
RESEARCH COMPUTING
PBS → SLURM TRANSITION

January 31, 2020

Queues

There will be no significant changes to the scheduling policies on any systems for Slurm.

However, Slurm does not have “queues”.
Instead, Slurm uses “accounts” which serve the same function:

$ qsub -q standby myjob.sub
123456.cluster-adm.rcac.purdue.edu

$ sbatch -A standby myjob.sub
Submitted batch job 123456

$ qlist
Current Number of Cores Node

Queue Total Queue Run Free Max Walltime Type
============== ================================= ============== ======
debug 96 0 0 96 0:30:00 A
standby 12,864 283,059 5,878 1,000 4:00:00 A
myqueue 120 0 120 0 336:00:00 A

$ qlist
Current Number of Cores Node

Account Total Queue Run Free Max Walltime Type
============== ================================= ============== ======
debug 96 0 0 96 0:30:00 A
standby 12,864 283,059 5,878 1,000 4:00:00 A
myqueue 120 0 120 0 336:00:00 A

You may still use “qlist” to see which accounts (queues) you can submit to:

3

Submitting Jobs

Any Slurm options may also be put inside your job script using “#SBATCH” instead of “#PBS”:

#/bin/bash
#PBS -q standby

#/bin/bash
#SBATCH -A standby

$ qsub -q standby myjob.sub
123456.cluster-adm.rcac.purdue.edu

$ sbatch -A standby myjob.sub
Submitted batch job 123456

Use “sbatch” instead of “qsub” to submit batch jobs:

If the submission script is not a file in the current directory, Slurm will search in your $PATH.

4

Job Environment

Jobs will start in your current working directory as when you submitted them.
Remove any “cd $PBS_O_WORKDIR”:

#/bin/bash
#PBS -q standby

cd $PBS_O_WORKDIR

#/bin/bash
#SBATCH -A standby

job starts in current directory by default

Jobs inherit all your current environment variables unless you specify “--export=NONE”:

$ sbatch --export=NONE,myextravar=somevalue myjob.sub
$ sbatch --export=ALL,myextravar=somevalue myjob.sub

$ sbatch --export=NONE myjob.sub

You can also add a specific variable as part of your job submission:

5

Slurm Environment Variables

Within your job, Slurm provides many environment variables to help in your scripts:

PBS / Torque Description Example Slurm

$PBS_JOBID Job ID 123456 $SLURM_JOB_ID

$PBS_JOBNAME Job Name myjobname $SLURM_JOB_NAME

$PBS_QUEUE Queue / Account standby $SLURM_JOB_ACCOUNT

$PBS_O_WORKDIR Submission Directory /scratch/cluster/myusername $SLURM_SUBMIT_DIR

$PBS_NUM_NODES Total Number of Nodes 5 $SLURM_JOB_NUM_NODES

$PBS_NP Total Number of Tasks 80 $SLURM_NTASKS

$PBS_NUM_PPN Number of Tasks per Node 16 $SLURM_NTASKS_PER_NODE

- Node List (Compact Form) cluster-a[000-003,008] $SLURM_JOB_NODELIST

LIST=$(cat $PBS_NODEFILE) Node List (One Core per Line) cluster-a000 LIST=$(srun hostname)

$PBS_ARRAYID Job Array Index Number 43 $SLURM_ARRAY_TASK_ID

See “OUTPUT ENVIRONMENT VARIABLES” in the sbatch man page for more: “man sbatch”
6

Job Nodes & Tasks

PBS required you to specify the number of nodes and the number of tasks on each node.

In Slurm, you may specify the number of nodes (-N), the total number of tasks (-n),
and/or the number of tasks on each node (--ntasks-per-node):

$ qsub -l nodes=2:ppn=16 myjob.sub $ sbatch -N 2 -n 32 myjob.sub
$ sbatch -N 2 --ntasks-per-node 16 myjob.sub
$ sbatch -n 32 --ntasks-per-node 16 myjob.sub

TotalTasks ＝ Nodes · TasksPerNode

7

Job Time & Name

Specify the total time your job needs (walltime) using “-t”:

$ qsub -l walltime=4:00:00 myjob.sub $ sbatch -t 4:00:00 myjob.sub
$ sbatch -t 1-12:00:00 myjob.sub # 1 day 12 hours

You may give your job a custom name in job listings using “-J”:

$ qsub -N MyCustomName myjob.sub $ sbatch –J MyCustomName myjob.sub

8

Slurm can email your @purdue.edu address when your job reaches certain points.

Job Email

$ qsub -m bea myjob.sub $ sbatch --mail-type=BEGIN,END,FAIL myjob.sub

To get an email when your job starts, completes, or fails:

$ sbatch --mail-type=TIME_LIMIT_90 myjob.sub
$ sbatch --mail-type=TIME_LIMIT_80 myjob.sub
$ sbatch --mail-type=TIME_LIMIT_50 myjob.sub

To get an email when your job reaches a certain percentage of its walltime limit:

9

Interactive Jobs

cluster-fe00 $ qsub –I -X
qsub: waiting for job 123456.cluster-
adm.rcac.purdue.edu to start
qsub: job 123456.cluster-adm.rcac.purdue.edu ready
cluster-a000 $

cluster-fe00 $ sinteractive
salloc: Granted job allocation 123456
salloc: Waiting for resource configuration
salloc: Nodes cluster-a000 are ready for job
cluster-a000 $

Use “sinteractive” instead of “qsub -I” to submit interactive jobs:

sinteractive is a custom Purdue addition to Slurm to make it easier to start interactive jobs.

sinteractive will also take most of the same options as sbatch.

10

Job Steps & Sub-jobs

You can use Slurm to manage the components of a job as well as the whole job.

Use “srun” within your sbatch job script for fine-grained control over where commands in the script run.
Here we see two separate commands, each running on 10 cores of the 20 total cores:

#!/bin/bash
#SBATCH -N 2 -n 20

srun -n 10 myfirstcommand
srun -n 10 mysecondcommand

11

MPI

MPI programs can run under mpiexec / mpirun in the same manner as PBS:

#!/bin/bash
#SBATCH -N 2 -n 32

module load intel
module load impi

mpiexec -n $SLURM_NTASKS ./mpi_hello

#!/bin/bash
#SBATCH -N 2 -n 32

module load intel
module load impi

srun -n $SLURM_NTASKS --mpi=pmi2 ./mpi_hello

#!/bin/bash
#SBATCH -N 2 -n 32

module load gcc
module load openmpi

srun -n $SLURM_NTASKS --mpi=openmpi ./mpi_hello

You can also use srun for more control, but will need to tell Slurm which type of MPI to use:

12

Job Status

Check the status of your job with “squeue” instead of “qstat”:

$ qstat -a myqueue
$ qstat -a -U myusername
$ qstat -a

Req’d
Job ID Username Queue Jobname NDS TSK Time S
------------------ ---------- ------- ------- --- --- -------- -
123456.clustername myusername standby testjob 2 48 00:30:00 Q

$ squeue -A myaccount
$ squeue -u myusername
$ squeue

JOBID USER ACCOUNT NAME NODES CPUS TIME_LIMIT ST TIME
123456 myusername standby testjob 2 48 30:00 PD 0:00

Get an estimate for your job’s starting time using “squeue”:

$ showstart 123456

job 123456@3600 requires 24 procs for 1:00:00
Earliest start in 1:01:39 on Wed Mar 15 10:30:45
Earliest completion in 5:01:39 on Wed Mar 15 14:30:45

$ squeue -u myusername -O jobid,starttime

JOBID START_TIME
123456 2020-02-05T18:00:00

13

$ jobinfo 123456
Name : myjobname
User : myusername
Account : myqueue
Partition : cluster-a
Nodes : cluster-a[000,005,100,101]
Cores : 64
GPUs : 0
State : COMPLETED
ExitCode : 0:0
Submit : 2020-01-15T20:55:00
Start : 2020-01-15T21:25:00
End : 2020-01-16T10:55:00
Waited : 0:30:00
Reserved walltime : 14-00:00:00
Used walltime : 13:30:00
Max Mem used : 2.1G (cluster-a005)
[…]

Job Information

This job also peaked at 2.1G of memory used,
and this was on the second node in the set.

jobinfo will show you the full history of a job,
for both completed jobs and jobs in progress:

14

You can see this job only used 13.5 hours of the
14 days requested, and started in 30 minutes.

$ sacct –X -u myusername

JobID JobName Partition Account AllocCPUS State ExitCode
------------ ---------- ---------- ---------- ---------- ---------- --------
123456 myjobname cluster-a myqueue 64 RUNNING 0:0
789012 interacti+ cluster-s+ standby 2 COMPLETED 0:0

Job History

If needed, you can then get more details on each job using jobinfo.

You can get a list of all your jobs, both completed and in progress, using sacct:

15

Deleting Jobs

$ qdel 123456 $ scancel 123456

Use “scancel” instead of “qdel” to cancel or delete jobs:

16

Job Output

It is no longer necessary to look for output on the node with “qpeek”.
Slurm will write output and error messages as they happen in real time.

Slurm will put output and error into the same file in the directory from which you submitted.
You can change this with the “-e” (error file) and “-o” (output file) options.

You can use “%j” (and other variables) to customize these filenames:

$ sbatch –J myjobname –o %x-%u-%j.out myjob.sub
Submitted batch job 123456

$ ls
myjob.sub
myjobname-myusername-123456.out

17

Node Sharing

All kernel security patches are being applied, including Meltdown & Spectre.
This removes the primary reason node sharing was not able to be offered previously.

Therefore, Slurm will allow node sharing on Research Computing clusters.

You can still request exclusive nodes using the “--exclusive” option to sbatch or srun:

An equivalent to “naccesspolicy=singleuser” can still be achieved by using srun in a script.

$ qsub myjob.sub $ sbatch --exclusive myjob.sub

18

Memory Use

Provide a memory estimate for your jobs!
Slurm controls memory just like nodes and cores.

$ sbatch myjob.sub

This job asked for the default one core on one node and the default memory slice.
On a 24-core node with 96GB nodes, if this job exceeds 4GB, it will be killed:

$ sbatch --mem=90G myjob.sub

This job will be able to use up to 90GB of memory per node:

Slurm will assign a default value if you do not.
This default will be proportional to the number of cores you requested on the node.

If you exceed the memory requested per node—even the default, your job will be killed!

19

If you use GPUs, such as on Gilbreth, you will need to request these in your job.

You can do this by giving the total number of GPUs needed (--gpus),
the number per node (--gpus-per-node), or the number per task (--gpus-per-task):

$ sbatch -N 2 --gpus=4 myjob.sub
$ sbatch -N 2 --gpus-per-node=2 myjob.sub
$ sbatch -N 2 --gpus-per-task=2 myjob.sub

Requesting GPUs

$ qsub -l nodes=2:gpus=2 myjob.sub

20

Questions?

Email Help:

Drop-in Coffee Hours:

Friday Talks:

rcac-help@purdue.edu

Monday–Thursday, 2:00pm
Various Locations
rcac.purdue.edu/coffee

Fridays, 2:00pm
Envision Center
rcac.purdue.edu/news/events

21
Acknowledgements to Purdue Research Computing staff:

Stephen Kelley, Lev Gorenstein, Kevin D. Colby

http://purdue.edu
https://www.rcac.purdue.edu/coffee
https://www.rcac.purdue.edu/news/events

