Monday to Thursday) for private one-on-one consultations or questions of up to 30
minutes.

https://www.rcac.purdue.edu/knowledge/bell/run/examples/apps/singularity
https://www.rcac.purdue.edu/knowledge/bell/run/examples/apps/biocontainers
https://www.rcac.purdue.edu/knowledge/bell/run/examples/apps/rocmcontainers
https://www.rcac.purdue.edu/knowledge/gilbreth/run/examples/apps/ngc
mailto:rcac-help@purdue.edu
https://www.rcac.purdue.edu/coffee

Practice
https://github.com/zhan4429/Container101_2021

https://github.com/zhan4429/Container101_2021

