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1. History and Basics of DNN
a. From traditional ML to DNN

2. Fundamental deep learning: from discriminative to generative
a. CNN, RNN, Autoencoders, attention, 

b. Deep learning for Representation Learning and feature extraction

c. Discriminative vs generative deep learning: VAE, GAN, Diffusion Models

3. Transformers Era
a. self-attention, encoders, decoders, masking, 

b. Transformers for other modalities: text, image, video, speech, 

4. LLMs in Practice
a. Prompt Engineering Methods: COT, TOT, Self-Consistency, RAG, Agents, 

b. Fine-tuning Methods: instruct tuning, RLHF, Adapters like LORA, 

5. Deep learning for different domains
6. AI safety and Governance

Course Outline
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1. History and Basics of DNN
a. AI hypes and winters

b. Deep learning from 1950s

c. From single neurons to deep networks

d. Deep learning challenges solved from 1950-present

i. Model overfitting

ii. Activation function saturation

iii. Vanishing/exploding gradient

e. Deep learning weaknesses

Course Outline-first session-March 5th 
2025
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2. Fundamental deep learning models, from discriminative to 
generative: 

a. CNN, 

b. RNN, 

c. Earlier version of attention, 
d. Deep learning for Representation Learning and feature extraction

e. Earlier Pre-Training models

f. Discriminative vs Generative deep learning

Course Outline-first session-April 18th 2025
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DNN era before 
Transformers 
(1990-2015):
CNN, RNN, Attention, and 
Auto-Encoders



● Neocognitron (1980): Neocognitron was the first architecture of its kind, perhaps the earliest 
precursor of CNNs

● LeNet-5 (1989–1998): The name convolutional neural networks actually originated with the design of 
the LeNet by Yann LeCun and team

● AlexNet (2012): AlexNet was the first winner of the ImageNet challenge and was based on a CNN
● ResNet (2015): Kaiming He et. al. from Microsoft Research came up with an idea of ‘residual 

blocks’ which are connected to each other through identity (skip)

6
Winners of ImageNet Classification Challenge [7]

CNN for Image Processing

Based on SVM and 
feature engineering



CNN Story!
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Feature Neocognitron LeNet-5 AlexNet

Year 
Introduced

1980 1998 by Yann Lecun 2012

Purpose Handwriting / pattern 
recognition

Digit recognition (e.g. 
MNIST)

Image classification (ImageNet)

Architecture 
Summary

Alternating S-cells (feature 
extractors) and C-cells 
(pooling)

Input → Conv1 → Pool1 
→ Conv2 → Pool2 → 
FC1 → FC2 → Output

Conv1 → LRN → Pool → Conv2 → 
LRN → Pool → Conv3 → Conv4 → 
Conv5 → Pool → FC6 → FC7 → FC8

# of Layers ~10+ (depends on 
config)

7 layers (2 conv, 2 pool, 3 
FC)

8 layers (5 conv, 3 FC)

Training 
Method

hand-crafted weights Backpropagation 
(supervised)

Backpropagation + GPU acceleration



CNN Inspiring from visual Cortex

8https://gracewlindsay.com/

● CNNs are loosely modeled after the way the visual cortex processes information. 
● Neurons in the brain respond to small regions of the visual field, and CNNs mimic this with their 

receptive fields. 



CNN Inspiring from visual Cortex
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Visual System CNN Equivalent Notes

LGN (Lateral Geniculate Nucleus) Image Preprocessing / Pooling Controls signal flow

V1 (Primary Visual Cortex) First Conv Layer Edge detectors

V2 Second Conv Layer Shape detectors

V4 Mid Conv Layer Color and complex shapes

IT ( Inferotemporal Cortex):PIT, CIT, AIT Deep Layers / Fully Connected Object-level representation

side-by-side comparisons between biological and artificial neural 
networks, Yamins and DiCarlo [2016].



What is a Convolution?

● h(t) is the discrete time input signal, 
● f(t) is the kernel function that determines the outcome of the convolution. 
● f(t) slides over the input sample, taking a weighted average at each 

step.
● weighted average is a linear differentiable function

○ Back propagation based on gradient descent optimization 
○ The kernel parameters are learned in the training phase.



What is a Convolution?

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution


3D Convolution filters

12https://www.linkedin.com/pulse/convolutional-
neural-networks-gaurav-jain/



What is a Convolution?
smoothing: Average each 
pixel with its neighbors

Edge Detector: Difference of a 
pixel and surrounding neighbors 

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/


What is a Convolution?

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

filter

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution


Convolutional Neural Networks elements : 
Filter

smoothing: Average each 
pixel with its neighbors

Edge Detector: Difference of a 
pixel and surrounding neighbors 

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/


CNN Elements : Stride
● The amount by which the filter shifts is the stride

a 7 x 7 input volume, a 3 x 3 filter (Disregard 
the 3rd dimension for simplicity), and a stride 
of 1.

What will happen to the output volume as the 
stride increases to 2?



CNN Elements : Parameter Sharing for 
Strides
● Parameter sharing scheme is used in Convolutional Layers to control the 

number of parameters in CNN.

These filter weights are shared across all the hidden neurons.

➔



CNN Elements : Padding
Let’s say we want to apply the same conv layer but we want the output 
volume to remain 32 x 32 x 3. To do this, we can apply a zero padding of size 
2 to that layer. Zero padding pads the input volume with zeros around the 
border.



CNN Elements : Pooling
● Pooling layer is referred to as a downsampling layer, for two main purposes:

○ The first is that the amount of parameters or weights is reduced by 75%, thus 
lessening the computation cost. 

○ The second is that it will control overfitting. 
○  max pooling, average pooling and L2-norm pooling 



Some Key aspects of CNN
1. Location Invariance: We don’t care where an elephant is in the image 

(striding everywhere)
2. Local similarity: Each filter extracts information in a neighborhood
3. Compositionality: Each filter composes a lower level feature into a higher 

level representation
4. Weight Sharing = Fewer Parameters: One of the reasons CNNs are 

efficient is weight sharing — the same filter (set of weights) slides across the 
image. 
a. This massively reduces the number of parameters compared to fully 

connected layers.



Some Key aspects of CNN

● Low-Texture Images → Focus on Shape Features
○ Use larger kernels, deeper networks, edge detection augmentations.

● High-Texture Images → Preserve Local Textures
○ Use smaller kernels, more filters, texture-aware augmentations.



● For a CNN, both of these pictures are almost same. 

○ CNN does not encode the relative position of different features. 

○ CNNS Don’t See the Whole Picture : Each filter in a CNN only "sees" a small part of the 
input at a time. But as you go deeper, they combine local features to understand complex 
global patterns(like assembling the parts of a face).

● Large filters are required to encode the combination of these features. 

○ For examples: to encode the information “eyes above nose and mouth” require large filters.

CNN Challenges

22



Recurrent Neural Network (RNN, 1980s)

● RNNs were designed to mimic the way humans process sequences(  language, 
sound, or time-series data),  where past context influences the present.

● Parameter Efficiency: RNNs have a compact parameter space because they share 
weights across all time steps — making them efficient and elegant for sequential 
modeling.

○ It also limits the model’s capacity to learn position-specific behavior. 

23
https://medium.com/@RobuRishabh/recurrent-neural-network-rnn-8412
b9abd755



RNN Cell structure

24
https://penseeartificielle.fr/comprendre-lstm-gru-fonctionnement-schem
a/

● Hidden state is working memory of the RNN Cells to capture context. It’s a 
vector that stores information learned from previous time steps.

● Hard to parallelize (due to sequential nature), and slow in training due to 
autoregressive nature. 



Vanishing Gradient in RNN

25

https://medium.com/metaor-artificial-intelligence/the-ex
ploding-and-vanishing-gradients-problem-in-time-s
eries-6b87d558d22
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LSTM(1997): Reset and forget gate
 to solve the vanishing gradient problem in 
standard RNNs, 

GRU(2014) : 
Input, output and forget gate, 
simpler alternative to LSTMs, with fewer parameters to avoid 
overfitting.

RNN (1982):  backpropagation 
through time

● RNN Forget important info from earlier in long sequences and 
overemphasizes new input:   

○ GRU, LSTM were invented to decide what to forget and 
what to keep in memory,



RNN to capture order in sequences

27
2014, Photo from [36]



RNN to capture order in sequences

28Photo from [36]



RNN to capture order in sequences

29



Attention for Machine Translation 

30
NEURAL MACHINE TRANSLATION, Bengio et al 2015

The limitations of RNNs led to attention mechanisms ⇒transformers⇒GPT, BERT, and 
the AI we have now. 

➥ RNNs are the grandparent of modern AI chatbots.



Image-to-Text: Attention for Caption Generation

Xu, Kelvin, et al. Arxiv’15



RNNs before Transformers

1. They’ve Written Music and Poetry

RNNs were once state-of-the-art for generating text, including poetry, music lyrics, even 
Shakespearean-style sonnets. 

1. They’ve used to Write Code

Before transformers took over, people trained RNNs to generate code, for example, predicting the 
next line in Python functions.

1. RNNs are Not Totally abandoned

While transformers dominate NLP today, RNNs are still used in low-latency or 
resource-constrained environments, where smaller models are preferred.

32



Pretraining: Where 
the Story Begins 
(~2010)



● Pretraining is the process of training a model on a large, general-purpose dataset to learn 
general knowledge, that can be transferred to other tasks. 

● Fine-Tuning is the process of adapting a pretrained model to a specific task or dataset by 
updating some or all of its parameters. 

● Fine-Tuning adapts that knowledge to a specific task with smaller datasets.

Definition

34

https://www.labellerr.com/blog/fasten-up-your-dat
a-annotation-process-with-pre-trained-models/



1. Reduced Data Requirements

● Before pretraining, training deep models required large labeled datasets for every task (supervised 
learning).

● With pre training, models learn general features first, so they can be fine-tuned with much less 
task-specific data.

● Helps in low-resource settings (e.g., rare languages, medical images)

Pre-Training Revolution

35

2. Learns Broad, Reusable Representations

● During pre training (on massive, diverse datasets), models learn general patterns, then The model starts 
with knowledge of the world for each new task, not from scratch.:

○ In NLP: grammar, syntax, semantics
○ In vision: edges, textures, object shapes
○ In audio: pitch, phonemes, speaker traits

3. Better initialization Enabled Larger and Deeper Models

● Without pretraining, deep models struggled with overfitting or vanishing gradients.
● Pretraining gives models a stable foundation to build deeper and more powerful architectures.



Geoffrey Hinton et al. (2006) and Yoshua Bengio (2007) introduced Layer-wise pretraining is an 
unsupervised, greedy approach where:

1. Each layer is trained separately in an unsupervised manner before fine-tuning the full model.
2. Pretrained layers are stacked progressively to build deeper networks.
3. A final supervised fine-tuning step is applied using labeled data.

Layer-by-Layer Pretraining

36

Before this, feature extraction relied on domain knowledge (e.g., edge detectors in computer vision). 
deep models proved deep models could learn useful features without manual engineering.



Unsupervised layerwise pretraining

Stacked Autoencoders

37
Stacked AutoEncoder



Stacking encoders, and stacking decoders

38



Prior to Deep Learning: Traditional machine learning relied heavily on hand-engineered 
features. 

● Domain experts would manually craft features from raw data (e.g. TF-IDF for test, SIFT and HOG, 
and Wavelet for image) , 

● Then they fed into shallow models like linear regression, SVMs, or simple feedforward neural 
networks.

Representation Learning 

39

Example of feature hierarchy learned by a deep learning 
model on faces from Nie et al. (2019).

Deep learning models inherently perform hierarchical feature learning, automatically extracting low-level 
features in initial layers (e.g., edges in images), intermediate features in middle layers (e.g., shapes or 
textures), and high-level abstractions in deeper layers (e.g., objects or faces).



● Deep learning allows models to learn end-to-end from raw data to the final prediction, by 
integrating feature extraction into the model training process. 

● The entire pipeline, from raw pixels or tokens to final predictions, became a single 
computational graph where gradients could flow end-to-end.

● This allowed for joint optimization, where features and tasks are learned together,

End-to-end Learning 

40 Machine Learning vs. Deep Learning, [Krishna et al, 2019]



Generative AI: 
How it started…



Bayes Rule

42

Given a training dataset consisting of data points (x), and their associated 
labels (y):



A discriminative model learns the conditional probability distribution P(y|x). 

Discriminative and generative model workflow

43

A generative model learns the joint probability distribution P(x,y). It then uses this underlying 
distribution to generate new data similar to the training examples or address classification 
problems.

Photo from 
https://www.datacamp.com/blog/generative-vs-discriminative-models

https://www.datacamp.com/blog/what-is-a-generative-model


Discriminative vs Generative Models 

44

Discriminative Models Generative Models

Directly estimate decision boundary between classes 
P(y|x)

Learns input distribution P(x|y) to deduce P(y|x) using 
bayes rule.

regression, SVM, 
older models like RNN, CNN and transformer models 
like BERT family are mainly discriminative. 

Bayes, GDA, GPT Family, Diffusion models



Generative vs Discriminative Learning

45

Photo from: A Critical Overview of Privacy in 
Machine Learning, 2021



● The AE is able to compress data to fewer bits essentially getting rid of the redundancy (Encoder).

● But due to non-regularized latent space AE, the decoder can not be used to generate valid input 
data from vectors sampled from the latent space.

AutoEncoders for Data Compression

46Autoencoders [2] 



● With AutoEncoders: 
○ You can’t sample random points in latent space and expect valid outputs. 
○ No guarantee that nearby points produce similar reconstructions.

● The encoder of VAE outputs parameters of a predefined distribution in the latent 
space for every input. 

Variational Autoencoders, 2013

47
Rocca, J. Understanding variational autoencoders (VAES), 2021.



ELBO (evidence lower bound) is a key concept in Variational Bayesian Methods. It 
transforms inference problems, which are always intractable, into optimization problems 
that can be solved with, for example, gradient-based methods.

Variational AutoEncoder

48

The KL divergence term can be 
interpreted as a measure of the 
additional information required to 
express the posterior relative to the 
prior. As it approaches zero, the 
posterior is fully obtainable from the 
prior.

From the perspective of 
auto-encoder, the neural network 
with parameters 
ϕ is called encoder because it 
maps from the observation space 
to the latent space, while the 
network with parameters 
θ is called decoder because it 
maps from the latent to the 
observation space. 

   - In a well-balanced scenario, the 
KL divergence should be neither 
too high nor too low. A higher KL 
value indicates that the model is 
learning significant information 
about the data that deviates from 
the prior, while a value 
approaching zero means less 
information is being encoded.



Theory

ELBO (evidence lower bound) is a key concept in Variational Bayesian Methods. It transforms inference problems, which 
are always intractable, into optimization problems that can be solved with, for example, gradient-based methods.

Variational AutoEncoder

49

https://en.wikipedia.org/wiki/Variational_Bayesian_methods


When decoding from the latent state, we'll randomly sample from each latent 
state distribution to generate a vector as input for our decoder model.

VAE example

50

Photo from [6]



Values which are nearby to one another in latent space should correspond with 
very similar reconstructions.

VAE example

51



● VAE suffers from Blurry Image Generation and Mode Collapse (Overly Averaged Samples) due 

to Gaussian assumption.

● GANs pit a generating neural network that creates realistic content against a discriminating 

neural network for detecting fake content.

Generative Adversarial Networks (GANs, 
2014)

52

Photo from: 
https://towardsdatascience.com/decoding-the-basic-math-in-gan-simplified-version-6fb6b079793/



● One issue with GANs is that they can suffer from mode collapse in which the generator produces 

limited and repetitive outputs, making them difficult to train. 

● GANs are also hard to optimize and stabilize, and there is no explicit control over the generated 

samples. 

Diffusion Models: Dall-E, Stable Diffusion

53



Given a data point sampled from a real data distribution  x0∼q(x), let us define a forward diffusion 
process in which we add small amount of Gaussian noise to the sample in T steps, producing a 
sequence of noisy samples 
x1,…,xT. The step sizes are controlled by a variance schedule  βt∈(0,1)

Diffusion Models

54

The data sample x0 gradually loses its distinguishable features as the step t becomes larger. Eventually 
when T→∞,  xT is equivalent to an isotropic Gaussian distribution.

The Markov chain of forward (reverse) diffusion process of generating a sample by slowly adding 
(removing) noise, https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
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