
Unveiling the Mystery of 
Deep Learning: Past, 
Present, and Future

Dr. Elham Barezi,  
AI Research scientist

Co-Sponsored by Rosen Center for Advanced Computing (RCAC), and IPAI
Spring and Summer 2025



1. History and Basics of DNN
a. From traditional ML to DNN

2. Fundamental deep learning: from discriminative to generative
a. CNN, RNN, Autoencoders, attention, 

b. Deep learning for Representation Learning and feature extraction

c. Discriminative vs generative deep learning: VAE, GAN, Diffusion Models

3. Transformers Era
a. self-attention, encoders, decoders, masking, 

b. self attention vs old attention 

c. Transformers for other modalities: text, image, video, speech, 

4. LLMs in Practice
a. Prompt Engineering Methods: COT, TOT, Self-Consistency, RAG, Agents, 

b. Fine-tuning Methods: instruct tuning, RLHF, Adapters like LORA, 

c. Deep learning for different domains

5. AI safety and Governance

Course Outline
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1. History and Basics of DNN
a. AI hypes and winters

b. Deep learning from 1950s

c. From single neurons to deep networks

d. Deep learning challenges solved from 1950-present

i. Model overfitting

ii. Activation function saturation

iii. Vanishing/exploding gradient

e. Deep learning weaknesses

Course Outline-first session-March 5th 
2025
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2. Fundamental deep learning models, from discriminative to 
generative: 

a. CNN, 

b. RNN, 

c. Earlier version of attention, 
d. Deep learning for Representation Learning and feature extraction

e. Earlier Pre-Training models

f. Discriminative vs Generative deep learning

Course Outline-Second Session-April 18th 
2025
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1. From RNNs to Transformers

● Brief recap of:
○ Sequence modeling with RNNs 
○ Traditional attention mechanisms 

● Motivation for Transformers

2. Transformer Architecture Overview and Core components:

● Tokenization
● Self-attention
● Positional encoding: Sinusoidal vs learned positional encodings 
● Layer normalization & residual connections

3. LLM Variants and Evolution 

● Encoder-Only models,Architecture, Training and Prediction.
● Encoder-Decoder models,Architecture, Training and Prediction.
● Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks 

● Context Window Size
● Inference and Next Token Prediction
● Selection Criteria for LLMs

Course Outline-3rd session-July 14th 2025
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Transformers and 
Language Models



1. From RNNs to Transformers

● Brief recap:
○ Sequence modeling with RNNs 
○ Traditional attention mechanisms

● Motivation for Transformers

2. Transformer Architecture Overview and Core components:

● Tokenization
● Positional encoding: Sinusoidal vs learned positional encodings 
● Layer normalization & residual connections
● Self-attention

3. LLM Variants and Evolution 

● Encoder-Only models,Architecture, Training and Prediction.
● Encoder-Decoder models,Architecture, Training and Prediction.
● Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks 

● Context Window Size
● Inference and Next Token Prediction
● Selection Criteria for LLMs

Course Outline-3rd session-Transformers and LLMs:
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● It is a branch of artificial intelligence (AI) that focuses on creating computational 
models and algorithms that allow machines to comprehend, interpret, and produce 
human language.

What is Natural Language Processing? 
(NLP)

8https://www.ontotext.com/blog/top-5
-semantic-technology-trends-2017/



RNN to capture order in sequences

9
2014, Photo from [36]



● RNNs are poor at capturing long-term dependencies
● RNNs require recursion, and therefore have poor throughput. 

○ Recursive calls and word-by-word processing of RNNs lead to many interdependencies that 
can’t be parallelized. 

RNN Shortcomings
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RNN Shortcomings
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Attention for Machine Translation 
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NEURAL MACHINE TRANSLATION, Bengio et al 2015

The limitations of RNNs led to attention mechanisms ⇒ transformers ⇒ GPT, BERT, and 
the AI we have now. 



Attention for Caption Generation

Xu, Kelvin, et al. Arxiv’15



RNNs process inputs word-by-word, transformers process the input sequence 
as a whole,

a. Solves long-term dependency issue

b. Every word in the sequence is treated equally in a transformer

From RNNs to Transformers

14

RNNs use recurrence to capture word orders, Transformers use positional 
embeddings,

a. Enables massively-parallel computation for transformers

b. No longer have to worry about gradient vanishing and explosions

c. Also helps alleviate the long-term dependency issue

Transformers can scale up to large models using unlabeled data, despite RNNs. 



● Transformer is made of encoder-decoder style architectures

● Input:
○ The encoder receives the input text that is to be processed, and the decoder receives the 

target text.

● Output: 
○ Encoders are designed to learn embeddings that can be used for various predictive 

modeling tasks such as classification. 

○ Decoders are designed to generate new texts, 

Transformers-2017

15Photo from: “Attention is all you need”



Limitations

● They can be expensive to train and require large data sets⇒ due to 

Self-attention calculations.

● The resulting models are also quite large, which makes it challenging to 

identify the source of bias or inaccurate results. 

● Their complexity can also make it difficult to interpret their inner workings, 

hindering their explainability and transparency.

Transformers
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1. From RNNs to Transformers

● Brief recap of:
Sequence modeling with RNNs (limitations: vanishing gradients, sequential computation bottlenecks).

○ Traditional attention mechanisms (Bahdanau, Luong).
● Motivation for Transformers

2. Transformer Architecture Overview and Core components:

● Tokenization
● Self-attention
● Positional encoding: Sinusoidal vs learned positional encodings 
● Layer normalization & residual connections

3. LLM Variants and Evolution 

● Encoder-Only models,Architecture, Training and Prediction.
● Encoder-Decoder models,Architecture, Training and Prediction.
● Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks 

● Context Window Size
● Inference and Next Token Prediction
● Selection Criteria for LLMs

Course Outline-3rd session-Transformers and LLMs:
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1. Tokenization and Embedding 
2. Positional Encoding
3. Residual Addition an Normalization
4. Attention 

a. self vs cross attention, 
b. single vs multi head attention,

Transformer Details
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We must convert words to machine readable data (numbers)!

Tokenizer

19

We need a tokenizer to find text units(tokens) and convert them to numbers using 
a dictionary of units and their matching numerical IDS
➥ A Tokenizer: each tokenizer comes with its dictionary of tokens and their 
matching IDs. 



Word level: Human readable and fast, but a big dictionary that cannot handle 
rare/new words.

Subword level: Smaller Vocabulary, while keeping semantic parts intact

Character level: very small dictionary, but does not capture semantics, and 
generates long sequences.

Token

20



● Embedding is a vector representation of a token that captures its semantic 
meaning in a continuous space.

● Calculation: The embedding matrix is learned during pretraining of the model. 

● Embedding matrix is of size vocabulary*embedding_size. 

Embedding

21

https://medium.com/@lmpo/tokenization-and-word-embeddings-the-building
-blocks-of-advanced-nlp-c203b78bfd07



● Transformers process all tokens in parallel (unlike RNNs), 

● Transformers do not have recurrence or convolution information= no order info, 

● How does the model know that token A came before token B?

Positional encoding

22

● pos is the position of the token in the sequence (0-indexed).

● i is the dimension index within the vector 0≤i<d/2.

● dmodel is the dimensionality of the model's input embeddings.

● Even indices get sine, odd indices get cosine.



Positional Encoding Visualization
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An Example
Positional Encoding

24
Image partially obtained from: 
https://www.cjiawei.com/ox-hugo/20220730-014840_positional_enco
ding.png

https://www.cjiawei.com/ox-hugo/20220730-014840_positional_encoding.png
https://www.cjiawei.com/ox-hugo/20220730-014840_positional_encoding.png


1. Layer Normalization Stabilizes Training

● Layer normalization helps reduce internal covariate shift, meaning the distribution of 
neuron activations stays more stable as training progresses.

2. Adding residual connection helps with Gradient Flow

● The residual connection (Add) makes it easier for gradients to flow back during training, 
especially in deep networks. 

3. Adding residual connection preserves Original Information

● The residual connection preserves the input signal, even after passing through complex 
transformations. 

Adding Residual and Normalization
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● Self-attention enables the model to weight the importance of different elements in an 
input sequence and adjust their influence on the output. 

● This is especially important for language processing tasks, where the meaning of a 
word can change based on its context within a sentence or document.

Self-Attention

26Photo from: https://github.com/jessevig/bertviz



Self-Attention 

Video 
generated by 
canva.com

https://docs.google.com/file/d/1EnkFxne59Pi80KVhU33tkP11acZ6mQQJ/preview


Attention Patterns

28Photo taken from [17]



Self-Attention 

Photo from https://epichka.com/blog/2023/qkv-transformer/



Attention Calculation Costs O(N2)!
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https://docs.google.com/file/d/1TQ8Esohmj5FQaEMxbiZeLSPRgN9hApgq/preview


● Standard self-attention computes interactions between all token pairs, which has:

○ Time complexity: O(N2)

○ Memory usage: O(N2)

● For long sequences (like in documents, videos, or genomics), full attention is too slow and 
memory-intensive.

● Parallel processing is needed for transformers. 

Self-Attention
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Single vs Multi Head Attention

Photo taken from [44]

● Captures multiple dependencies: Detects short-term and long-term relationships in 
the data.

● Learns diverse representations: Different heads focus on syntax, semantics, and 
meaning.



Cross-Attention 
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Key and Value: The sequence returned by the encoder module (the left 2 arrows) 

Query: The sequence generated by the decoder part (the right arrow)



Self-attention vs Cross-attention

34

● In self-attention, we work with the same input 
sequence.

● In cross-attention, we mix or combine two 
different input sequences. 



1. From RNNs to Transformers

● Brief recap of:
Sequence modeling with RNNs (limitations: vanishing gradients, sequential computation bottlenecks).

○ Traditional attention mechanisms (Bahdanau, Luong).
● Motivation for Transformers

2. Transformer Architecture Overview and Core components:

● Tokenization
● Self-attention
● Positional encoding: Sinusoidal vs learned positional encodings 
● Layer normalization & residual connections

3. LLM Variants and Evolution 

● Encoder-Only models,
● Encoder-Decoder models,
● Decoder-only models, 

4. LLM Tips and Tricks 

● Context Window Size
● Inference and Next Token Prediction
● Selection Criteria for LLMs

Course Outline-3rd session-Transformers and LLMs:
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Encoding and Self Attention help to gather context. 
But for generating text, we must decide how to generate tokens over time.

From Encoding to Decoding
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Non-autoregressive and Recurrent
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Decoding Methods
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Masked and Autoregressive
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Decoding Methods
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Decoding Methods

https://medium.com/@eugene-s/unleashing-the-potential-of-large-language-models-llms-with-chatgpt-8210f0cb063d



Language models by company and year
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Transformer-based Language Models

Photo from: 

https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder



Language models by size and availability
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Transformer-based Language Models

Photo from Unifying Large Language Models and Knowledge 
Graphs: A Roadmap,



Bert Breakthrough
Encode-only Models 
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Architecture: 
○ Encoder-only large language models only use the encoder to encode the sentence

Training:
○ The common training paradigm for these model is to predict the mask words in an input 

sentence. 

○ This method is unsupervised (same sequence in input and output) and can be trained on 

the large-scale corpus.  

Prediction: 

○ These models are most effective for tasks that require 

understanding the entire sentence, such as text classification.

○ Encoder-only models are still very useful for training predictive 
models versus generating texts.



● Classify token ([CLS]) represents the entire input sequence or sentence.

● The model uses this representation to make predictions or classify the input into 
predefined categories.

● Fine-Tune BERT if you want to use CLS token: Freeze part of model if your 
data/hardware is small.

Encoder-only Models at Prediction

43

Fine-tuning BERT 
on different tasks 
(Bert, 2019)
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Architecture: 
○ Encoder-decoder large language models adopt both the encoder and decoder module. 

Training:

○ The training strategies in encoder-decoder LLMs can be more flexible, For example, Masked 

Span Prediction, and autoregressive prediction.

Prediction: 
○ They are typically used for tasks that involve understanding input 

sequences and generating output sequences, often with different 

lengths and structures. 

○ They are particularly good at tasks where where it is crucial to 

capture the relationships between the elements in both sequences. 

○ Some common use cases include text translation and summarization.

T5 breakthrough
Encoder-Decoder Models



● Transfer Learning: It enables a model to transfer knowledge across a wide range of tasks with 

minimal task-specific tuning.

● Unified Approach: T5 frames all NLP tasks (e.g., translation, summarization, classification) as a 

text-to-text problem, simplifying model training and application.

T5, Breakthrough of transfer Learning

45
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Architecture: 

○ Decoder-only large language models only adopt the decoder module to generate target 

output text.

Training:
○ The common training paradigm for these models is to predict the next token 

(Autoregressive).

Prediction: 

○ Large-scale decoder-only LLMs can generally perform 

downstream tasks from a few examples or simple instructions, 

without adding prediction heads or fine-tuning. 

○ Many state-of-the-art LLMs (e.g., Chat-GPT and Llama) follow the 

decoder-only architecture. 

Zero and few-shot breakthrough
Decoder-only Models



Decoder-only
GPT

Encoder-only
BERT

Enc-Dec
T5

[The_] [cat_] [MASK] [on_] [MASK] [mat_]

[*]    [*]   [sat_]  [*]  [the_]    [*]

[START] [The_] [cat_]

[sat_]

Translate EN-DE: This is good.

Summarize: state authorities dispatched…

Is this toxic: You look beautiful today!

Das ist gut.

A storm in Attala caused 6 victims.

This is not toxic.

Photo from Luca Bayer lecture on transformers

Training Objective



1. From RNNs to Transformers

● Brief recap of:
Sequence modeling with RNNs (limitations: vanishing gradients, sequential computation bottlenecks).

○ Traditional attention mechanisms (Bahdanau, Luong).
● Motivation for Transformers

2. Transformer Architecture Overview and Core components:

● Tokenization
● Self-attention
● Positional encoding: Sinusoidal vs learned positional encodings 
● Layer normalization & residual connections

3. LLM Variants and Evolution 

● Encoder-Only models,Architecture, Training and Prediction.
● Encoder-Decoder models,Architecture, Training and Prediction.
● Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks 

● Context Window Size
● Inference and Next Token Prediction
● Selection Criteria for LLMs

Course Outline-3rd session-Transformers and LLMs:
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● Context window :  maximum number of tokens the model can consider at one pass.
● A larger context window allows you to feed a wide variety of extensive materials to the 

model. 

Context Window Size

49

Photo from:https://s10251.pcdn.co/pdf/2023-Alan-D-Thompson-2023-Context-Windows-Rev-0.pdf

https://s10251.pcdn.co/pdf/2023-Alan-D-Thompson-2023-Context-Windows-Rev-0.pdf


Context window size

50

Pros of large context window Cons of large context window

Improved Long-Term Dependencies Computation and cost exhaustive, both 
training and inference time.

Good for conversational AI: ability to 
‘remember’ more and  keeping up with 
extended conversations

The model’s ability deteriorates as more 
documents are introduced. 
(LLMs perform well when presented with a 
more focused set of documents directly 
relevant to the context).

Photo from “lost in the middle” paper.



Decoding or Next Token Prediction
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Photo from https://x.com/cwolferesearch/status/1689388468911132672



● When the model receives textual input, the text is “tokenized”, or separated into individual 
words/sub-words. 

● Then, we retrieve an embedding (i.e., a vector assigned to each unique token) for every token, 
forming a sequence of token vectors.

Decoding or Next Token Prediction

52Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20



This sequence of token vectors is passed through a decoder-only transformer which outputs a new list of 

equally-sized token vectors that have been transformed via many masked self-attention and feed-forward 

layers in sequence.

Decoding or Next Token Prediction

53Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20



The LLM takes the last vector in this output and passes it through a feed-forward layer, producing a new 

vector with the same size as our token vocabulary. 

Decoding or Next Token Prediction

54Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20



Next, we apply a softmax function to our logits, to  form a probability distribution over the space of 
possible tokens.

 In other words, this tells us the probability that each token is the correct “next” token!

Decoding or Next Token Prediction

55Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20



Greedy decoding just chooses the next token as the highest-probability token in this distribution. 
● We can add this token to our input sequence and use it to generate another token 

auto-regressively.
● To generate a full sequence, we just keep doing this! 

Greedy Decoding

56Photo from https://twitter.com/cwolferesearch/status/1659608476455256078?s=20



Given this probability distribution, there are several decoding strategies that we can follow, 
which are just different ways of selecting the next token from this distribution.

● Greedy Decoding 

● Temperature 

● Top-K Sampling

● Top-P (Nucleus) Sampling

Strategies for Next Token Prediction

57



Greedy Decoding
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Greedy decoding has some drawbacks; outputs can get stuck in repetitive loops, for example. 

● Think of the suggestions in your smartphone’s auto-suggest. When you continually pick the 
highest suggested word, it may devolve into repeated sentences.

Photo taken from 
https://docs.cohere.com/docs/controlling-generation-with-top-k-top-p



● Temperature scales the logits before sampling tokens to help with generating more diverse 
outputs with a language model. 

● It increases the chance of the model generating something random or irrelevant. 

● Higher values of temperature make output more random, while lower values of temperature make 
output more deterministic. 

● Use higher values of temperature with caution!

Temperature
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Photo from https://twitter.com/cwolferesearch/status/1671628210180698112?s=20

https://twitter.com/cwolferesearch/status/1671628210180698112?s=20


● Another commonly-used strategy is to sample from a shortlist of the top k tokens.

● This approach allows the other high-scoring tokens a chance of being picked. 

● The randomness introduced by this sampling helps the quality of generation in a lot of scenarios.

Top-K sampling

60

Photo taken from 
https://docs.cohere.com/docs/controlling-generation-with-top-k-top-p



Nucleus Sampling creates the shortlist by selecting the top tokens whose sum of 
likelihoods does not exceed a certain value. 

Top-p is usually set to a high value (like 0.75) with the purpose of limiting the long tail of 
low-probability tokens that may be sampled. 

Top-P or Nucleus sampling

61

Photo taken from 
https://docs.cohere.com/docs/controlling-generation-with-top-k-top-p



Selection Criteria For LLMs
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Task alignment: Choose an LLM that aligns to the task:

● Encoder-only (BERT): Best for classification, semantic similarity, retrieval.

● Decoder-only (GPT, LLaMA): Best for generative tasks, like conversational AI, writing, 
answering.

● Encoder-Decoder (T5, FLAN-T5, BART): Good for translation, summarization, seq2seq 
tasks.

Data Alignment: Choose an LLM that has been pre-trained or fine-tuned on data that matches 
the domain or context of your project. 

● To build a chatbot that answers patient queries using medical literature:
○ Use PubMedBERT or BioGPT, trained on biomedical literature and clinical notes, 

Instead of using GPT-2, trained mostly on generic web data like Reddit or Wikipedia, 

 Adapting and Tuning: Determine if the chosen LLM can be effectively contextualized with prompts 
or fine-tuning.



Selection Criteria For LLMs
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Explainability

● For high-stakes domains (e.g., health, engineering), use models that allow:
○ Attribution (e.g., RAG with source highlighting)
○ Token attention visualization (e.g., using attention heatmaps or explainers)

Model size and complexity

● Models with tens of billions of parameters provide higher-quality outputs but require more 
computational resources.

Dataset Size and Fine-Tuning

● If you have a small domain-specific dataset:

○ Use smaller models which require fewer resources and fine-tune faster.

● Avoid massive models unless you’re using zero-shot or few-shot prompting, not 
fine-tuning.



Next:
1. Multi-Modal Transformers 

a. (Speech, Image, Video, 3D Vision )

2. RAG, Fine-Tuning, Prompt Engineering, 
etc.



Thank You


