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● We're committed to build a strong, inclusive, and resourceful AI community for Purdue! 

● We want to help you use AI confidently, ethically, and creatively!

● We’re ready to do even more.

Building a Supportive AI Community!
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Tell us what would make this community more valuable for you:

● Consulting & Mentorship: Expert guidance, office hours, project feedback?

● Technical Support: Help with models, tools, GPUs, or data?

● Learning Resources: Tutorials, workshops, reading groups?

● Community Events: Meetups, speaker sessions, collaborations?

●  Anything Else?  

Share Your Needs & Ideas With Us! 



1. History and Basics of DNN
a. From traditional ML to DNN

2. Fundamental deep learning: from discriminative to generative
a. CNN, RNN, Autoencoders, attention, 

b. Deep learning for Representation Learning and feature extraction

c. Discriminative vs generative deep learning: VAE, GAN, Diffusion Models

3. Transformers Era
a. self-attention, encoders, decoders, masking, 

b. self attention vs old attention

c. Selection Criteria 

4. LLMs in Practice
a. Prompt Engineering Methods, RAG, Agents, 

b. Fine-tuning Methods: instruct tuning, RLHF, Adapters

c. Deep learning for different domains

5. AI safety and Governance

Course Outline
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1. History and Basics of DNN
a. AI hypes and winters

b. Deep learning from 1950s

c. From single neurons to deep networks

d. Deep learning challenges solved from 1950-present

i. Model overfitting

ii. Activation function saturation

iii. Vanishing/exploding gradient

e. Deep learning weaknesses

Course Outline-first session-March 5th 
2025
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2. Fundamental deep learning models, from discriminative to 
generative: 

a. CNN, 

b. RNN, 

c. Earlier version of attention, 
d. Deep learning for Representation Learning and feature extraction

e. Earlier Pre-Training models

f. Discriminative vs Generative deep learning

Course Outline-Second Session-April 18th 
2025
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1. From RNNs to Transformers

● Brief recap of:
○ Sequence modeling with RNNs 
○ Traditional attention mechanisms 

● Motivation for Transformers

2. Transformer Architecture Overview and Core components:

● Tokenization
● Self-attention
● Positional encoding: Sinusoidal vs learned positional encodings 
● Layer normalization & residual connections

3. LLM Variants and Evolution 

● Encoder-Only models,Architecture, Training and Prediction.
● Encoder-Decoder models,Architecture, Training and Prediction.
● Decoder-only models, Architecture, Training and Prediction.

4. LLM Tips and Tricks 

● Context Window Size
● Inference and Next Token Prediction
● Selection Criteria for LLMs

Course Outline-3rd session-July 14th 2025
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1. LLM Engineering

a. Prompt Engineering

b. RAG 

c. Agents

d. Fine-Tuning 

i. Full fine-tuning

ii. Instruct tuning

iii. Reinforcement Learning with Human Feedback (RLHF)

e. Parameter-Efficient Fine-Tuning (PEFT)

i. Prefix/Prompt tuning

ii. Adapters

iii. LORA

2. MultiModal Transformers: Image, Audio, Video, 3D Transformers

Course Outline-4th session-Aug 6th 2025
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1. LLM Engineering

a. Prompt Engineering

b. RAG 

c. Agents

d. Fine-Tuning 

i. Full fine-tuning

ii. Instruct tuning

iii. Reinforcement Learning with Human Feedback (RLHF)

e. Parameter-Efficient Fine-Tuning (PEFT)

i. Prefix/Prompt tuning

ii. Adapters

iii. LORA

2. MultiModal Transformers: Image, Audio, Video, 3D Transformers

Course Outline
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Pretraining is the initial training phase where a model learns general-purpose patterns from large, 
unlabeled datasets (e.g., predicting missing words, next tokens, etc.). It builds foundational 
knowledge useful across many tasks.

Fine-tuning adapts a pretrained model to a specific task using smaller, labeled datasets (e.g., 
sentiment analysis, question answering). It specializes the model by continuing training on 
task-relevant data.

Pre-Training vs Fine-Tuning 

9Photo from AIML.com with some modifications



A Step Forward, but Not Enough

● In 2019, multitask learning gained popularity, with models like T5 being trained on multiple tasks 
simultaneously. 

● T5 proposed that every NLP task is cast as a text-to-text problem and Standardizing tasks as 
natural language instructions.

● Showing that changing the prompt (not model weights) could change behavior.

● This approach improved performance on the training tasks, but failed to address cross-task 
generalization: models were unable to generalize to new, unseen tasks.

Multi-task Learning

10Photo from T5 paper with modifications.



The launch of GPT-3 in 2020 showcased the remarkable capabilities of LLMs with 175 
billion parameters, allowing them to effectively perform tasks through few-shot prompting.
● If Prompt Engineering is not accurate enough, you can pay cost for fine-tuning. 

Prompt Engineering
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Photo from 
https://medium.com/@lmpo/an-overview-instruction-tuning-for-llms-440228e7edab

https://medium.com/@lmpo/an-overview-instruction-tuning-for-llms-440228e7edab


● Prompting prepares a frozen pretrained model for a specific downstream task by including a text 
that describes the task or even demonstrates an example of the task.

● Prompt engineering refers to the process of refining a model's input to produce the desired 
output, without updating the actual weights of the model as you would with fine-tuning.

● Prompt engineering is the art of asking the right question to get the best output from an 
LLM. It enables direct interaction with the LLM using only plain language prompts. 

Prompt in LLM

12
Photo from Unifying large language models and knowledge graphs: A 
roadmap.



● In Few-shot prompting, you show an LLM a few examples of how a task should be done in the 

prompt itself, to guide LLM’s behavior, without changing the model’s weights.

○ For unfamiliar tasks  and structured outputs 

● In Zero-shot prompting, you ask an LLM to perform a task without giving any examples, relying 

only on the instruction.

○ For easy questions and general knowledge.

Few-Shot and Zero-Shot Prompting

13Photo from: https://www.analyticsvidhya.com/



● Prompting is underestimated because the right prompting techniques, when used 
correctly, can get us very far. 

● It is overestimated because even prompt-based applications require significant 
engineering around the prompt to work well.

● We need more advanced prompt engineering methods:
○ Chain of Thoughts
○ Tree of Thoughts
○ Self Consistency 

Prompt Engineering

14
Photo from  
https://medium.com/@GULGULTEKIN/prompt-engineering-te
chniques-37a473ed25a6

https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


We need to take advantage of the reasoning abilities of the LLM, if the direct approach of simple 
prompting does not give us what we expect.

Chain Of Thoughts (COT)
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The most popular applications of CoT:

● Question Answering: Answering complex questions that require 
inferencing or reasoning.

● Mathematical Problem Solving: Solving math problems 
step-by-step, providing justification for each step.

● Program Synthesis: Generating source code based on natural 
language instructions.

Photo from  
https://medium.com/@GULGULTEKIN/prompt-engineering-te
chniques-37a473ed25a6

https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


COT Example
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Photo from Chain-of-thought prompting elicits reasoning in 
large language models. Neurips 2022.



Drawing inspiration from human cognitive processes, ToT facilitates considering a spectrum of possible 
solutions before deducing the most plausible one.

The LM's ability to generate and evaluate thoughts is combined with search algorithms (e.g., 
breadth-first search and depth-first search) to enable systematic exploration of thoughts with lookahead 
and backtracking.

Tree of Thoughts (TOT) 

17
Photo from  
https://medium.com/@GULGULTEKIN/prompt-engine
ering-techniques-37a473ed25a6

Steps of TOT: 

1. Generate multiple thoughts 

2. Evaluate and select best 

3. Expand and go deeper 

4. Repeat if needed 

5. Final solution

https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


ToT explores multiple reasoning paths in parallel, evaluates them, and chooses the best one.

There's no clear single path to a solution

Tree of Thoughts (TOT) 
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An example of Game of 24: The goal is to reach 24 using four given numbers 
and basic arithmetic operations.
Photo from  Yao et el. (2023)

https://arxiv.org/abs/2305.10601


● SC replace the “greedy decode” in CoT prompting by sampling from the language model’s 
decoder to generate a diverse set of reasoning paths; and marginalize out the reasoning paths 
and aggregate by choosing the most consistent answer in the final answer set. 

● We can use temperature to generate several answers and reasons and find the best one.

Self Consistency

19

r is reason, a is answer, and t are tokens.

Photo from  
https://medium.com/@GULGULTEKIN/prom
pt-engineering-techniques-37a473ed25a6

https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


Self-consistency Prompting Method
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Photo from: 
https://www.prompthub.us/blog/self-consistency-and-un
iversal-self-consistency-prompting



1. LLM Engineering

a. Prompt Engineering

b. RAG 

c. Agents

d. Fine-Tuning 

i. Full fine-tuning

ii. Instruct tuning

iii. Reinforcement Learning with Human Feedback (RLHF)

e. Parameter-Efficient Fine-Tuning (PEFT)

i. Prefix/Prompt tuning

ii. Adapters

iii. LORA

2. MultiModal Transformers: Image, Audio, Video, 3D Transformers

Course Outline
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● Pre-trained LLMs (foundation models) do not learn over time, often hallucinate, and may leak 
private data from the training corpus.

● RAG is a method for improving the response of an LLM by injecting new data into the prompt at 
the inference time, while fine-tuning modifies the model. 

● RAG for LLMs aims to improve prediction quality by using an external datastore at inference time to 
build a richer prompt that includes some combination of context, history, and 
recent/relevant knowledge (RAG LLMs). 

● RAG LLMs can outperform LLMs without retrieval by a large margin with much fewer parameters, 
and they can update their knowledge by replacing their retrieval corpora, and provide citations 
for users to easily verify and evaluate the predictions.

Retrieval-Augmented Generation(RAG)

22
Photo from  
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6

https://acl2023-retrieval-lm.github.io/
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


False Information by LLMs
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● Misinformation involves the spread of false or inaccurate information without malicious 
intent of the user.

○ Hallucination refers to the generation of content that the model invents or fabricates.

● Disinformation is generating false information that is intended to mislead.

Photo from “Chua, J., Li, Y., Yang, S., Wang, C. and Yao, L., 2024. AI Safety in 
Generative AI Large Language Models: A Survey. arXiv preprint arXiv:2407.18369.”



Some examples of context information used by RAG include:

● Real-time context (the weather, your location, etc);

● User-specific information (orders the user has made at this website, actions the user has taken 

on the website, the user’s status, etc);

● Relevant factual information (documents not included in the LLM’s training data - either because 

they are private or they were updated after the LLM was trained).

RAG use cases

24



● Compared to continuous pre-training or fine-tuning, RAG is easier and cheaper to keep retrieval 
indices up-to-date. 

● If the retrieval indices have problematic documents that contain toxic or biased content, we can 
easily drop or modify the offending documents. 

● RAG provides finer-grained control over how we retrieve documents. 

○ For example, if we’re hosting a RAG system for multiple organizations, by partitioning the 
retrieval indices, we can ensure that each organization can only retrieve documents from their 
own index. This ensures that we don’t inadvertently expose information from one 
organization to another.

RAG vs Fine-Tuning

25



Selection Criteria

● Budget: fine-tuning involves retraining the model, which is more expensive.

● Training vs Inference Cost: since the weights are updated, fine-tuning requires more 

time commitment in the beginning but might be less time intensive in the long run.

○ RAG requires more compute during inference.

⇒ As a rule of thumb, RAG is an ideal strategy to start with. After that, if the task for the model 

becomes too narrow or specific, fine-tuning might be the next step.

RAG vs Fine-Tuning
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1. Evolving domains with core tasks: 

a. In medical imaging where there are standard diagnostic procedures (handled by 

fine-tuning) but also rapidly evolving research and new case studies (addressed by 

Visual RAG).

b. E-commerce and product recognition: A fine-tuned model could recognize product 

categories, while RAG could retrieve up-to-date product information or similar items 

from a dynamic inventory.

c. Content moderation systems: Fine-tuning can handle common violation types, while 

RAG can adapt to emerging trends or context-dependent violations.

RAG vs Fine-Tuning use cases

27



Some Comparisons 
LLM Training vs LLM Fine-tuning vs RAG

28

Build from scratch Finetune RAG

Details ● data collection and 
preparation

● design and train the model

● fine-tuning an existing 
model on 
domain-specific data

● enrich prompts 
using RAG by 
injecting 
domain-specific 
data to prompts

Pros ● accuracy ● accuracy
● low-data volume

● accuracy
● low-data volume
● low computation 

cost

Cons ● data volume
● high computation cost
● high training time

● high computation cost ● reliance on data 
pipelines



While traditional RAG processes text inputs and retrieves relevant textual information, Visual RAG 
works with images, sometimes accompanied by text, and retrieves visual data or image-text pairs.

The encoding process shifts from text encoders to vision encoders, and the knowledge base (i.e., 
a vector database) becomes a repository of visual information rather than text documents.

Visual RAG

29Photo from 
https://medium.com/@tenyks_blogger/rag-for-vision-building-genai-computer-
vision-systems-6a812adfb20e

https://medium.com/@tenyks_blogger/how-to-build-an-image-to-image-search-tool-using-clip-pinecone-b7b70c44faac
https://medium.com/@tenyks_blogger/multi-modal-image-search-with-embeddings-vector-dbs-cee61c70a88a
https://medium.com/@tenyks_blogger/rag-for-vision-building-genai-computer-vision-systems-6a812adfb20e
https://medium.com/@tenyks_blogger/rag-for-vision-building-genai-computer-vision-systems-6a812adfb20e


Visual RAG

30
Photo from 
https://medium.com/@tenyks_blogger/rag-for-vision-building-genai-computer-
vision-systems-6a812adfb20e

https://medium.com/@tenyks_blogger/rag-for-vision-building-genai-computer-vision-systems-6a812adfb20e
https://medium.com/@tenyks_blogger/rag-for-vision-building-genai-computer-vision-systems-6a812adfb20e


1. LLM Engineering

a. Prompt Engineering

b. Rag 

c. Agents

d. Fine-Tuning 

i. Full fine-tuning

ii. Instruct tuning

iii. Reinforcement Learning with Human Feedback (RLHF)

e. Parameter-Efficient Fine-Tuning (PEFT)

i. Prefix/Prompt tuning

ii. Adapters

iii. LORA

2. MultiModal Transformers: Image, Audio, Video, 3D Transformers

Course Outline
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"Track  stock's price and email me if it drops by more than 5% in a day."

Agents, An example

32

A static LLM (like GPT-4 without tools or memory) can't:

● Access real-time stock data.

● Continuously monitor changes over time.

● Trigger actions (like sending an email).

● Persist memory or run code over time.

It can only explain how to do it, or give you a code 
snippet to run yourself.

An LLM agent, given the same goal, can autonomously:

1. Fetch current stock price (using a tool like Yahoo 
Finance API).

2. Store it and set a timer to check again later.

3. Compare current price to past price.

4. Decide: Has the price dropped >5%?

5. If yes → Compose an email and send it via email API.

6. Repeat this check on a schedule.

Agents can use Tools:

● Web API tool (for stock prices)

● Math tool (to calculate % drop)

● Memory (to track previous prices)

● Email tool (to send alerts)



Real Examples

● Customer Support Agent: Uses knowledge 
base + email API to respond and resolve 
tickets.

● Personal Assistants

● Coding Agent: Writes, runs, debugs code 
autonomously.
Data Analyst Agent: Pulls from a database, 
creates charts, interprets trends.

Why Agents? 

33

LLMs are powerful but limited by:

● No persistent memory

● No real-time access to tools or external 
data

● No autonomy—they only respond to 
prompts

Agents overcome this by:

● Using tools (like code interpreters, web search, 
file systems)

● Retaining memory/context across tasks

● Making decisions via planning or rules (e.g., 
ReAct or Tree of Thought frameworks)

⇒  LLM Agents = LLM + Memory + Tools.

https://www.projectpro.io/article/llm-agents/1013



Agents, An example

34

"Monitor stock and alert me if price drops > 5%."

                 stock API to get current stock price 

Store this in memory.

[Waits 1 day or uses scheduler]

                 stock API to get current stock price 

price dropped > 5%

send an email

Yes

No

Agent

Tools

Planning

CalculatorSearch Email

Action

Memory



LLM vs RAG vs Agents…
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Capability / Task Requirement Plain 
LLM

RAG LLM Agent

Access real-time stock data ❌ ❌ (no live 
API)

via API/tool use

Retain memory across time (track price over days) ❌ ❌ via persistent memory

Calculate % drop and apply logic  Basic Basic can reason and decide

Trigger external actions (send email) ❌ ❌ via tool/API

Run autonomously over time (scheduled checks) ❌ ❌ via planning/execution

Retrieve relevant knowledge (e.g., from docs or 
PDFs)

❌ yes If combined with RAG

Good for factual Q&A or document search Basic yes yes

Acts independently without constant human input ❌ ❌ yes



Planning, Tools use, combination

● ReWoo (Reasoning with Workspaces): Best for reasoning where intermediate 
results are shared and reused (e.g., planning, math).

● ReAct (Reasoning + Acting): Best for step-by-step agents that think, act, 
observe, repeat (e.g., question answering with tools).

● DeRA (Decomposed Reasoning Agent):  Tasks requiring explicit decomposition 
with natural dialogue + tool use 

Agents 

36

Photo from  
https://medium.com/@GULGULTEKIN/prom
pt-engineering-techniques-37a473ed25a6

https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


● If you need to access any external data source, use RAG.

● If you need an autonomous entity that make decisions and take action on 
its own, then consider LLM Agents.

● If you don’t need any of them, but want to use LLM to do a more complex 
task than you can solve with a simple prompting, employ advanced 
prompting techniques. 

Selection Criteria: RAG, Agents, Advanced Prompting

37
Photo from  
https://medium.com/@GULGULTEKIN/prompt-engineering-te
chniques-37a473ed25a6

https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6
https://medium.com/@GULGULTEKIN/prompt-engineering-techniques-37a473ed25a6


1. LLM Engineering

a. Prompt Engineering

b. Rag 

c. Agents

d. Fine-Tuning 

i. Full fine-tuning

ii. Instruct tuning

iii. Reinforcement Learning with Human Feedback (RLHF)

e. Parameter-Efficient Fine-Tuning (PEFT)

i. Prefix/Prompt tuning

ii. Adapters

iii. LORA

2. MultiModal Transformers: Image, Audio, Video, 3D Transformers

Course Outline
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Showing your LLM new data and altering its weights

● Fine-tuning plays a vital role when dealing with extensive pre-trained open-source models. 

● The process of fine-tuning involves updating the model's parameters by feeding it new 
task-specific data and adjusting its weights based on the expected output. 

● Through backpropagation, a loss is calculated and the model's weights are adjusted to improve its 
performance on similar inputs in the future, aiming to enhance its task-specific performance without 
compromising its overall capabilities.

Fine-Tuning

39



● Full fine-tuning entails adjusting all the model's weights. 

○ This can be slow as it requires computing gradients across all weights to minimize the loss 
between the actual output and the model's generated output. This comprehensive 
modification also involves billions of floating-point computations and constant data 
movement within the GPU memory hierarchy.

○ Fine-tuning can also be memory-intensive as it requires storing both gradients and 
optimizer states, effectively doubling the memory requirements. Consequently, if your model 
fits within an NVIDIA A10G GPU, training may necessitate four such GPUs. 

○ Given their enormous size, one needs extremely big computing power and large scale 
datasets to fine tune them on a specific task. 

○ Fine-tuning LLMs on specific task may lead them to “forget” previously learnt information, a 
phenomena known as catastrophic forgetting.

Full Fine-Tuning Cons

40https://www.labellerr.com/blog/fasten-up-your-dat
a-annotation-process-with-pre-trained-models/

https://en.wikipedia.org/wiki/Catastrophic_interference#:~:text=Catastrophic%20interference%2C%20also%20known%20as,information%20upon%20learning%20new%20information.


● Employ a model that has already been trained and fine-tune it partially. 

○ Training some layers while freezing others. 

● All we can do is freeze the weights of the model's first layers while only retraining 
the upper levels.

●  How many layers should be frozen and trained can be experimented with?

Partial Fine-Tuning

41Photo from: 
https://www.labellerr.com/blog/fasten-up-your-data-annotation-process-with-pre-tra
ined-models/



● Most language models are still trained with a simple next token prediction loss (e.g. cross entropy). 

● Wouldn't it be great if we use human feedback for generated text as a measure of performance or 
go even one step further and use that feedback as a loss to optimize the model? 

● That's the idea of Reinforcement Learning from Human Feedback (RLHF); use methods from 
reinforcement learning to directly optimize a language model with human feedback. 

● RLHF has enabled language models to begin to align a model trained on a general corpus of text 
data to that of complex human values.

Reinforcement Learning with Human 
Feedback(RLHF) 

42
Photo from https://huggingface.co/blog/rlhf with some modifications

https://huggingface.co/blog/rlhf


● RLHF is a specific technique that is used in training AI systems to appear more human, alongside 
other techniques such as supervised and unsupervised learning. 

● A human assesses the quality of different responses from the machine, scoring which 
responses sound more human. 

● The score can be based on innately human qualities, such as friendliness, the right degree of 
contextualization, and mood. 

RLHF (Reinforcement Learning with Human Feedback)  

43Photo from https://aws.amazon.com/what-is/reinforcement-learning-from-human-feedback/



● Instruction tuning is a technique for fine-tuning LLMs on a labeled dataset of instructional prompts 
and corresponding outputs. 

● It improves model performance not only on specific tasks, but on following instructions in 
general.

● The utility of instruction tuning lies in the fact that pre-trained LLMs are not optimized for 
conversations or instruction following. In a literal sense, LLMs do not answer a prompt: they 
only append text to it. Instruction tuning helps make that appended text more useful.

Instruct Fine-Tuning

44

Task: Rewrite the sentence "The cat sat on the mat." in a formal tone.

Output by next word prediction models: "The cat sat on the mat and then walked to the window."

 Output by instruct tuning models: "The feline was positioned on the carpeted surface."

Example



●  This method focuses on training models to better understand and follow instructions, as well 
as comprehend the relationships between task elements. 

○ Instruction Tuning aims to finally resolve the long-standing issue of cross-task 
generalization, enabling models to adapt to new tasks more effectively

Instruct Fine-Tuning

45Photo from [39]
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There are two categories of prompting methods:

● Hard prompts are manually handcrafted text prompts with discrete input tokens; the downside is 
that it requires a lot of effort to create a good prompt

● Soft prompts are learnable tensors concatenated with the input embeddings that can be 
optimized to a dataset; the downside is that they aren’t human readable because you aren’t 
matching these “virtual tokens” to the embeddings of a real word

a. A disadvantage is the lack of interpretability of soft prompts.

b. Unlike hard prompts, soft prompts cannot be viewed and edited in text. Prompts consist of 
an embedding, a string of numbers, that derives knowledge from the larger model.

Soft Prompting vs Hard Prompting

47Photo from https://cobusgreyling.medium.com/prompt-tuning-hard-prompts-soft-prompts-49740de6c64c



● Prompt tuning involves using a small trainable model before using the LLM. The small model is 
used to encode the text prompt and generate task-specific virtual tokens.

● Prompt tuning created a smaller light weight model which sits in front of the frozen pre-trained 
model. Hence soft prompts via prompt tuning is an additive method for only training and adding prompts to 
a pre-trained model.

● The trainable tensor (known as “soft prompt”) would learn the task specific details. The soft prompt is 
optimized through gradient descent. In this approach rest of the model architecture remains unchanged. 

● Soft prompts are created during the process of prompt tuning.

Soft Prompting and Prompt Tuning

48Photo from Senadeera, D., and Ive, J. Controlled Text Generation using T5 based EncoderDecoder 
Soft Prompt Tuning and Analysis of the Utility of Generated Text in AI. Dec. 2022.



● Prefix Tuning is a similar approach to Prompt Tuning. 

● Instead of adding the prompt tensor to only the input layer, prefix tuning adds trainable 
parameters are prepended to the hidden states of all layers.

49

Prefix Tuning

Photo from https://arxiv.org/abs/2101.00190

https://arxiv.org/abs/2101.00190


● High time, High memory, High computation.

● Fine-tuning requires storing both gradients and optimizer states, effectively doubling the memory 
requirements. 

○ For instance, when using the Adam optimizer, a common rule of thumb suggests allocating 
three times the GPU RAM as the model size in memory during the backward pass. 

Adapters

50

● Adapters allow the LLM to adapt to new scenarios without changing its original parameters. 

● This preserves the LLM's general knowledge and avoids catastrophic forgetting when 
learning new tasks. 

● Adapters can also reduce the number of parameters that need to be updated, reducing the time 
and compute required.

● Training overhead can be reduced up to 70% compared to full fine-tuning.

Full Fine-Tuning

Adapters



● Adapters are new modules added between layers of a pre-trained network. 

● In Adapter based learning only the new parameters are trained while the original LLM is 
frozen, hence we learn a very small proportion of parameters of the original LLM. 

● This means that the model has perfect memory of previous tasks and used a small 
number of new parameters to learn the new task.

Adapters

51
Photo from 
https://medium.com/dair-ai/adapters-a-compact-and-extensible-transfer-l
earning-method-for-nlp-6d18c2399f62

https://medium.com/dair-ai/adapters-a-compact-and-extensible-transfer-learning-method-for-nlp-6d18c2399f62
https://medium.com/dair-ai/adapters-a-compact-and-extensible-transfer-learning-method-for-nlp-6d18c2399f62


● Authors suggest that Adapters on the lower layers have a smaller impact than the 
higher-layers. 

○ Removing the adapters from the layers 0 − 4 barely affects performance. 
Focusing on the upper layers is a popular strategy in fine-tuning. 

○ One intuition is that the lower layers extract lower-level features that are shared 
among tasks, while the higher layers build features that are unique to 
different tasks.

Adapters
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● LoRA freezes the pretrained model weights and injects trainable rank decomposition matrices into 

each layer of the Transformer architecture, 

○ greatly reducing the number of trainable parameters for downstream tasks. Compared to 

GPT-3 175B fine-tuned with Adam, LoRA can reduce the number of trainable parameters 

by 10,000 times and the GPU memory requirement by 3 times. 

● LoRA performs on-par or better than fine-tuning in model quality, despite having fewer trainable 

parameters. 

● Unlike adapters, LoRA has no additional inference latency. 

LoRA: Low-Rank Adaptation of Large Language Models

Photo from www.inferless.com



1. No trade-off in performance, and even outperforming in some tasks

2. Extremely low memory footprint: 0.2%

LoRA
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Photo from 
https://medium.com/@infin94/understanding-the-seq2seq-model-what-you-should-kn
ow-before-understanding-transformers-e5891bcd57ec
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LoRA Memory Footprint 
● With a reduced memory usage, the batch size can be increased, thereby 

accelerating model training. 

● This adjustment can make your training significantly faster by better utilizing your 
existing resources.
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LORA Authors (2021):  We take inspiration from Li et al. (2018a); Aghajanyan et al. (2020) which show that the learned 

over-parametrized models in fact reside on a low intrinsic dimension. We hypothesize that the change in weights during model 

adaptation also has a low “intrinsic rank”, leading to our proposed Low-Rank Adaptation (LoRA) approach. LoRA allows us to train some 

dense layers in a neural network indirectly by optimizing rank decomposition matrices of the dense layers’ change during adaptation instead, 

while keeping the pre-trained weights frozen.

LoRA Intuition

Aghajanyan et al, 2020: We empirically show that common pre-trained models have a very low intrinsic dimension; in other words, 

there exists a low dimension reparameterization that is as effective for fine-tuning as the full parameter space. For example, by optimizing 

only 200 trainable parameters randomly projected back into the full space, we can tune a RoBERTa model to achieve 90% of the full 

parameter performance levels on MRPC. Furthermore, we empirically show that pre-training implicitly minimizes intrinsic dimension 

and, perhaps surprisingly, larger models tend to have lower intrinsic dimension after a fixed number of pre-training updates, at 

least in part explaining their extreme effectiveness.



1. LLM Engineering

a. Prompt Engineering

b. Rag 

c. Agents

d. Fine-Tuning 

i. Full fine-tuning

ii. Instruct tuning

iii. Reinforcement Learning with Human Feedback (RLHF)

e. Parameter-Efficient Fine-Tuning (PEFT)

i. Prefix/Prompt tuning

ii. Adapters

iii. LORA

2. MultiModal Transformers: Image, Audio, Video, 3D Transformers

Course Outline

57



Computer vision is a field of artificial intelligence (AI) that teach computers to 
derive meaningful information from digital images, videos and other visual input. 

Computer Vision
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https://adeshpande3.github.io/A-Beginner's-Guide-To-Under
standing-Convolutional-Neural-Networks/



For a CNN, both of these pictures are almost same. 

● CNN does not encode the relative position of different features. 

● Large filters are required to encode the combination of these features. 

● For examples:- to encode the information “eyes above nose and mouth” require 

large filters.

From CNNs to Vision Transformers

59



1. Tokenization and Embedding 
(Breaking your input to smaller 
units)

2. Positional Encoding (Extracting 
locality and neighborhoods in the 
input units)

3. Residual Addition an Normalization
4. Attention 

a. self vs cross attention, 
b. single vs multi head attention,

Transformer Details

60

In text, we used sub-words as units, and their 
indices for positional information. 



● First split an image into fixed-size patches, linearly embed each of them, add position 
embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.  

● The image patches are being used same as sentence tokens. 

● In order to perform classification, use the standard approach of adding an extra learnable 
“classification token” to the sequence

● The model is pre-trained on both image-classification and patch embedding prediction.

Transformers for Vision 

61Photo from ViT, ICLR2021 (AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS 
FOR IMAGE RECOGNITION AT SCALE)



● CLIP learns a multi-modal embedding space by jointly training an image encoder and text 
encoder to maximize the cosine similarity of the image and text embeddings of the N 
real pairs in the batch while minimizing the cosine similarity of the embeddings of the (N2 

−N) incorrect pairings.

● At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding 
the names or descriptions of the target dataset’s classes.

Transformers for Image-Text Integration
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Photo from CLIP paper, ICML2021, Learning Transferable Visual Models 
From Natural Language Supervision



● We use CNN+quantizer to generate a limited set of speech units to help reconstructing and 
choosing output units. 

● These quantized units (q)  are equivalent to tokens embeddings in NLP transformers.
● The training paradigm is masked token learning.

Transformers for speech data
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Photo from wave2vec 2.0 
paper



Each video has 3 dimensions, 2 from image frame, and one through time. 

● How many options for self attention?

Transformers for Video data
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Photo from “Is Space-Time Attention All You Need for Video Understanding?
”



Transformers for Video data
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● We denote in blue the query patch and show in non-blue colors its self-attention space-time 
neighborhood under each scheme. 

● Patches without color are not used for the self-attention computation of the blue patch. 

● Multiple colors within a scheme denote attentions separately applied along different 
dimensions. 



Transformers for Video data
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Photo from “Is Space-Time Attention All You Need for Video Understanding?
”



● Due to the quadratic complexity of self-attention in Transformers, considering each point as one 
token is very computationally costly. 

● They use a simple yet efficient implementation that groups each point cloud into several local 
patches and use it as input   tokens for the transformers.

Transformers for 3D vision

67
Photo from Point-BERT: Pre-training 3D Point Cloud Transformers with 
Masked Point Modeling, CVPR2022  with some modifications



● Before pre-training, a Tokenizer is learned through dVAE-based point cloud reconstruction, where 

a point cloud can be converted into a sequence of discrete point tokens (the top part of the figure)

● During pre-training, the model is trained to recover masked tokens (the lower part of the figure).

Transformers for 3D vision

68Photo from point-BERT paper



Transformers for different modalities

69

Aspect NLP Vision Audio

Pre-training Task Masked language 
modeling (BERT), 
next-word prediction 
(GPT), sentence ordering

Image classification 
(ImageNet), contrastive 
learning (CLIP),

Self-supervised waveform 
modeling (wav2vec, 
HuBERT)

Model Learns Syntax, semantics, 
grammar, context

Shapes, edges, textures, 
object parts

Phonemes, pitch, tone, 
speaker identity

Architecture Transformers (BERT, 
GPT, T5)

CNNs, Vision 
Transformers (ViT)

CNNs, RNNs, 
Transformers (wav2vec2, 
Whisper)

Fine-Tuning Use Cases Sentiment analysis, NER, 
QA, translation

Medical imaging, satellite 
mapping, object detection

Speech-to-text, speaker 
ID, emotion recognition

Data Required 
(Pretraining)

Billions of tokens Millions of images Thousands of hours of 
audio



Mixing Several Modalities

Transformer-based cross-modal interactions: 
(a) Early Summation, 
(b) Early Concatenation, 
(c) Hierarchical Attention (multi-stream to one-stream), 
(d) Hierarchical Attention (one-stream to multi-stream), 
(e) Cross-Attention, and 
(f) Cross-Attention to Concatenation. 

Cross-Modal Transformers

70Photo from “Multimodal Learning with Transformers: A Survey”, 2023.



Next: 
1. AI Ethics, Safety and Governance

2. Deep Learning tools (Python, HF, …)

3. Deep Learning for different Domains (Agriculture, 

Bio, …)

4. ?
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