

Sign up for our newsletter

SCHOLARSHIPS

CAREER DEVELOPMENT

COMMUNITY

Present your research at conferences

Attend trainings and events

Join the conversation on Slack

OUTCOMES

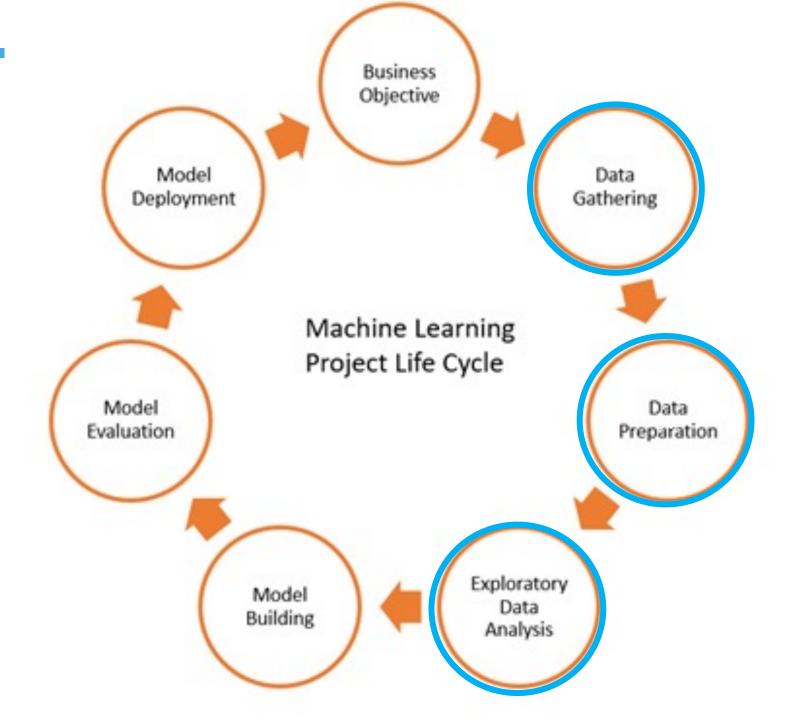
Understand how data is used in machine learning and data science

Data types and data collection

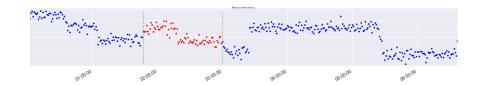
Topics to consider when doing an Exploratory Data Analysis

Basic data processing using Pandas

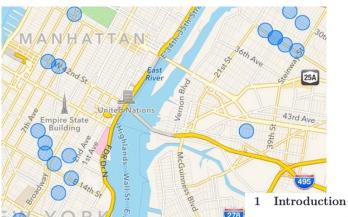
MODEL DEVELOPMENT CYCLE

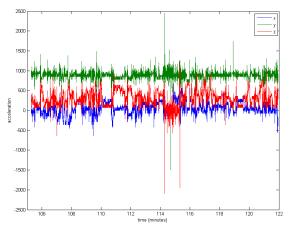


WHAT IS DATA?



File Edit Wine	dows <u>H</u> elp																										
GoTo/Find		WindrosePio	t Windrose	Table	Data	Table	Data Tir	nePlot DataF	osePlot [ataRose Tabi	le																
Date			AERMOD					Sensible	Friction	Conv. Vel.	Vert. Pot.	Conv.	Mech	Morin-	Surface			Wind	Wind	Wind		Toma		Precip.	Relative	Station	Cloud
Date Rance			Missing	Yr	Mon	Day	Jul. H	r Heat Flux	Velocity	Scale	Temp. Grad.	Mix. Hat.	Mix. Hat.	Obukov	Rough.	Bowen Ratio	Albedo	Speed	Dir	Ref.Hat.	Temp.	Temp. Ref.Hgt.	Precip. Code	Rate	Humidity	Pressure	Cover
Period	Al Days And		Total				Day	(N/m ²)	(m/s)	(m/s)	("K/m)	(m)	(m)	Lng. (m)	(m)	Mano		(m/a)	(deg)	(m)	(10)	(m)	Code	(mm/hr)	(%)	(mb)	(tenths)
Start Date	1/1/2008	Minimum	0	8	1	- 1	1	1 -64.0	0.029	0.012	0.005	3	11	-8888.0	0.004	0.70	0.16	0.00	0	10.0	262.0	2.0	0	0.00	- 11	988	0
End Date	12/31/2008	Maximum	107	8	12	31	366	24 235.8	1,208	2.537	0.025	2647	3039	8888.0	0.094	0.76	1.00	15.66	360	10.0	310.4	2.0	22	41.70	96	1040	10
	1	Missing	107			0		0 0	0	0	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	3
	24	1	0	8	1	1	- 1	1 -6.6	0.076	-9.000	-9.000	-999	48	6.0	0.020	0.76	1.00	2.36	211	10.0	276.4	2.0	0	0.00	64	1019	0
Data		2	0	8	1	1	1	2 -25.5	0.218	-9.000	-9.000	-999	235	37.1	0.082	0.76	1.00	3.36	118	10.0	274.9	2.0	0	0.00	72	1019	0
ELGADIXXIS SEC		3	0	8	1	- 1	1	3 -16.7	0.144	-9.000	-9.000	-999	127	16.2	0.078	0.76	1.00	2.85	124	10.0	275.9	2.0	0	0.00	69	1019	0
	₽	4	0	8	1	- 1	-1	4 -5.4	0.073	-9,000	-9.000	-999	47	6.6	0.082	0.76	1.00	1.76	103	10.0	275.4	2.0	0	0.00	69	1018	0
Friction Velocity	₽	5	0	8	1	1	1	5 -28.5	0.279	-9.000	-9.000	-999	339	69.4	0.082	0.76	1.00	3.86	113	10.0	274.9	2.0	0	0.00	75	1017	5
Conv. Vel. Scal	₽	6	0	8	1	1		6 -51.4		-9.000	-9.000	-999	837	232.9	0.078	0.76	1.00	6.46	132	10.0	277.0	2.0	0	0.00	69	1015	5
Vert. Pot. Temp	₽	7	0	8	1	- 1	1	7 -46.8	0.466	-9.000	-9.000	-999	734	195.9	0.078	0.76	1.00	5.96	145	10.0	278.1	2.0	0	0.00	70	1013	5
Corry, Mix. Hat	₽	8	0	8	1	1	1	8 -39.6		-9.000	-9.000	-999	1342	775.1	0.084	0.76	0.71	8.46	153	10.0	279.9	2.0	0	0.00	72	1011	10
Mech. Mix. Hat	₽	9		8	1	1	1	9 -20.7	0.825	-9.000	-9.000	-999	1720	2449.5	0.078	0.76	0.39	10.06	147	10.0	280.4	2.0	0	0.00	70	1009	10
Monin-Obukov	P	10		8	1	- 1		10 5.3		0.151	0.005	23		-6052.4	0.084	0.76	0.27	8.46	151	10.0	279.9	2.0	0	0.00	78	1008	10
Surface Rough	P	11		8	1	- 1		11 12.4		0.246	0.005	43		-1846.1	880.0	0.76	0.22	7.46	184	10.0	280.4	2.0	11	3.00	82	1008	10
Bowen Ratio	P	12		8	1	- 1		12 16.0		0.299	0.005	59		-96.3	880.0	0.76	0.21	2.86	186	10.0	280.9	2.0	11	1.50	88	1006	10
Albedo	P	13		8	1	- 1		13 55.4	0.412	0.544	0.005	104	809	-113.1	0.009	0.76	0.21	6.96	263	10.0	282.5	2.0	0	0.00	73	1005	8
Wind Speed (m/s)	₽	14		8	1	- 1		14 12.5		0.340	0.005	112		-411.3	0.004	0.76	0.22	7.46	279	10.0	282.0	2.0	0	0.00	57	1005	10
Wind Dir. (dea)	₽	15		8	1	- 1		15 17.9	0.337	0.396	0.005	124	452	-191.7	0.004	0.76	0.27	6.46	292	10.0	281.4	2.0	0	0.00	56	1004	9
Wind Ref. Hat. (m)	₽	16		8	1	- 1		16 4.1		0.254	0.005	142	544	-1212.3	0.004	0.76	0.39	7.46	294	10.0	281.4	2.0	0	0.00	45	1004	5
Temp. ("K)	₽	17		- 8	1	1		17 -44.0	0.447	-9.000	-9.000	-999	688	182.2	0.004	0.76	0.73	9.06	281	10.0	280.9	2.0	0	0.00	39	1005	5
Temp. Ref. Hat	₽	18		8	1	- 1		18 -27.7	0.412	-9.000	-9.000	-999	610	226.5	0.009	0.76	1.00	7.46	257	10.0	279.9	2.0	0	0.00	39	1005	9
Precip. Code	₽	15		- 8	1	- 1		19 -34.3	0.446	-9.000	-9.000	-999	684	231.0	0.004	0.76	1.00	8.96	274	10.0	279.2	2.0	0	0.00	39	1005	8
Precip. Rate (m	₽	20		8	1	- 1		20 -34.2		-9.000	-9.000	-999	827	339.7	0.009	0.76	1.00	9.06	267	10.0	278.8	2.0	0	0.00	42	1005	9
Relative Humidt	₽	21		8	1	1		21 -27.3	0.480	-9.000	-9.000	-999	766	363.3	0.004	0.76	1.00	9.56	270	10.0	278.1	2.0	0	0.00	44	1005	10
Station Pressure	₽	22		8	1	- 1		22 -34.4		-9.000	-9.000	-999	685	230.0	0.004	0.76	1.00	8.96	272	10.0	278.1	2.0	0	0.00	44	1005	8
Cloud Cover (te	₽	23		8	1	1		23 -36.3	0.535	-9.000	-9.000	-999	899	378.2	0.009	0.76	1.00	9.56	260	10.0	277.5	2.0	0	0.00	46	1004	9
Table Appearance		24		8	1	1		24 -57.6		-9.000	-9.000	-999	884	229.7	0.009	0.76	1.00	9.56	260	10.0	277.0	2.0	0	0.00	48	1004	3
MissingData	LightG	25		8	1	2		1 -47.3	0.434	-9.000	-9.000	-999	664	154.3	0.009	0.76	1.00	7.96	266	10.0	276.4	2.0	0	0.00	50	1004	3
BackColor	White	26		8	1	2		2 -47.2	0.413	-9.000	-9.000	-999	610	133.3	0.004	0.76	1.00	8.46	272	10.0	276.4	2.0	0	0.00	52	1004	0
ForeColor	Black	27		8	- 1	2		3 -22.7	0.396	-9.000	-9.000	-999	575	245.8	0.004	0.76	1.00	7.96	272	10.0	275.9	2.0	0	0.00	53	1004	10
Font	Microsoft S	28			- 1	2		4 -33.5		-9.000	-9.000	-999	446	99.8	0.004	0.76	1.00	6.96	290	10.0	275.9	2.0	0	0.00	56	1004	
		25		8	- 1	2		5 -29.0	0.507	-9.000	-9.000	-999	830	401.5	0.006	0.76	1.00	9.56	306	10.0	275.9	2.0	0	0.00	51	1004	10
		30		8	- 1	2		6 -30.8		-9.000	-9.000	-999	897	444.3	0.006	0.76	1.00	10.06	317	10.0	274.9	2.0	0	0.00	51	1005	10
		31		8	- 1	2		7 -46.1	0.586	-9.000	-9.000	-999	1031	391.7	0.006	0.76	1.00	11.06	309	10.0	273.8	2.0	0	0.00	51	1006	
		32		8	- 1	2		8 -21.0		-9.000	-9.000	-999	545	204.5	0.006	0.76	0.71	6.96	326	10.0	273.1	2.0	0	0.00	55	1007	10
		33		8	1	2		9 -14.1	0.484	-9.000	-9.000	-999	774	720.5	0.006	0.76	0.39	9.06	320	10.0	272.5	2.0	0	0.00	53	1008	10
		34		8	- 1	2			0.440	0.252	0.006	130	672	-1719.1	0.007	0.76	0.27	7.96	331	10.0	272.5	2.0	0	0.00	53	1009	10
		35			- 1	2		11 30.7		0.708	0.006	416	607	-203.3		0.76	0.22		325	10.0	272.5	2.0	0	0.00	53	1010	
		36		8	- 1	2		12 37.6 13 54.3	0.506	0.857	0.006	603 687	829 737	-311.2 -169.7	0.007	0.76	0.21	9.06	331	10.0	272.5	2.0	0	0.00	46 47	1010	9
		38			-	2		14 65.0	0.468	1.104	0.006	748	839	-185.0	0.006	0.76	0.21	9.06	337	10.0	2/3.1	2.0	U	0.00	4/	1010	8
		35			1	2		15 17.2		0.713	0.006	762	1098	-1202.9	0.007	0.76	0.22	11.06	340	10.0							
		35		8	- 1	- 2	- 2	19 17.2	0.612	0.713	0.005	1,67	1098	-1202.9	0.007	0.76	0.27	11.06	340	10.0							



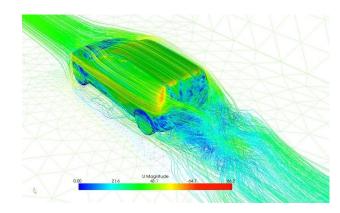


The asynchronous form of Q-learning, which is a stochastic approximation paradigm that applies to Markovian non-i.i.d. samples, has found applicability in an abundance of reinforcement learning (RL) applications (Even-Dar et al., 2003; Jaakkola et al., 1994; Tsitsiklis, 1994; Watkins and Dayan, 1992). The input data takes the form of a Markovian sample trajectory induced by a policy called the behavior policy; in each time, asynchronous Q-learning only updates the Q-function estimate of a single state-action pair along the trajectory rather than updating all pairs at once — and hence the terminology "asynchronous" (Bertsekas and Tsitsiklis, 2003; Tsitsiklis, 1994). This classical algorithm has the virtue of being off-policy, allowing one to learn the optimal policy even when the behavior policy is suboptimal. Recent years have witnessed a resurgence of interest in understanding the performance of asynchronous Q-learning, due to a shift of attention from classical asymptotic analysis to the non-asymptotic counterpart. By and large, nonasymptotic results bear important and clear implications for the impacts of salient parameters (e.g., model capacity, horizon length) in large-dimensional RL problems.

1.1 Motivation

A central consideration in modern RL applications is data efficiency: the limited availability of data samples places increasing demands on sample-efficient RL solutions, and in turn, calls for reexamining classical algorithms like Q-learning. When it comes to asynchronous Q-learning, recent theoretical advances have led to sharpened sample complexity analyses (Li et al., 2021a,c; Qu and Wierman, 2020). For concreteness, consider a γ -discounted infinite-horizon Markov decision process (MDP) and a stationary behavior policy: asynchronous Q-learning provably yields ε -accuracy as soon as the sample size exceeds the order of (Li et al., 2021a)

$$\frac{1}{\mu_{\min}(1-\gamma)^4 \varepsilon^2} + o\left(\frac{1}{\varepsilon^2}\right) \tag{1.1}$$

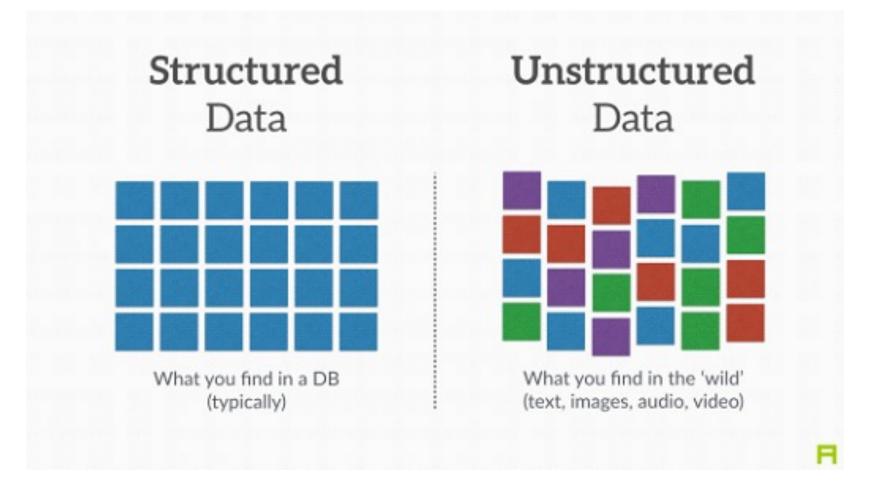


WHY DOES THIS MATTER?

Intended model dictates data needs

Available data dictates possible models

STRUCTURED VS UNSTRUCTURED DATA



LABELLED VS UNLABELLED DATA

Unlabeled Data

Je m'appelle Sarah.

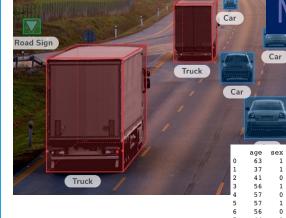
145

150 247

Labeled Data

Je m'appelle Sarah =

My name is Sarah



[20 rows x 14 columns

[20 rows x 14 columns]

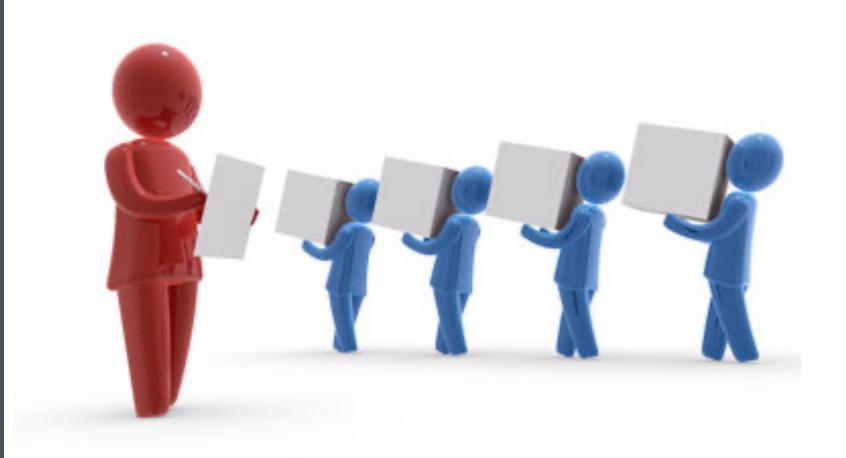
SUPERVISED VS UNSUPERVISED LEARNING

- Most Machine Learning and Statistical Models
 - Image Recognition
 - Neural Machine Translation
 - Loan Default Prediction
- Relies on Labelled Data as the "ground truth"

- Data preparation and limited models
 - Clustering for anomaly detection
 - Dimensionality reduction
 - Association and Recommender systems
- Does not require labelled data

SUPERVISED LEARNING

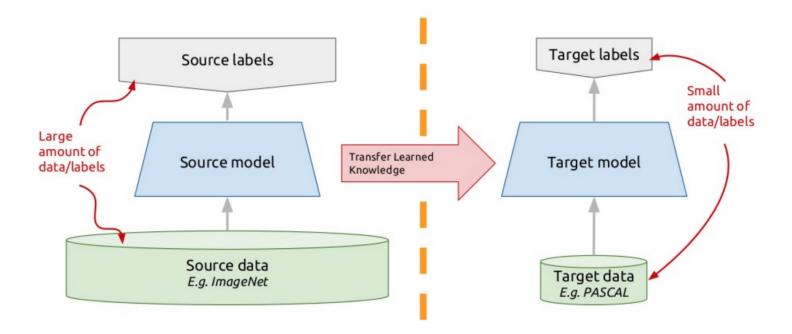
- More data preparation
- More performant
- More types of models



ON LABELED DATA

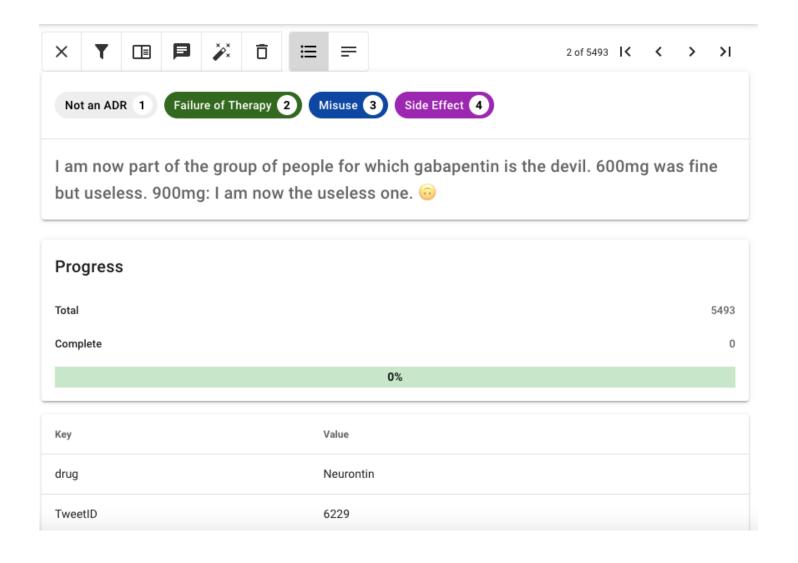
- You need a lot of labeled data for most ML systems!
 - Typically on the scale of thousands or tens of thousands of data points
- Transfer learning reduces
 data needs but you still need
 enough to fine tune the
 model for your specific task

Transfer learning: idea



DATA ANNOTATION

- Some times labelled data is naturally collected (e.g. engineers marking if a test worked or not)
- Other times you can use pre-existing labelled data (e.g. Kaggle dataset)
- Most of the time you will need to go through a data annotation process



DATA ANNOTATION DIFFICULTIES

Does "weird"
count as
experiencing a
side-effect?

- Clear and consistent guidelines are key
 - Inconsistent labelling can confuse the model's training
 - It can be helpful to think about whether false positives or false negatives are more acceptable for your model and advise your annotators to err on that side
- Annotation can be a tedious and error prone process but is one of the most important
- Garbage in, garbage out!

Coming off Zoloft is \$%&@*#! weird

BEST PRACTICES FOR DATA ANNOTATION

- If multiple annotators:
 - Create common guidelines
 - Hold an alignment meeting to go through examples together and calibrate
 - Have everyone complete a pre-test by annotating a limited number of examples and assess inter-annotator accuracy and analyze common misconceptions
- Tools like Doccano (open-source) can make data annotation easier

The best features

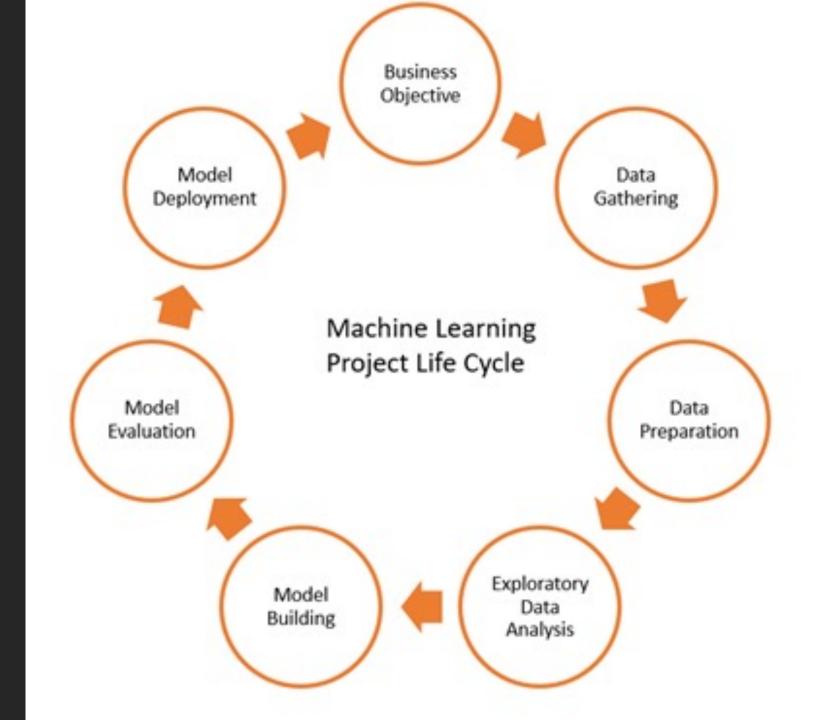
Team Collaboration

Annotation with your team mates

Annotation with any language



MODEL DEVELOPMENT CYCLE



DATA CLEANING AND DATA
PREPARATION ACCOUNTS FOR
AS MUCH AS 80% OF A DATA
SCIENTIST'S TIME

- An extremely common tool used for working with data are dataframes
 - Contains both data and metadata

DATAFRAMES

- Dataframes are structures that organizes data into a two-dimensional data
- Doesn't have size limitations like Excel!

*All provided commands in this presentation are for use with the Pandas DataFrames package in Python

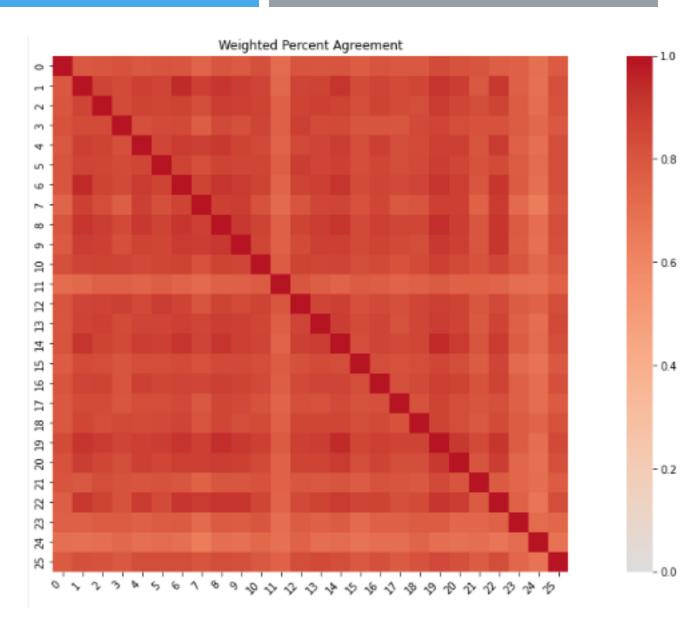
	TweetID	text	Created_at	Retweet_count	Like_count	drug	annotator1	annotator2
0	60175	I haven't been able to take my regular dose of	2021-04-27 03:43:14+00:00	0	0	Zoloft	1	3
1	68886	Xanax is expensive but I'm worth it.	2021-09-28 02:45:44+00:00	0	0	Xanax	1	3
2	58836	there is no tarantino film that can frighten m	2021-01-26 16:33:45+00:00	0	0	Zoloft	1	3
3	30204	l just applied at my first bar job! I think it	2021-08-19 04:03:53+00:00	1	1	Ambien	1	3
4	25322	Welp its official - I've payed over \$5000.00	2021-11-22 22:16:51+00:00	0	8	Polymox	1	3
5688	34709	I forgot a dose of prednisone and now I'm too	2021-06-30 21:19:46+00:00	0	0	Rayos	25	3
5689	39646	Can I get albuterol without having to wait a m	2021-05-09 21:07:02+00:00	0	0	ProAir	25	3
5690	46250	goin as a container of hydrocortisone as half	2021-10-20 20:05:48+00:00	0	2	Westcort	25	3
5691	2187	found out my body metabolizes anesthesia way t	2021-06-21 23:06:03+00:00	0	2	Asperflex	25	3
5692	34373	#MedTwitter tweeps- is there any evidence that	2021-05-24 09:21:46+00:00	1	4	Rayos	25	3
5693 rov	ws × 8 colur	nns						

MISSING DATA

- What you do with missing outliers depends on your use case and the columns
- If you are missing data in the label column you may be best to delete the row
- For other columns you may be able to interpolate data
 - e.g. in a time series analysis you could average the previous and next data point

ACCOUNT FOR OUTLIERS

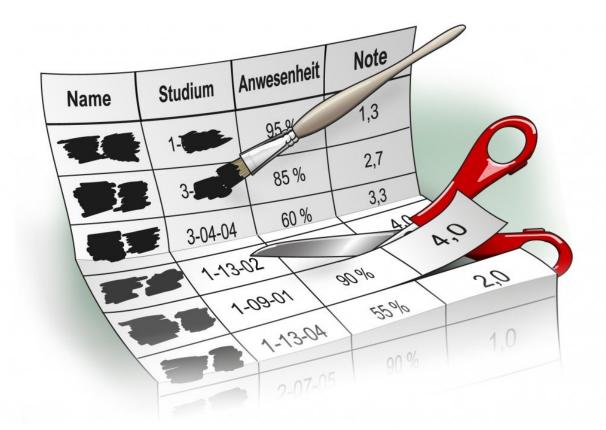
- What you do with outliers depends on your use case
- Are outliers important in your data (e.g. anomaly detection) or are they representative of someone not labelling the data well?
 - With the annotation data visualized here, I might want to not use annotator 11's data for model training



ANONYMIZE DATA

If you have a column with the subject name or identifiable information you can:

- Delete the column
- Substitute an anonymized value instead



DATA SETS

Training Data (70%)

Data used by the model for training

Validation Data (20%)

Used to assess model performance during training

Test Data (10%)

Data used after training is complete for evaluation metrics

OTHER POTENTIAL STEPS IN PRE-PROCESSING

- Ensure consistent descriptors/categories (e.g. 'female' and 'woman' should be the same)
- Rename columns
- Data encoding
 - Data must be in a specific format for training. For example, with text data you will need to get the word embeddings
- Feature engineering
 - Using domain knowledge to manipulate raw data into a format that better captures key characteristics of the data
- Binning data for easier analysis
- Feature Selection/Dimensionality reduction
 - Reduces the data used to help the model identify what's most important
- Etc...

EXPLORATORY DATA ANALYSIS

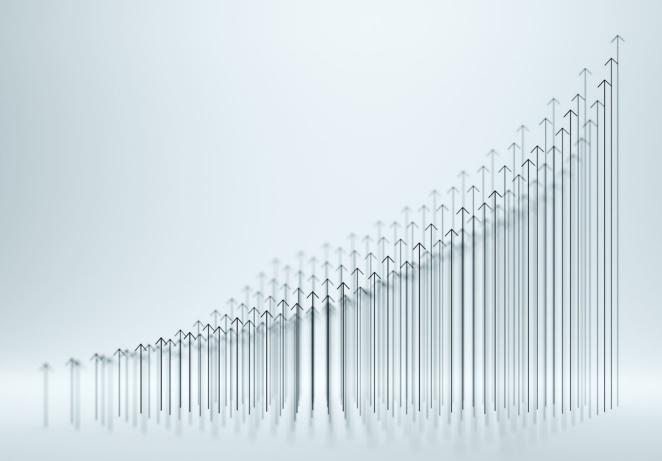
 Understand and summarize the main characteristics of a data set prior to model training

WHY PERFORM AN EDA?

Better understand data and data patterns

Can uncover data issues

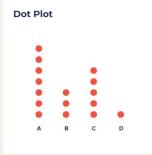
Help select the right model for your data

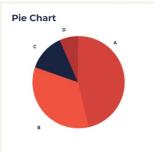


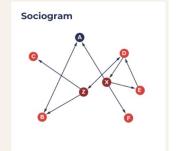
COMMON ASPECTS OF AN EDA

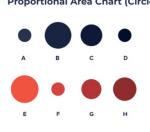
- Average, median, high and low values for each column
- Relationships between columns (correlations)
- Explore data quality trends
- Identify unnecessary columns
- Null and outlier analysis
- Visualize data
- Identify data biases

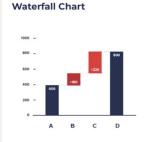
VISUALIZATIONS

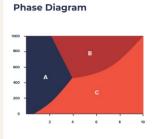


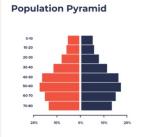


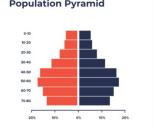


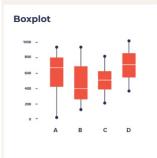


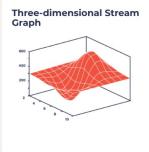


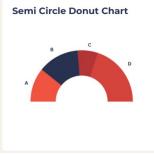


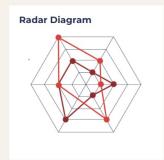












Recommended Introductory Python Visualization Libraries:

- matplotlib
- seaborn

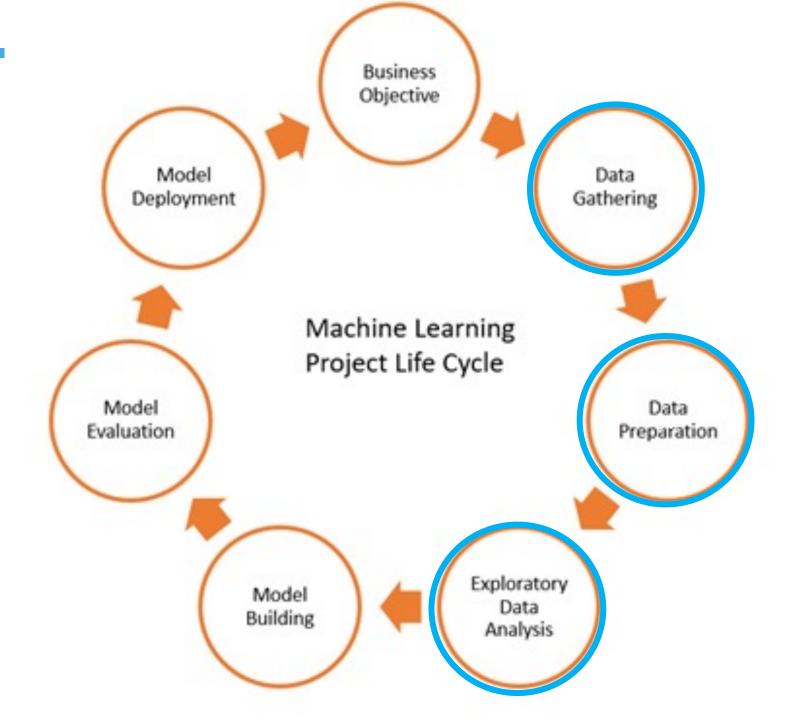
DATA BIAS

Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE**	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%



CONCLUSION

- Preparation for building a model often takes longer than building the model itself
- Steps are not strictly linear
- The quality of each of these preparation steps directly impacts the quality of your outcome



Sign up for our newsletter

SCHOLARSHIPS

CAREER DEVELOPMENT

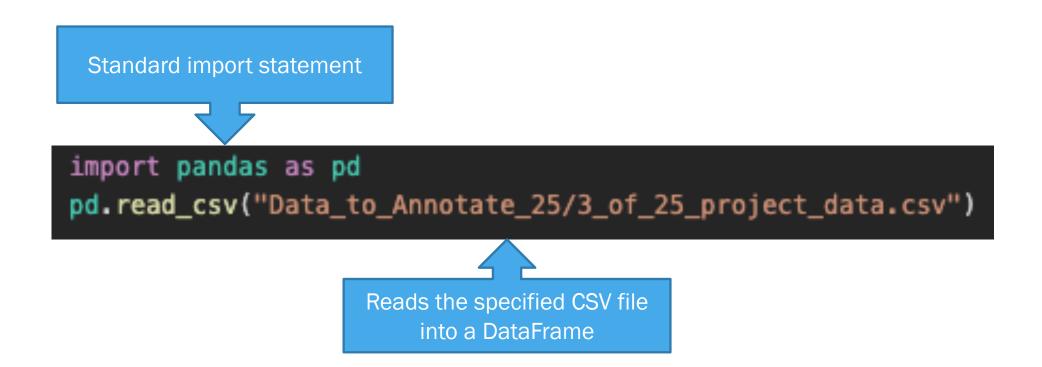
COMMUNITY

Present your research at conferences

Attend trainings and events

Join the conversation on Slack

GETTING STARTED WITH PANDAS DATAFRAMES



COMBINE DATASETS AND REMOVE DUPLICATES

This concatenates the given dataframes (essentially stacks them on top of one another)

```
df = pd.concat([df1, df2, df3], ignore_index=True)
df.drop_duplicates(subset=None, keep='first', inplace=False)
```

Deletes duplicates and keeps only the first value of each duplicate

SOMETIMES YOU WANT TO MERGE DATAFRAMES ON CERTAIN VALUES AS WELL

merged = pd.merge(left=df1,right=df2,left_on='ID',right_on='ID',how='outer') **OUTER JOIN INNER JOIN** Merges df1 and df2 on the ID column in each and keeps all values **LEFT JOIN RIGHT JOIN**

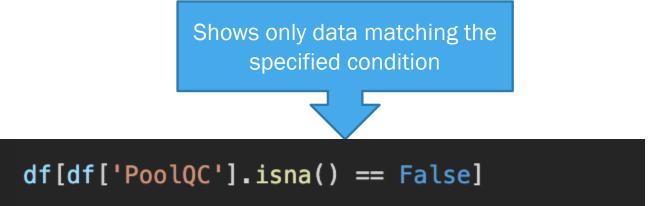
INFORMATION

Gives summary information about the dataframe

df.info()

<class< td=""><td>ss 'pandas.core</td><td>.frame.DataFrame</td><td>'></td></class<>	ss 'pandas.core	.frame.DataFrame	'>
Int6	4Index: 2919 en	tries, 0 to 2918	
Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	2919 non-null	int64
1	MSSubClass	2919 non-null	int64
2	MSZoning	2915 non-null	object
3	LotFrontage	2433 non-null	float64
4	LotArea	2919 non-null	int64
5	Street	2919 non-null	object
6	Alley	198 non-null	object
7	LotShape	2919 non-null	object
8	LandContour	2919 non-null	object
9	Utilities	2917 non-null	object
10	LotConfig	2919 non-null	object
11	LandSlope	2919 non-null	object
12	Neighborhood	2919 non-null	object
13	Condition1	2919 non-null	object
14	Condition2	2919 non-null	object
15	BldgType	2919 non-null	object
16	HouseStyle	2919 non-null	object
17	OverallQual	2919 non-null	int64
18	OverallCond	2919 non-null	int64
19	YearBuilt	2919 non-null	int64
20	YearRemodAdd	2919 non-null	int64
21	RoofStyle	2919 non-null	object
22	RoofMatl	2919 non-null	object
23	Exterior1st	2918 non-null	object
24	Exterior2nd	2918 non-null	object
25	MasVnrType	2895 non-null	obiect

FILTERING DATA



DROP OR FILL NULL VALUES

Deletes rows where there is a null value in the 'Utilities' column

```
df = df.dropna(subset=['Utilities'])
df = df.fillna({'Functional':0})
```

Fills null values with zeroes

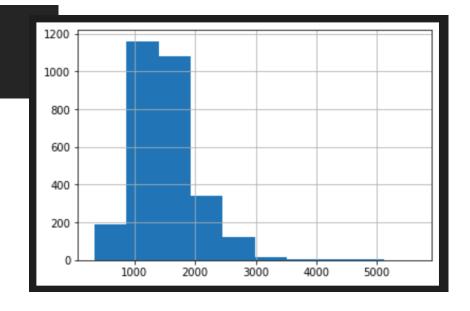
INFORMATION ABOUT THE DATA

Output a statistical description of the column

print(df['GrLivArea'].describe())
df['GrLivArea'].hist()

Histogram of the distribution of the column

count	2919.000000
mean	1500.759849
std	506.051045
min	334.000000
25%	1126.000000
50%	1444.000000
75%	1743.500000
max	5642.000000
Name:	GrLivArea, dtype: float64



STANDARDIZE/NORMALIZE DATA

Standardize data to have mean of 0 and standard deviation of 1

```
df['number_tweets'] = (df['number_tweets']-df['number_tweets'].mean()) / df['number_tweets'].std()
```

```
df['number_tweets'] = df['number_tweets']/df['number_tweets'].abs().max()
```

Normalize data so all values are between 0 and 1

TRAIN-VAL-TEST SPLIT

