Research Storage 101

Introduction to available RCAC Storage Systems

Geoffrey Lentner Lead Research Data Scientist Rosen Center for Advanced Computing

Rosen Center for Advanced Computing

Training Pre-Survey

Please fill out beforehand to let us know where you are starting from

Overview of Covered Topics

Available Systems

- What is Research Storage?
- What systems are available?
- Where are they available?

Storage Use-Cases

- Why should I use a particular system over another?
- System details
- Strategies

Transfers and Collaboration

- How to migrate data between systems?
- How to share data with collaborators?

alcf.anl.gov

More than just computing

Cyberinfrastructure provided by RCAC

- RCAC is best known for the computing clusters, but where would you put those nice simulation results without storage?
- See <u>rcac.purdue.edu/storage</u> for details
- Interactive helper: <u>rcac.purdue.edu/storage/solutions</u>
- Other services: <u>rcac.purdue.edu/services</u>

TL;DR

Abbreviated Summary of Information

- Dedicated storage systems are specialized and balance capacity, performance, availability, safety, and security
- RCAC provides *multiple* systems the meet combinations of these features for both compute and non-compute users
- Consider your entire data management (life-cycle) and incorporate these difference systems into your workflow
- Consider automation to ensure against data loss

Overview

What do we mean by storage system and how is that different than my local machine?

Research Storage

What do we mean by storage system?

- Persistence of digital information on physical media such as *tape*, spinning *disk*, or *solid-state* devices
- Even after losing power
- Available over network
- Often presented with standard file-system interface

ibm.com

red-gate.com

Features

Not all storage systems are created equal!

Security

Not all applications have the same needs!

- Simulations are large-file write heavy, many writers
- Genomics is many parallel read/write on medium files
- Deep Learning is read-heavy on many tiny files
- *Optimization* doesn't require storage at all

Not all users have the same requirements!

- Landing zone for scientific instrument data
- Shared space for research software development
- Long-term archival storage
- Collaborative documents

ag.purdue.edu

nasa.gov

2

Storage Systems

Specific details for each system.

11

Available Solutions

Available solutions provided by RCAC (or Libraries)

Local (mountable)

- /home
- /depot
- /scratch
- /tmp (cluster only)

Indirect Access

- Fortress (HPSS tape archive)
- Ceph (S3 Object Storage)

Cloud

- Box.com / REED
- GitHub (github.itap.purdue.edu)

Libraries

• PURR – research data repository providing data management, DOI, citation tracking,

Home Directory

Personal directory on Community Clusters

Features

- Small (25G)
- Mild performance
- Cluster-specific (shared between nodes within cluster, but not across clusters), mountable as network drive
- Redundant hardware, never purged, protected by snapshots
- Private to user (cannot be accessed by other members of the research group)

Good For

- Personal configuration files, software installation, scripts, etc.
- Personal data, job files (if small)
- Okay to run jobs against but not good for heavy I/O scenarios
- Medium Long term storage

\$HOME

/home/<user>

Depot Directory

Group directory on Community Clusters

Features

- Large (100GB free), can grow in 1TB increments, \$70 /TB /year
- Reasonable performance
- Mounted on all clusters but also as a network drive
- Redundant hardware, never purged, protected by snapshots
- Shared by group members with finegrained access controls (belongs to PI)
- Can use without cluster purchase!

aturae

PURDUE Rosen Center for UNIVERSITY Advanced Computing

Good For

- Shared configuration files, software installation, scripts, etc.
- Critical research data
- Okay to run jobs against but not good for heavy I/O scenarios
- Medium Long-term storage

/depot/<group>

Scratch Directory

High-performance directory on Community Clusters

Features

- Huge (100+ TB ... per user quota)
- High performance
- Cluster-specific (shared between nodes within cluster, but not across clusters), mountable as network drive
- Internally redundant, but **not recoverable**, regularly purged of older files
- Private to user (cannot be accessed by other members of the research group)

Good For

- Massive / intermediate data I/O
- Perfect for data-intensive jobs
- Not for primary copy of data or software!

\$RCAC_SCRATCH

/scratch/<user>

- NOT for long-term storage
- Beware of regular purging of older files
 - Email notification, purgelist command
 - Don't try to game the system!
 - Just backup to Fortress!

Temporary Directory

Node-local /tmp directory on Community Clusters

Features

- Moderate (200+ DB)
- Good performance
- Zero redundancy, files purged after job ends, no snapshots
- Node-local (each node has own /tmp)
- World-readable (and writable sort of)
- What folks used before /scratch

Good For

- Node-local caching of data and files
- **NOT** for valuable data or software
- **NOT** for long-term storage
- Rarely needed (but <u>priceless</u> when it is). Unless you understand the tradeoffs, consider just using /scratch

/tmp/...

Fortress (tape archive)

IBM HPSS system for long-term storage

Features

- Huge (25PB), free up to a point
- Tape system with robotic arm, disk cache makes writes fast, but reads slow
- Replicated, redundant, never purged
- Accessible from all cluster with specialized command-line tools, as well as network drive for external machines
- All Depot spaces get a /group Fortress directory

/home/<user> /group/<group>

NOT same as cluster /home or /group

Good For

- Backup (archive) of critical research data
- Large files, **NOT for many small files**
- **NOT** for running jobs against
- Long-term storage

Box.com (research folder)

Free cloud drive for research groups at Purdue

Features

- Cloud-based, free
- Login with @purdue.edu credentials to purdue.box.com
- Individuals get up to 1TB space, lab groups get managed folder with unlimited space
- Okay performance for documents
- Redundant, versioning, never purged
- Flexible sharing and collaboration

Good For

• Personal and group-shared documents, where collaboration is important

[L1FR]/<group>

- Data (with 50GB per file limitation)
- **NOT** for sensitive or restricted data (such as NIST SP-800-171, FERPA, HIPAA, etc; see REED folder)
- **NOT** for HPC use (cannot compute against)
- Medium and long-term storage

REED (within Box.com)

Free cloud folder for sensitive or restricted data

Features

- Cloud-based, free
- Login with @purdue.edu credentials to purdue.box.com
- Basically, same as Box.com but with heightened security controls
- Encrypted at rest
- See Box.com features

Good For

- **Sensitive or restricted** data (such as NIST SP-800-171, FERPA, HIPAA, etc
- **NOT** for HPC use (cannot compute against)

[L3]/<group>

• Medium and long-term storage

snapshots != backup!	\$HOME	/tmp	\$RCAC_SCRATCH	/depot/	Fortress (HPSS)	Box folder	REED folder
Capacity	25 GB	150-400 GB	varies by cluster 100 TB and up	100 GB free, then paid in 1 TB increments	unlimited	unlimited, but under 50 GB per file	unlimited, but under 50 GB per file
Resilience to hardware failures	yes	no	yes	yes	yes	yes	yes
Resilience to human errors	yes (snapshots)	no	no	yes (snapshots)	no	some (versioning)	some (versioning)
Subject to purging	no	yes	yes	no	no	no	no
Performance	medium	medium to high	high	medium	slow to very slow	slow to very slow	slow to very slow
Designed for HPC (running jobs off it)	no	no	yes	in moderation	 no (as main I/O) yes (for staging and archiving) 	no	no
Common access within cluster	yes	no	yes	yes	yes (hsi/htar)	possible but kludgy	no
Common access across clusters	no	no	no	yes	yes (hsi/htar)	possible but kludgy	no
Advanced sharing ACLs (past ugo/rwx)	no	no	no	yes	no	yes	yes
Globus endpoint and sharing	yes	no	yes	yes	yes	no	no
Overall good for	Clusters					Non-clusters	

Strategies

Best practices for typical HPC workloads

Strategies and Data Management

RCAC Storage offerings are designed around these scenarios

- Personal code, executables, scripts store in /home or /depot
- Lab-wide code, executables, scripts store in /depot
- Data and results (input / output):
 - produce/analyze store in /scratch
 - retain/archive store in /depot or Fortress
- Lab-wide documents, manuscripts, etc. store in /depot or Box.com
- Regulated data store in REED folder (Box.com)

Strategies and Data Management

Basic recommendations for typical use-cases

- Store primary working copy of all critical /home research data and software in /depot /scratch /tmp /depot External /tmp /tmp /tmp Use /tmp for intense node-local ۲ **Fortress** intermediate I/O as needed
- Personal configuration in /home

- All read/write during jobs to /scratch ٠
- Stage in and out as needed
- Archive to Fortress and offload older data ۲ from /depot when no longer active

•

Strategies and Data Management

Miscellaneous recommendations for Depot vs Fortress archiving

Don't wait to send to Depot or Fortress,

- risky (what if you forget to migrate something)
- why not put an *htar* in your job script?

Fortress is cheap

- keep things in both
- offload older data from /depot when no longer active
- stage in and out as needed

Transfer Tools

How to move data between systems and your own machine.

Migrating Data

How to move data between systems/clusters and external machines?

Command-Line Tools

- Standard UNIX tools: scp, sftp, rsync
- To Fortress: hsi, htar (available for installation)

GUI Tools

- Network drive (SMB)
- WinSCP, MobaXterm on Windows, CyberDuck
- Countless others!

Migrating Data

How to move data between systems/clusters and external machines?

Demo

Standard UNIX tools: scp, sftp, rsync

Using SCP to migrate folder to RCAC Cluster (even on Windows)

C:\Users\Me> scp -r Data\MyData username@negishi.rcac.purdue.edu:/depot/mylab/data/ ...

Using RSYNC to migrate folder to RCAC Cluster (even on Windows)

C:\Users\Me> rsync -avh Data\MyData\ username@negishi.rcac.purdue.edu:/depot/mylab/data/mydata/ ...

Migrating Data

How to move data between systems/clusters and external machines?

User Guides

- Every resource has a user-guide
- Education > User Guides (rcac.purdue.edu/knowledge)

Other Platforms

• Globus (transfer.rcac.purdue.edu | globus.org)

Fortress Tools

Moving data to and from the HPSS archive

Command-line (on clusters)

- hsi is a remote shell-like interface similar to sftp
- htar is like UNIX tar but sends to Fortress

Globus

- Web interface (choose **Purdue Fortress HPSS Archive**)
- Command-line interface with globus command

Moving data with Globus

Command-line (on clusters)

- In every user-guide under "File Storage and Transfer"
- Go to transfer.rcac.purdue.edu
- In the "File Manager" choose source and destination
- Can be scheduled (repeated on a timer!)
- Getting started: docs.globus.org/how-to/get-started
- Can also be used for sharing (Shared Endpoints)

What now?

Visit <u>rcac.purdue.edu/training</u> to see other topics related to research storage

Thank You

Slides and recording: <u>rcac.purdue.edu/training/storage</u>

Send an email to rcac-help@purdue.edu for help and consulting

Coffee hour consultations: rcac.purdue.edu/coffee

Training Post-Survey

Please fill out afterward to give us helpful feedback

