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Course Outline

1. History and Basics of DNN
a. From traditional ML to DNN
2. Fundamental deep learning: from discriminative to generative
a. CNN, RNN, Autoencoders, attention,
b. Deep learning for Representation Learning and feature extraction
c. Discriminative vs generative deep learning: VAE, GAN, Diffusion Models
3. Transformers Era
a. self-attention, encoders, decoders, masking,
b. self attention vs old attention
c. Transformers for other modalities: text, image, video, speech,
4. LLMsin Practice
a. Prompt Engineering Methods: COT, TOT, Self-Consistency, RAG, Agents,
b. Fine-tuning Methods: instruct tuning, RLHF, Adapters like LORA,

c. Deeplearning for different domains

5. Al safety and Governance
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Course Outline-first session-March 5th
2025

1. History and Basics of DNN

Al hypes and winters
Deep learning from 1950s

From single neurons to deep networks

Q o T »

Deep learning challenges solved from 1950-present
i. Model overfitting

ii. Activation function saturation

iii.  Vanishing/exploding gradient

e. Deep learning weaknesses
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Course Outline-Second Session-April 18th
2025

2. Fundamental deep learning models, from discriminative to
generative:

a. CNN,
b. RNN,

c. Earlier version of attention,

Q

Deep learning for Representation Learning and feature extraction
e. Earlier Pre-Training models

f. Discriminative vs Generative deep learning

7 =) PURDUE

UNIVERSITY.


#

Course Outline-3rd session-July 14th 2025

1. From RNNs to Transformers

e Brief recap of:
o  Sequence modeling with RNNs
o  Traditional attention mechanisms
e Motivation for Transformers

2. Transformer Architecture Overview and Core components:

Tokenization

Self-attention

Positional encoding: Sinusoidal vs learned positional encodings
Layer normalization & residual connections

3. LLM Variants and Evolution

e Encoder-Only models,Architecture, Training and Prediction.
e Encoder-Decoder models,Architecture, Training and Prediction.
e Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks

e Context Window Size
e Inference and Next Token Prediction
e Selection Criteria for LLMs
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Transformers and
Language Models
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Course Outline-3rd session-Transformers and LLMs:

1. From RNNs to Transformers

e  Brief recap:
o  Sequence modeling with RNNs
o  Traditional attention mechanisms
e Motivation for Transformers

2. Transformer Architecture Overview and Core components:

Tokenization

Positional encoding: Sinusoidal vs learned positional encodings
Layer normalization & residual connections

Self-attention

3. LLM Variants and Evolution

e Encoder-Only models,Architecture, Training and Prediction.
e Encoder-Decoder models,Architecture, Training and Prediction.
e Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks

° Context Window Size
° Inference and Next Token Prediction
° Selection Criteria for LLMs
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What is Natural Language Processing?
(NLP)

e It is a branch of artificial intelligence (Al) that focuses on creating computational
models and algorithms that allow machines to comprehend, interpret, and produce
human language.

Information Retrieval Sentiment Analysis T N [ e e
Doc A Q\ ‘
[ e Iﬁ { Q] cﬁ
Doc 2 — g ';
Doc 3 ——
Machine Translation N atu ra I QuestionAnswering
Language @ -
- Machine: First flight -
Processing =
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RNN to capture order in sequences

Je dois savoir pourquoi.

Output Sequence

A

Decoder

Encoder -

Context Vector

/_}ﬁ

A

|
| Seq2Seq
I

Input Sequence

| have to know why. 2014, Photo from [36]



RNN Shortcomings

e RNNs are poor at capturing long-term dependencies

e RNNs require recursion, and therefore have poor throughput.

o Recursive calls and word-by-word processing of RNNs lead to many interdependencies that
can’t be parallelized.
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RNN Shortcomings
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Attention for Machine Translation

The limitations of RNNs led to attention mechanisms = transformers = GPT, BERT, and
the Al we have now.
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Attention for Caption Generation

14x14 Feature Map
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flying
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of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation)

Xu, Kelvin, et al. Arxiv’15




From RNNs to Transformers

RNNs process inputs word-by-word, transformers process the input sequence
as a whole,

a. Solves long-term dependency issue

b. Every word in the sequence is treated equally in a transformer

RNNs use recurrence to capture word orders, Transformers use positional
embeddings,

a. Enables massively-parallel computation for transformers
b. No longer have to worry about gradient vanishing and explosions

c. Also helps alleviate the long-term dependency issue

Transformers can scale up to large models using unlabeled data, despite RNNSs.
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Transformers-2017
Transformer is made of encoder-decoder style architectures

[ J
e Input:

(@)

The encoder receives the input text that is to be processed, and the decoder receives the

target text.
e Output:
o Encoders are designed to learn embeddings that can be used for various predictive
modeling tasks such as classification.
o Decoders are designed to generate new texts,
Self-Attention 4
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Transformers

e They can be expensive to train and require large data sets= due to
Self-attention calculations.

e The resulting models are also quite large, which makes it challenging to
identify the source of bias or inaccurate results.

e Their complexity can also make it difficult to interpret their inner workings,

hindering their explainability and transparency.
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Course Outline-3rd session-Transformers and LLMs:

2. Transformer Architecture Overview and Core components:

Tokenization

Self-attention

Positional encoding: Sinusoidal vs learned positional encodings
Layer normalization & residual connections

7 =) PURDUE
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Transformer Details

Tokenization and Embedding
Positional Encoding
Residual Addition an Normalization

Attention
a. self vs cross attention,
b. single vs multi head attention,

NS
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Tokenizer

We must convert words to machine readable data (numbers)!

original " n
e hello world!
tokens  ['hello’, 'world', ']

bken [7592, 2088, 9949]

We need a tokenizer to find text units(tokens) and convert them to numbers using
a dictionary of units and their matching numerical IDS

w A Tokenizer: each tokenizer comes with its dictionary of tokens and their
matching IDs.

2~ FURDUE 19



Token

Word level: Human readable and fast, but a big dictionary that cannot handle
rare/new words.

Subword level: Smaller Vocabulary, while keeping semantic parts intact

Character level: very small dictionary, but does not capture semantics, and
generates long sequences.

character-based word-based
models models
alls =

laleldlely) fastler

Q {aJ S @ BJ gg fast H est | fastest
1193 —E—
E PURDUE {% Lt;, g |_3 LII(I L@e} @@ quick H est \ quickest
UNIVERSITY- _@_




Embedding

e Embedding is a vector representation of a token that captures its semantic
meaning in a continuous space.

e Calculation: The embedding matrix is learned during pretraining of the model.

e Embedding matrix is of size vocabulary*embedding_size.

Tokenized Token Word Embeddings
s IDs of the Tokens
“the” 1437 Table 1437: [0.1 0.2 0.7 0.3 0.2 0.8]
Text Input “cat” 5389 | Lookup 5389: [0.8 0.5 0.1 09 0.7 0.2]
the cat chased the mouse |:> “chased” E> 7234 ::> 7234: [05 06 03 0.2 04 0.1]
“the” 1437 1437: [0.1 0.2 0.7 0.3 0.2 0.8]
“mouse” 4321 4321 . [09 08 04 0.1 0.1 02]
Tokenization Word Embeddings

7 =) PURDUE
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Positional encoding

e Transformers process all tokens in parallel (unlike RNNs),
e Transformers do not have recurrence or convolution information= no order info,

e How does the model know that token A came before token B?

sin ()\Ll)

PEi(pos,2) = sin (10001())23’0":“@-:) cos ()

PE (305 2i+1) = €OS (100018 ledu ) p sin EAL:;
t — COS /\—2

e pos is the position of the token in the sequence (0-indexed).

e is the dimension index within the vector 0<i<d/2.

cos( b )
e d . Iisthe dimensionality of the model's input embeddings. L Adpmoger/? ]

mo

e Even indices get sine, odd indices get cosine.

Ai == 10 OOOZi/dmodd
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Positional Encoding Visualization
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Positional Encoding

An Example

pos

100002/ dmodet )
pos

100002¢/dmoder )

PE(pos,zi) = sin (

PE (pos,2i+1) = €OS (

i=0
i=1
i=2
=3
i=4

Index
pO Sequence  of token Positional Encoding Makbrix
I, 0 _, Po Pos Pod
ot am — 1 _ P P11 P14
ik a — 2 — P P21 P2g
Robot — 3 — Pao P31 Paq
pos=0 Positional Encoding Matrix for the sequence ‘I am a robot’

Positional Encoding

Index
Sequence  of token, Makrix with d=4, n=100
% i=0 i=0 i=1 i=1
Poo=sin(0) Poi=cos(0) Poz=sin(0) Pos=cos(0)
I — 0 — - g =0 =1
_, Puo=sin(1/1) | Pr=cos(1/1) | Prz=sin(1/10) Prs=cos(1/10)
. =1 =084 | =054 | =010 =10

L P2o=sin(2/1) = P21=cos(2/1) Pz=sin(2/10) P2s=cos(2/10)
= 091 = -0.42 = 0.20 = 0.98

Pgo=sin(3/1) = Pai=cos(3/1) Ps2=sin(3/10) Pss=cos(3/10)
L
Robot —» 3 = 0.14 = -0.99 = 0.30 = 0.96

Positional Encoding Matrix for the sequence ‘I am a robot’

PURDUE Image partially obtained from:
https://www.cjiawei.com/ox-hugo/20220730-014840_positional_enco

UNIVERSITY. ding.png
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https://www.cjiawei.com/ox-hugo/20220730-014840_positional_encoding.png
https://www.cjiawei.com/ox-hugo/20220730-014840_positional_encoding.png

Adding Residual and Normalization

1. Layer Normalization Stabilizes Training

e Layer normalization helps reduce internal covariate shift, meaning the distribution of
neuron activations stays more stable as training progresses.

2. Adding residual connection helps with Gradient Flow

e The residual connection (Add) makes it easier for gradients to flow back during training,
especially in deep networks.

3. Adding residual connection preserves Original Information

e The residual connection preserves the input signal, even after passing through complex

transformations.
X
Ia3;er
F(x) , identity
layer
@ PURDUE
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Self-Attention

e Self-attention enables the model to weight the importance of different elements in an
input sequence and adjust their influence on the output.

e This is especially important for language processing tasks, where the meaning of a
word can change based on its context within a sentence or document.

Lgyer: Attention: iAII v

[CLS] , [CLS]
the the
rabbit rabbit
quickly quickly
hopped hopped
[SEP] [SEP]
the the
turtle turtle
slowly slowly
crawled crawled
[SEP] - [SEP]
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Self-Attention

W,
W, y®
(@) Video
. "y generated by
 x@] AL canva.com
W

T

Attention(Q, K, V) = softmax( de W
k

A S A
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https://docs.google.com/file/d/1EnkFxne59Pi80KVhU33tkP11acZ6mQQJ/preview

Attention Patterns

Masked Self-Attention

‘. Projecting token vectors Computing the output
bias-Fatse Query Matrix Output
) Query Projection T T 1 SN I I I O [
Input Matrix Key Matrix ] l I I J ‘ l I
LM [ ] | Key Projection T T 1 cool
“mask", torch.tri (anfn.m,-: 0 #s L
view(l, 1, T, T)) are . .
cool | | | Output
‘ — o ——— |
Value Matrix
) Value Projection |
& 5 Input
e I [
LLM #s are cool
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_ (B 8
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s fi 2 53 L
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Input Token Vectors

2
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Self-Attention

N

for each token:
compare the Query

EQ

————
* QZTKi
Softmax ([ )
¥
Values E.:-:] Attention weights a

n tokens in a sequence

Xq XoX3  Xp with all other Keys

1 [ R

weighted average of the Keys
to Obtain output embedding of token 2

]

EEEEE

:
Attention(Q, K, V) = softmax( Q‘f 4
k

Q: query matrix, K: key matrix, V: value matrix,d,: queries and keys of dimension
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Attention Calculation Costs O(N?)!
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Self-Attention

e Standard self-attention computes interactions between all token pairs, which has:
o Time complexity: O(N?)
o Memory usage: O(N?)

e Forlong sequences (like in documents, videos, or genomics), full attention is too slow and
memory-intensive.

e Parallel processing is needed for transformers.

The_ The_ I
animal_ animal_
didn_ didn_
t_ t
Cross_ Cross_
the_ the_ [
street_ street_ “ (@) Full attention (b) Sparse attention (strided)
because_ because_ I
it_ it_
was_ = was_
too_ 57 too_
> 5 tire
__f e 1 1
(c) Window attention (d) Global attention
PURDUE
E U HV ER S[I]"I‘ Y-
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Single vs Multi Head Attention

[Scaled-dot-product attention

|

|

|

q ()]

4

dv

4,

o)

via x®
and Wq

K \%
via X via X
and W, and W,
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MultiHead(Q, K, V) = [head, . .., head;]W

where head; = Attention (QWiQ, KWIK , VWlV )

Embedded sentence
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Embedded sentence

Photo taken from [44]

e Captures multiple dependencies: Detects short-term and long-term relationships in

the data.

e Learns diverse representations: Different heads focus on syntax, semantics, and

meaning.
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Cross-Attention

Key and Value: The sequence returned by the encoder module (the left 2 arrows)

Query: The sequence generated by the decoder part (the right arrow)

Output
Probabilities

Cross-attention

Add & Norm

Feed
Forward

Encoder [Add & Norm :

(—~Ladds Nom ) Multi-Head
Feed Attention
Forward 7 7 Nx
N Add & Norm
f‘" Add & Norm | T
Multi-Head Multi-Head
Attention Attention DeCOder
t =
T J U — )
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding

7 PURDUE e ouue
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Self-attention vs Cross-attention

2 i
q 4
—1[w |l o e In self-attention, we work with the same input
q
oo £ sequence.
Fi - d, 2 e In cross-attention, we mix or combine two
4+—> k= . .
3 different input sequences.
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Course Outline-3rd session-Transformers and LLMs:

1. From RNNs to Transformers

e  Brief recap of:
Sequence modeling with RNNs (limitations: vanishing gradients, sequential computation bottlenecks).
o  Traditional attention mechanisms (Bahdanau, Luong).
e  Motivation for Transformers

2. Transformer Architecture Overview and Core components:

Tokenization

Self-attention

Positional encoding: Sinusoidal vs learned positional encodings
Layer normalization & residual connections

3. LLM Variants and Evolution

e Encoder-Only models,
e Encoder-Decoder models,
e Decoder-only models,

4. LLM Tips and Tricks

° Context Window Size
° Inference and Next Token Prediction
° Selection Criteria for LLMs

7 =) PURDUE
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From Encoding to Decoding

Encoding and Self Attention help to gather context.
But for generating text, we must decide how to generate tokens over time.

000111010101001 Good Morning
0010 Friends
' P
Encoding Decoding

educba.com

7 =) PURDUE
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Decoding Methods

____________________________________

____________________________________

p(Y|X) H[ yi| X)

DEEEE

7 =) PURDUE
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Decoding Methods

Masked and Autoregressive

L
p(Y|X) = HP(!/:"‘/I Yot Y1, Yp, X) =
HP(U|U< Y=is H[)(l/|lf X)

ll[]ll
SEPURDUE == =

UNIVERSITY.

p(Y|X)

8000
—

L L
= HI’(.‘/i'!/la vy Yia, ‘X') = HI)(yi|y<'is ‘Y)
i=1 i=1
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Decoding Methods

2

A

p

N

Next Token Prediction

The model is given a sequence of
words with the goal of
predicting the next word

Georgeisa ____

George is a friend
George is an actor
George is a cartoon character
George is a singer

4

https://medium.com/@eugene-s/unleashing-the-potential-of-large-language-models-lims-with-chatgpt-8210f0cb063d

PURDUE
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ransformer-based Language Models

Ou!put

i

Encoder Only
Models

PURDUE

UNIVERSITY.

Encoder Decoder
Models

Decoder Only
Models

Microsoft DeBERTa (2020

Encoder

RoBERTa (2019)

GPT-Neo (2021

Eleuther Al GPT-NeoX (2022)

Original transformer
9 Decoder

OpenAl CodeX (2021)

InstructGPT (2022

Meta BART (2020)
Encoder-Decoder _ Flan-T5 (2022)
\_ Google Flan-UL2 (2023)
T5 (2022)




Transformer-based Language Models

110M 117M-1.5B 175B 175B Unknown
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Encode-only Models

Bert Breakthrough

Architecture:

o Encoder-only large language models only use the encoder to encode the sentence

Training:

o The common training paradigm for these model is to predict the mask wards in an innit

sentence. L=— %log Pyl omasied)
te

Qutput
Probabilities

Prediction:

Nx

Multi-Head
Attention

A )

Ay
Positional A Positional
Encoding ¢ Encoding

Input
Embedding Embedding

Inputs Outputs
(shifted right)




Encoder-only Models at Prediction

e C(Classify token ([CLS]) represents the entire input sequence or sentence.

e The model uses this representation to make predictions or classify the input into
predefined categories.

e Fine-Tune BERT if you want to use CLS token: Freeze part of model if your
data/hardware is small.

2

PURDUE
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Class
Label

n

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

BERT

EEEEE

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

Fine-tuning BERT
on different tasks

Single Sentence

(b) Single Sentence Classification Tasks: ( B e rt, 2 O 1 9 )
SST-2, CoLA
o B-PER o
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T

Single Sentence
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Encoder-Decoder Models

T5 breakthrough

- ™
Architecture:

L o Encoder-decoder large language models adopt both the encoder and decoder module. y

N )
Training:

L£=- ZlogP(yt|y<t,w)

t=1

Prediction:
They are typically used for tasks that involve understanding input

sequences and generating output sequences, often with different

(@)

PURDUE
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TS5, Breakthrough of transfer Learning

e Transfer Learning: It enables a model to transfer knowledge across a wide range of tasks with
minimal task-specific tuning.
e Unified Approach: T5 frames all NLP tasks (e.g., translation, summarization, classification) as a

text-to-text problem, simplifying model training and application.

[ "translate English to German: That is good."

"cola sentence: The
course is jumping well."

"Das ist gut."

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

"six people hospitalized after
a storm in attala county."

Figure 1: A diagram of our text-to-text framework. Every task we consider—including
translation, question answering, and classification—is cast as feeding our model
text as input and training it to generate some target text. This allows us to use the
same model, loss function, hyperparameters, etc. across our diverse set of tasks. It
also provides a standard testbed for the methods included in our empirical survey.
“T5” refers to our model, which we dub the “Text-to-Text Transfer Transformer”.
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Decoder-only Models

Zero and few-shot breakthrough

Architecture:

O

output text.

Decoder-only large language models only adopt the decoder module to generate target

J

Training:

(@)

The common training paradigm for these models is to predlct the next token
L=- ZlogPytlyq

Prediction:

o Large-scale decoder-only LLMs can generally perform

downstream tasks from a few examples or simple instructions

Output
Probabilities

Feed
Forward

_Add & Norm ]

Add & Norm

Multi-Head
Attention
.

Multi-Head
Attention

Add & Norm
Masked
Multi-Head
Attention

A= A=)
J | . —
Positional o) Positional
Encoding 2 Encoding
Input QOutput
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Training Objective

Decoder-only Encoder-only

GPT

[sat_]

Qutput
Probabilities

Add & Norm
Feed
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Multi-Head
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[ —
Positional
Encoding

Output

Embedding

Qutputs
(shifted right)
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T5
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Translate EN-DE: This is good.

Summarize:

state authorities dispatched..

Is this toxic: You look beautiful today!



Course Outline-3rd session-Transformers and LLMs:

1. From RNNs to Transformers

e  Brief recap of:
Sequence modeling with RNNs (limitations: vanishing gradients, sequential computation bottlenecks).
o  Traditional attention mechanisms (Bahdanau, Luong).
e  Motivation for Transformers

2. Transformer Architecture Overview and Core components:

Tokenization

Self-attention

Positional encoding: Sinusoidal vs learned positional encodings
Layer normalization & residual connections

3. LLM Variants and Evolution

e Encoder-Only models,Architecture, Training and Prediction.
e Encoder-Decoder models,Architecture, Training and Prediction.
e Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks

e Context Window Size
e Inference and Next Token Prediction
e Selection Criteria for LLMs

7 =) PURDUE
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Context Window Size

e Context window : maximum number of tokens the model can consider at one pass.
e Alarger context window allows you to feed a wide variety of extensive materials to the
model.

Infinite context windows:
StreamingLLM/RNNs

Claude 2 200k

200k tokens / 150k words / 300 pages

GPT-4 128k 128k tokens / 96k words / 192 pages

Claude 2 100k 100k tokens / 75k words / 150 pages
Gemini (estimate) 32k tokens / 24k words / 48 pages
GPT-4 32k 32k tokens / 24k words / 48 pages
Grok-1 8k 8k tokens / 6k words / 12 pages
PaLM 2 8k 8k tokens / 6k words / 12 pages
Llama 2 4k 4k tokens / 3k words / 6 pages

ChatGPT 4k 4k tokens / 3k words / 6 pages

0 100 200 300

Photo from:https://s10251.pcdn.co/pdf/2023-Alan-D-Thompson-2023-Context-Windows-Rev-0.pdf
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Context window size

2

Pros of large context window

Cons of large context window

Improved Long-Term Dependencies

Computation and cost exhaustive, both

training and inference time.

Good for conversational
‘remember’ more and
extended conversations

Al: ability to
keeping up with

The model's ability deteriorates as more
documents are introduced.

(LLMs perform well when presented with a
more focused set of documents directly
relevant to the context).

Accuracy
(o)} ~l
w o

()]
o

w
wm

9 10
Number of Documents in Input Context

=@ gpt-3.5-turbo-0613
=@ gpt-3.5-turbo-16k-0613
=@ claude-1.3

PURDUE
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20 30

claude-1.3-100k
mpt-30b-instruct
=@ longchat-13b-16k

Photo from “lost in the middle” paper.
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Decoding or Next Token Prediction

Time Step #1 Time Step #2 Time Step #3
sat down <EOS>
A A A
Decoder-Only Decoder-Only Decoder-Only
Architecture Architecture Architecture
A A A A A A A A A
the dog S s e the dog sat et e the dog sat down
r---"=-"="=-=-===-""=""=-"=/==-7=/s==m/mssss=== 1

Photo from https://x.com/cwolferesearch/status/1689388468911132672
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Decoding or Next Token Prediction

e When the model receives textual input, the text is “tokenized”, or separated into individual

words/sub-words.
e Then, we retrieve an embedding (i.e., a vector assigned to each unique token) for every token,

forming a sequence of token vectors.

2

Output Sequence

Greedy Decoding

Choose next token with
highest probability

o>

Input Text

The chicken crossed the ‘

I

Token

Probabilities Softmax

e

Z;{:I e*s

- — g-(z)i —

Linear Layer w

(N N N N | I
Output Vectors f

Tokenized Text

4 :

[

=/

The J[ chicken ][ crossed J[ the ] > [ sy e
c O
O E
\ 4 & 3
- ! ! ! § "é [ Feed Forward Neural Network ]
: Token Embedding b4 g [ Multi-Head Masked Self-Attention ]
Layer Lookup = t

\

N O

[

1T

K[ + Positional Embeddings | 4

Token Vectors
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Decoding or Next Token Prediction

This sequence of token vectors is passed through a decoder-only transformer which outputs a new list of

equally-sized token vectors that have been transformed via many masked self-attention and feed-forward

layers in sequence.

2

Greedy Decoding

Choose next token with
highest probability

Output Sequence

>

The chicken crossed the ‘

Tokenized Text

.

Token

Probabilities Softmax

e

Zf:l €%

Linear Layer W

4
N N I I I
Output Vectors 4

a :

- «o(z); =

][ chicken ][ crossed ][

-/

y

A

[| Token Embedding
Layer Lookup

\

T

[T

the
] %‘ s [ Decoder-Only Layer
o E
o 2
'g 2 [ Feed Forward Neural Network ]
3 S [ Multi-Head Masked Self-Attention |
= 1

u + Positional Embeddings U
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Decoding or Next Token Prediction

The LLM takes the last vector in this output and passes it through a feed-forward layer, producing a new

vector with the same size as our token vocabulary.

Token

. e Softmax
Greedy Decoding Probabilities —
-— «—|o(z); = ;
Choose next token with D je1 €%
highest probability
Logits! !
Output Sequence @ Linear Layer K%%Q
Input Text
‘ o . N N Y N I |
The chicken crossed the ‘
¢ Output Vectors f
Tokenized Text :
[ The ][ chicken ][ crossed ][ the ] _:‘ . [ v ]
\ 4 o- g
= 0
- ! ! ! ! ! ! - § '@ [ Feed Forward Neural Network ]
| Token Embedding 8§ £| [ MultiHead Masked Self-Attention |
Layer Lookup = t

S I B \[ + Positional Embeddings ]J

\

N I I | I O
Token Vectors

E PURDUE Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?5=20 54
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Decoding or Next Token Prediction

Next, we apply a softmax function to our logits, to form a probability distribution over the space of
possible tokens.

In other words, this tells us the probability that each token is the correct “next” token!

. TOK?r.‘ . Softmax
Greedy Decoding Probabilities -
- i i e
Choose next token with 2 j=1¢"
highest probability A
|
Output Sequence @ Linear Layer W

Input T
nput Text I |

The chicken crossed the ’

Output Vectors f

Tokenized Text ¢ \
[ The ][ chicken ][ crossed ][ the ] > . [ Decoder-Only Layer ]
=
O E
y = 5 .
! ! ! ! ! ! A '§ E [ Feed Forward Neural Network ]
: Token Embedding 3 E [ Multi-Head Masked Self-Attention ]
Layer Lookup i~ ‘ i

k 11 [ 1T 1 K[ + Positional Embeddings ]/

N N I O { |
Token Vectors

E PURDUE Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20
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Greedy Decoding

Greedy decoding just chooses the next token as the highest-probability token in this distribution.

e \We can add this token to our input sequence and use it to generate another token

auto-regressively.
e To generate a full sequence, we just keep doing this!

Y Token Softmax
Greedy Decoding Probabilities —
— SR P
Choose next token with Z]-:I €%
highest probability Y T
Output Sequence @ Linear Layer W
Autoregressive
i |
Input Text Pecodind! | ermeroerts
The chicken crossed the |
Output Vectors 4
Tokenized Text v e :
[ The ][ chicken ][ crossed ][ the ] > :
= = [ Decoder-Only Layer J
v O¢ g : )
i ! ! ! ! ! ! - % E [ Feed Forward Neural Network ] '
[| Token Embedding 3 "_3 [ Multi-Head Masked Self-Attention ]
Layer Lookup Q S ’ ) S o

L T T K[ + Positional Embeddings JJ

N I I | o
Token Vectors

E PURDUE Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20
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Strategies for Next Token Prediction

Given this probability distribution, there are several decoding strategies that we can follow,
which are just different ways of selecting the next token from this distribution.

e Greedy Decoding

e Temperature

e Top-K Sampling

e Top-P (Nucleus) Sampling

7 =) PURDUE
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Greedy Decoding

Greedy decoding has some drawbacks; outputs can get stuck in repetitive loops, for example.

e Think of the suggestions in your smartphone’s auto-suggest. When you continually pick the
highest suggested word, it may devolve into repeated sentences.

Text input

The name of that country is the

Greedy
1 Of B e
United 12% =D Daceding
Netherlands 2.7%
Czech 1.9%
Pick the highest
u 1.8% -
scoring token
Language Model N

Text output | United

7 =) PURDUE
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Temperature

e Temperature scales the logits before sampling tokens to help with generating more diverse
outputs with a language model.

e |tincreases the chance of the model generating something random or irrelevant.

e Higher values of temperature make output more random, while lower values of temperature make
output more deterministic.

e Use higher values of temperature with caution!

Softmax with Temperature

LLM logits for each token

lIll

Logit of i
i-th token eTL‘\
g = S T Temperature
/ Z;/:l e-%>
Probability of
i-th toke/\
Token Probabilities Token Probabilities
(Low Temperature) (High Temperature)
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Top-K sampling

e Another commonly-used strategy is to sample from a shortlist of the top k tokens.

e This approach allows the other high-scoring tokens a chance of being picked.

e The randomness introduced by this sampling helps the quality of generation in a lot of scenarios.

1. Consider only the top 3 tokens.
Ignore all others.

United + Netherlands = 15%

United 12%
Netherlands 2.7%

Czech 1.9%

7 =) PURDUE

UNIVERSITY.

2. Sample from them based on
their likelihood scores.

United 72% [ -----------
Netherlands 18%

Czech 11%
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Top-P or Nucleus sampling

Nucleus Sampling creates the shortlist by selecting the top tokens whose sum of
likelihoods does not exceed a certain value.

Top-p is usually set to a high value (like 0.75) with the purpose of limiting the long tail of
low-probability tokens that may be sampled.

1. Consider only the top tokens whose 2. Sample from them based on their
likelihoods add up to 15%. Ignore all others. likelihood scores.

United + Netherlands = 15%

: <)
United 12% United 82% = ...

0O,
Netherlands 2.7% Netherlands 18%

Czech 1.9%

U 1.8%
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Selection Criteria For LLMs

nask alignment: Choose an LLM that aligns to the task: \

e Encoder-only (BERT): Best for classification, semantic similarity, retrieval.

e Decoder-only (GPT, LLaMA): Best for generative tasks, like conversational Al, writing,
answering.

e Encoder-Decoder (T5, FLAN-T5, BART): Good for translation, summarization, seq2seq

K tasks.
\

/Data Alignment: Choose an LLM that has been pre-trained or fine-tuned on data that matches
the domain or context of your project.

e To build a chatbot that answers patient queries using medical literature:

o Use PubMedBERT or BioGPT, trained on biomedical literature and clinical notes,
K Instead of using GPT-2, trained mostly on generic web data like Reddit or Wikipedia, /
~

\
Adapting and Tuning: Determine if the chosen LLM can be effectively contextualized with prompts
or fine-tuning.

\ 4
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Selection Criteria For LLMs

Explainability

e For high-stakes domains (e.g., health, engineering), use models that allow:
o Attribution (e.g., RAG with source highlighting)
o Token attention visualization (e.g., using attention heatmaps or explainers)

.

/

Model size and complexity

e Models with tens of billions of parameters provide higher-quality outputs but require more

computational resources.

Dataset Size and Fine-Tuning

e |[f you have a small domain-specific dataset:

o Use smaller models which require fewer resources and fine-tune faster.

e Avoid massive models unless you’re using zero-shot or few-shot prompting, not

\ fine-tuning.

\

4
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Next:

1. Multi-Modal Transformers
a. (Speech, Image, Video, 3D Vision )

2. RAG, Fine-Tuning, Prompt Engineering,
etc.
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Thank You
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