
Unix 201

Purdue University - ITaP

Gladys Andino
Dan Dietz
Jieyu Gao

Lev Gorenstein
Erik Gough

Stephen Harrell
Randy Herban
Steve Kelley
Boyu Zhang
Xiao Zhu

rcac-help@purdue.edu

February 6th and 8th, 2018

Slides available:
https://www.rcac.purdue.edu/training/unix201/

https://www.rcac.purdue.edu/training/unix201/
mailto:rcac-help@purdue.edu

Acknowledgments

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text Acknowledgments
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

2 / 143

Acknowledgments

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

A few additional acknowledgments to the many people who
have helped make this workshop possible.

• The material in this workshop was prepared by the Purdue
University ITaP Research Computing team.

• Special thanks to Eric Adams and Megan Dale for
organizing the workshop sessions.

• We have drawn from documentation provided by the
Purdue Bioinformatics Core used in the UNIX for
Biologists workshop and Next-generation Transcriptome
Analysis Workshop Manual provided by Professor Michael
Gribskov and Professor Esperanza Torres.

3 / 143

Logging In

Acknowledgments

Logging In
Windows
Mac
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Logging In
Windows
Mac
Activity Files

4 / 143

Logging In

Acknowledgments

Logging In
Windows
Mac
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

We will be using the Radon cluster:

• www.rcac.purdue.edu/compute/radon/

• Everyone has been given an account on the cluster for the
duration of the workshop

• If you wish to continue using Radon or other cluster after
the workshop concludes, please make a request under your
advisor or PI’s name:
https://www.rcac.purdue.edu/account/request/

5 / 143

www.rcac.purdue.edu/compute/radon/
https://www.rcac.purdue.edu/account/request/

Acknowledgments

Logging In
Windows
Mac
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Logging In
Windows

Many clients are available for Windows:

• We will use the PuTTY SSH client

• Download PuTTY, no install required

• http://www.chiark.greenend.org.uk/ sgtatham/putty/-
download.html
(or Google search putty)

• Download putty.exe for Intel x86 to your desktop

6 / 143

http://www.chiark.greenend.org.uk

Logging In
Windows

Acknowledgments

Logging In Host Name for Radon is radon.rcac.purdue.edu
Windows
Mac
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

7 / 143

http:radon.rcac.purdue.edu

Logging In
Windows

Acknowledgments

Logging In One tweak: enable system colors in Appearance → Colours
Windows
Mac
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

8 / 143

Logging In
Mac

Acknowledgments

Logging In Connect using:
Windows
Mac ssh myusername@radon.rcac.purdue.edu
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

9 / 143

mailto:myusername@radon.rcac.purdue.edu

Logging In
Mac

Acknowledgments

Logging In Linux also has a built in terminal client, similar to Mac:
Windows
Mac ssh myusername@radon.rcac.purdue.edu
Activity Files

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

10 / 143

mailto:myusername@radon.rcac.purdue.edu

Logging In
Activity Files

Acknowledgments

Logging In We’ll need a few files for some of the hands-on activities
Windows
Mac $ cd
Activity Files

$ cp -r /depot/itap/unix101 .
Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

11 / 143

Text Manipulation

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
wc
cut
sort
uniq
Exercises

12 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
wc

The wc (word count) command simply counts the number of
lines, words, and characters.

General syntax:
wc [OPTIONS] FILENAME

OPTIONS include:

• -l count lines only

• -w count words only

• -c count characters only

13 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
wc

Try this:

$ cd ~/unix101/Shakespeare
$ cat wcdemo.txt
This is just a very simple
text file that we'll use
to demonstrate wc

$ wc wcdemo.txt
3 14 70 wcdemo.txt

This tells us that the file wcdemo.txt has:

• 3 lines

• 14 words

• 70 characters

The we’ll in the file looks like one word to Unix text processing
commands.

14 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
cut

The cut command is used to select sections of each line of a
file or files.

General syntax:
cut [OPTIONS] FILENAME

OPTIONS include:

• -d specify a character instead of TAB for field delimiter

• -f select only these fields; also print any line that contains
no delimiter character

15 / 143

Text Manipulation
cut

Try this:

$ cd ~/unix101/protein

$ head -n 5 1UBQ.pdb
HEADER CHROMOSOMAL PROTEIN 02-JAN-87 1UBQ
TITLE STRUCTURE OF UBIQUITIN REFINED AT 1.8 ANGSTROMS RESOLUTION
COMPND MOL_ID: 1;
COMPND 2 MOLECULE: UBIQUITIN;
COMPND 3 CHAIN: A;

$ cut -f1 -d' ' 1UBQ.pdb | head -n 5
HEADER
TITLE
COMPND
COMPND
COMPND

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

16 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
sort

The sort command is used to sort lines of a text file.

General syntax:
sort [OPTIONS] FILENAME

OPTIONS include:

• -n compare according to numerical value.

• -r reverse the result of comparisons.

• -u return only unique lines.

Notes:

• By default, lines are sorted alphabetically.

• By default, lines starting with numbers are not sorted
numerically. For example, ”8 9 10 11” would be sorted as
”10 11 8 9”.

17 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
sort

Try sort on words and num.txt:

$ cd ~/unix101/Shakespeare
$ sort words_and_num.txt

$ sort
1
11
23
3
5
7
ana
MAX
zoo

$ sort -n
ana
MAX
zoo
1
3
5
7
11
23

$ sort -r
zoo
MAX
ana
7
5
3
23
11
1

Count unique values in first column:

$ cd ~/unix101/protein
$ cut -f1 -d' ' 1UBQ.pdb | sort -u | wc -l
27

18 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
uniq

The uniq command simply takes a sorted file and outputs the
unique lines in it. The input must be sorted first.

General syntax:
uniq [OPTIONS] INPUT

OPTIONS include:

• -c count how many times each line occurred.

• -d only print duplicated lines.

19 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
uniq

Try this:

$ cd ~/unix101/Shakespeare

$ sort HamletWords.txt | uniq -c | head -n 5
36 1
12 2

531 a
3 'a
1 abate

$ sort HamletWords.txt | uniq -c | head -n 5 | sort -n
1 abate
3 'a

12 2
36 1

531 a

20 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
uniq

Try this:

$ cd ~/unix101/Shakespeare

$ sort HamletWords.txt | uniq -u | head -n 5
abate
abatements
abhorred
ability
Able
$ sort HamletWords.txt | uniq -u > uniques
$ cat uniques
$ sort HamletWords.txt | uniq -u | wc -l
3145

21 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
Exercises

Try the following command sequence:

1. Change directory to ~/unix101/data

2. Using a single line command, "ls" all the files in this
directory and sort alphabetically then "ls -l" and sort

3. Find out how many times "TAIR00" and "TAIR10"
appear in the file at genes.txt

4. Using a single line command find out how many unique
descriptions appear for column 3 in the "at genes.txt",
please perform the search in a numerical order

5. Display 1st, 4th and 5th column of the "at genes.txt"
file, sorted in ascending order according to second field

22 / 143

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Text Manipulation
Exercises

Answers:

1. Change directory to ~/unix101/data

$ cd ~/unix101/data
$ pwd
/home/gandino/unix101/data

2. Using a single line command, "ls" all the files in this
directory and sort alphabetically then "ls -l" and sort

$ ls | sort
at_genes.txt
awkdata.txt
grepdata.txt

$ ls -l | sort
-rw-r--r-- 1 gandino entm 215 Feb 3 18:13 awkdata.txt
-rw-r--r-- 1 gandino entm 6677 Feb 3 18:13 at_genes.txt
-rw-r--r-- 1 gandino entm 744 Feb 3 18:13 grepdata.txt

23 / 143

Text Manipulation
Exercises

Answers:

3. Find out how many times "TAIR00" and "TAIR10"
appear in the file at genes.txt

$ cut -f2 at_genes.txt | sort | uniq -c
2 TAIR00
98 TAIR10

adding grep to the line
$ cut -f2 at_genes.txt | sort |grep TAIR |uniq -c
2 TAIR00
98 TAIR10

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

24 / 143

Text Manipulation
Exercises

Answers:

4. Using a single line command find out how many unique
descriptions appear for column 3 in the "at genes.txt",
please perform the search in a numerical order

$ cut -f 3 at_genes.txt | sort | uniq -c | sort -n
1 chromosome
4 gene
5 mRNA
5 protein
6 five_prime_UTR
6 three_prime_UTR
35 CDS
38 exon

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

25 / 143

Text Manipulation
Exercises

Answers:

5. Display 1st, 4th and 5th field of the "at genes.txt" file,
sorted in ascending order according to second field

$ cut -f1,4,5 at_genes.txt | sort -n -k 2 | head -n8
Chr1 1 30427671
Chr1 3631 3759
Chr1 3631 3913
Chr1 3631 5899
Chr1 3631 5899
Chr1 3760 3913
Chr1 3760 5630
Chr1 3996 4276

Acknowledgments

Logging In

Text
Manipulation
wc
cut
sort
uniq
Exercises

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

26 / 143

and Loops

Regular Expressions

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Overview
Simple Example
Character Groups
Quantifiers
Character Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

27 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Overview

Regular expressions, what are they?

• Expression that defines a search pattern

• Can define a search for complex patterns

• Extract matches from text

• grep examples from last workshop very simple version of
regular expression

• Can get way more fancy!

• Deep complex field in computer science

• Well just brush the surface and hit the basics

28 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Overview

For all of these examples we will be searching the quote from
Shakespeare’s Hamlet:

”Though this be madness, yet there is method in it.”

Yes, this is all madness but there is a reason behind it!

29 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Simple Example

Lets say we just want to search for the word ”madness”. Think
of regular expressions as a ”flow chart”. Start at the beginning
of the input string and expression.

Expression:
/madness/

Input:
Though this be madness, yet there is method in it.

m a d n e s s

Result:
Though this be madness, yet there is method in it.

30 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Simple Example

Lets try to search for the word ”is”

Expression:
/is/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

31 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Simple Example

Lets try to refine this

Expression:
/ is /

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

32 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Character Groups

Can define a group of characters with []

Expression:
/ madness /

Better:
/ madness[,.]/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

33 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Character Groups

Another example

Expression:
/ i[sn] /

Input:
Though this be madness, yet there is method in it.

s
” ” i ” ”

n

Result:
Though this be madness, yet there is method in it.

34 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Character Groups

Character groups can specify range of characters:

[A-Za-z]
[0-9]

35 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

We can specify how many of a thing we want with quantifiers:

• Use * to say ”zero or more times”

• Applies to the preceding ”thing” (character, group, etc)

Expression:
/madnes*/

Input:
Though this be madness, yet there is method in it.

s

m a d n e

Result:
Though this be madness, yet there is method in it.

36 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

Another example: bogus character. Remember, zero or more
times.

Expression:
/ madnessq*,/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

37 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

Can also apply to character groups

Expression:
/ madness[,.]*/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

38 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

Use ? to say ”zero or one times”, or ”optional”

Expression:
/ madness?,/
/ madnesss?,/

Input:
Though this be madness, yet there is method in it.

m a d n e s s

,

Result:
Though this be madness, yet there is method in it.

39 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

Use + to say ”one or more times”

Expression:
/ madnes+,/

Input:
Though this be madness, yet there is method in it.

s

m ,a d n e s

Result:
Though this be madness, yet there is method in it.

40 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

Can specify precise counts with {}

Expression:
/s{2}/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

41 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Quantifiers

Can specify precise count ranges, or even open ended ranges

Expression:
/s{1,2}/
/s{1,}/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

42 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Character Classes

Most flavors of regular expressions have the notion of a
character class. They are a special syntax to specify complex
character group ranges.

Word class:
/\w+/ /[A-Za-z0-9]+/

Space class:
/\s+/ /[\t\r\n\f]+/

43 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Character Classes

What if we want the two words before commas?

Expression:
/\w+\s\w+,/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

44 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Character Classes

There is a special character ”.”
It does everything!

Expression:
/madness.*/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

45 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Escaping

What if we to search for one of those special characters?
Escape with \

Expression:
/\./

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

46 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Negating

What if we don’t want to match something? Use ˆ in a
character class

Expression:
/[ˆmad]/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

47 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Anchors

We can anchor an expression in a particular part of a string
ˆ for beginning of line (not to be confused with negation)

Expression:
/ˆ\w+/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

48 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Anchors

$ for end of line

Expression:
/[\w]+[,\.!\?]+$/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

49 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Anchors

Can anchor at word boundaries with \b

Expression:
/\b\w+\b/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

50 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Grouping

Can create match groups with ()
Use | for logical or

Expression:
/\b(is|in|it|be)\b/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

51 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Grouping

Can use quantifiers on groups

Expression:
/(\w+\s?)+/

Input:
Though this be madness, yet there is method in it.

Result:
Though this be madness, yet there is method in it.

52 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Modifiers

There are several modifiers that can be applied to regular
expressions:

• A single letter is specified after the expression
• Vary a bit from implementation to implementation, but
some common ones:

• g (global: returns ALL matches, implied on the previous
examples)

• i (case insensitive: shortcut for specify both cases)
• m (multi-line: the ˆ and $ anchor will match newlines - ie,

enter key)

• Several other modifiers related to multi-line handling

Examples:
/mad/g
/mad/i

53 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
References

www.regular-expressions.info - Great resource for
reference and everything you need to know about regular
expressions.
www.regex101.com - Great tool for testing your regular
expressions in various different environments.

54 / 143

www.regular-expressions.info
www.regex101.com

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

Lets try a few of these, using the live web regex tester

Open the web page: www.regex101.com

Print the sample text, highlight and copy to your clipboard:

$ cd ~/unix101/regex/
$ cat hamlet_sample.txt

55 / 143

www.regex101.com

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

What do these regular expression do:

1. /[Mm]ad/g

2. /mad/gi

3. /\w+/g

4. /\bmad\b/g

5. /\w+./g

6. /[Ww](hat|hy)?/g

56 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

Craft a regular expression to find every word at the end of a
sentence:

This business is well ended.--
My liege, and madam,--to expostulate
What majesty should be, what duty is,
Why day is day, night is night, and time is time.
Were nothing but to waste night, day, and time.
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief:--your noble son is mad:
Mad call I it; for to define true madness,
What is’t but to be nothing else but mad?
But let that go.

57 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

Craft a regular expression to find every word at the beginning
of a line, that starts with a W:

This business is well ended.--
My liege, and madam,--to expostulate
What majesty should be, what duty is,
Why day is day, night is night, and time is time.
Were nothing but to waste night, day, and time.
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief:--your noble son is mad:
Mad call I it; for to define true madness,
What is’t but to be nothing else but mad?
But let that go.

58 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

Craft a regular expression to find a two letter word followed by
a 3 letter word:

This business is well ended.--
My liege, and madam,--to expostulate
What majesty should be, what duty is,
Why day is day, night is night, and time is time.
Were nothing but to waste night, day, and time.
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief:--your noble son is mad:
Mad call I it; for to define true madness,
What is’t but to be nothing else but mad?
But let that go.

59 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

/\w+[.?]/g
/[A-Za-z]+[.?]/g

This business is well ended.--
My liege, and madam,--to expostulate
What majesty should be, what duty is,
Why day is day, night is night, and time is time.
Were nothing but to waste night, day, and time.
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief:--your noble son is mad:
Mad call I it; for to define true madness,
What is’t but to be nothing else but mad?
But let that go.

60 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

/ˆW\w+/gm
/(ˆ|\n)W\w+/g

This business is well ended.--
My liege, and madam,--to expostulate
What majesty should be, what duty is,
Why day is day, night is night, and time is time.
Were nothing but to waste night, day, and time.
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief:--your noble son is mad:
Mad call I it; for to define true madness,
What is’t but to be nothing else but mad?
But let that go.

61 / 143

and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions
Overview
Simple Example
Character
Groups
Quantifiers
Character
Classes
Escaping
Negating
Anchors
Grouping
Modifiers
References
Exercises

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals

Regular Expressions
Exercises

/\b\w{2}\s\w{3}\b/g
/\[A-Za-z]{2}\s[A-Za-z]{3}\b/g

This business is well ended.--
My liege, and madam,--to expostulate
What majesty should be, what duty is,
Why day is day, night is night, and time is time.
Were nothing but to waste night, day, and time.
Therefore, since brevity is the soul of wit,
And tediousness the limbs and outward flourishes,
I will be brief:--your noble son is mad:
Mad call I it; for to define true madness,
What is’t but to be nothing else but mad?
But let that go.

62 / 143

Advanced Text Manipulation

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep
awk
sed

63 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

grep (globally search for regular expression and print)

General syntax:
grep [OPTIONS] PATTERN FILENAME

Typical scenarios:

• Extract specific line(s) from the simulation output

• Strip header/footer/comments lines from an input file

• Select files of interest

• Count number of occurrences of a pattern in a file

64 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

Useful options:
Option Meaning
-v inverts the match (finds lines NOT containing pattern)
--color colors the matched text for easy visualization
-F interprets the pattern as literal string
-E interprets the pattern as an extended regular

expressions (more powerful, friendlier syntax)
-H, -h print, don’t print the matched filename
-i ignore case for pattern matching
-l lists the file names containing the pattern
-n prints the line number containing the pattern
-c counts the number of matches
-w forces the pattern to match an entire word
-x forces patterns to match the whole line

65 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

Move to Shakespeare directory:

$ cd ~/unix101/Shakespeare/

Try these grep commands:

1. Search for the given string in a single file
grep Scene Hamlet.txt

2. Check for the given string in multiple files
grep Scene *.txt

3. Highlight the search
grep --color Scene Hamlet.txt

4. Case insensitive search
grep -i Scene Hamlet.txt

5. Count the number of matches
grep -c Scene Hamlet.txt

66 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

More examples:

6. Show line number while displaying the output
grep -n Scene Hamlet.txt

7. Display only the file names which matches the given
pattern
grep -l Scene *.txt

8. Search in all files recursively
grep -r Scene *

9. Check for full words, not for sub-strings
grep -w all *.txt

10. Invert match
grep -v a Hamlet.txt

67 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

Try these examples yourself using the Lear.txt file.

1. Find the lines that contain the word Madam and highlight
the word.

2. Find the lines that contain the phrase good sir in all cases.

3. List the line number of the lines that contain the exact
word sleep.

4. Count the number of the lines that do not contain the
word thy.

68 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

Regular expression examples using the system file
/usr/share/dict/words. This is a file containing a list of
dictionary words and is installed on all Linux systems.

1. Beginning of line (ˆ) or end of line ($)
$ grep -w "^hall" /usr/share/dict/words

2. Character group ([0-9][a-z][A-Z])
$ grep "gr[ae]y" /usr/share/dict/words
$ grep "qa[^u]" /usr/share/dict/words
$ grep "[0-9]th" /usr/share/dict/words
$ grep "[0-9][0-9]th" /usr/share/dict/words

69 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

More regular expression examples:
3. Wildcards (use the ”.” for a single character match)

$ grep "U.S" /usr/share/dict/words
$ grep "U\.S" /usr/share/dict/words

Escaping the dot (\)
4. Quantifiers (?/*/+/{N}), grouping

$ egrep "^a.t$" /usr/share/dict/words
$ egrep "^a.?t$" /usr/share/dict/words
$ egrep "^a.*t$" /usr/share/dict/words
$ egrep "e{3}" /usr/share/dict/words
$ egrep "a{2,3}" /usr/share/dict/words
$ egrep "[ae]{2}" /usr/share/dict/words

70 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

grep OR
$ egrep "blue|green" /usr/share/dict/words

grep AND
$ grep blue /usr/share/dict/words | grep green

grep vs egrep

egrep is the same as grep -E. It interprets PATTERN as an
extended regular expression.

71 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

grep practice:

What would you expect to grep?
$ egrep "^[0-9]+-\w+$" /usr/share/dict/words

$ grep -i "^[^aeiou]" /usr/share/dict/words

Select all lines starting with a lower case letter and ending in
upper case letter in /usr/share/dict/words.

Find the number of empty lines in the file Hamlet.txt?

72 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
grep

Change directories:

$ cd ~/unix101/data/

Working with the grepdata.txt file:

1. Print all lines that contain CA in either uppercase or
lowercase.

2. Print all lines that contain an email address (they have an
@ in them), preceded by the line number.

3. Print all lines that do not contain the word Sep.
(including the period).

4. Print all lines that contain the word de as a whole word.
5. Print all lines that contain a phone number with an

extension (the letter x or X followed by four digits).
6. Print all lines that begin with 3 digits followed by a blank.
7. Print all lines that do not begin with a capital S.

73 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

awk

A simple structured programming language. Powerful, yet
simple and convenient enough for processing text organized in
lines and columns.

74 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Usage:
awk [OPTION] '/PATTERN/ ACTIONS' FILENAME
awk [OPTION] -f PROGRAMFILE FILENAME

• PATTERN - a regular expression.

• ACTIONS - statement(s) to be performed.

• several patterns and actions are possible in awk.

• FILENAME - input file.

Some special cases:

• No search pattern means ”apply to all lines”

• No actions means ”apply default action” (print the line)

• An explicitly empty action ('{}') means ”do nothing”

75 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Steps:

1. Read a line from the file into a variable named $0.
2. Split up the fields. The first field is placed in variable $1,

the second in $2, and so forth. Use -F to tell what the
delimiter is. If you don’t give a delimiter, then fields are
delimited by whitespace (space, tab).

3. Do whatever command or commands are in the braces ({
and })

4. Lather, rinse, repeat.

76 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and

Advanced Text Manipulation
awk

Example:

Adams, Ansel;photographer;1902-02-20;1984-04-22
Asimov, Isaac;author;1920-01-02;1992-04-06
Janney, Allison;actress;1959-11-19
La Rue, Lash;actor;1917-06-15;1996-05-21
Sagan, Carl;astronomer/writer;1934-11-09;1996-12-20
Sharif, Omar;actor;1932-04-10

By default fields are separated by whitespace:
$1 $2 $3

Loops Adams, Ansel;photographer;1902-02-20;1984-04-22
Asimov, Isaac;author;1920-01-02;1992-04-06

Bash Janney, Allison;actress;1959-11-19
Programming La Rue, Lash;actor;1917-06-15;1996-05-21

Sagan, Carl;astronomer/writer;1934-11-09;1996-12-20
Conditionals

Sharif, Omar;actor;1932-04-10
and Loops

77 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Example:

Adams, Ansel;photographer;1902-02-20;1984-04-22
Asimov, Isaac;author;1920-01-02;1992-04-06
Janney, Allison;actress;1959-11-19
La Rue, Lash;actor;1917-06-15;1996-05-21
Sagan, Carl;astronomer/writer;1934-11-09;1996-12-20
Sharif, Omar;actor;1932-04-10

Use -F';' to get a smarter separation of fields:

$1 $2 $3 $4
Adams, Ansel photographer 1902-02-20 1984-04-22
Asimov, Isaac author 1920-01-02 1992-04-06
Janney, Allison actress 1959-11-19
La Rue, Lash actor 1917-06-15 1996-05-21
Sagan, Carl astronomer/writer 1934-11-09 1996-12-20
Sharif, Omar actor 1932-04-10

78 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Example:

Adams, Ansel;photographer;1902-02-20;1984-04-22
Asimov, Isaac;author;1920-01-02;1992-04-06
Janney, Allison;actress;1959-11-19
La Rue, Lash;actor;1917-06-15;1996-05-21
Sagan, Carl;astronomer/writer;1934-11-09;1996-12-20
Sharif, Omar;actor;1932-04-10

Simple printing
awk -F';' '{print $1, "was born", $3 "."}' people.txt

NF - containing # of the field in the current line
awk -F';' '{print $NF}' people.txt

awk -F';' 'NF < 4 {print $1 " is alive and was born in " $3}'

people.txt

NR - the row number being currently processed
79 / 143 awk -F';' 'NR < 3 {print $1}' people.txt

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Example:

Adams, Ansel;photographer;1902-02-20;1984-04-22
Asimov, Isaac;author;1920-01-02;1992-04-06
Janney, Allison;actress;1959-11-19
La Rue, Lash;actor;1917-06-15;1996-05-21
Sagan, Carl;astronomer/writer;1934-11-09;1996-12-20
Sharif, Omar;actor;1932-04-10

Matching pattern
awk -F';' '/Adams/{print $1, "was born", $3 "."}' people.txt

awk -F';' '/^A.*s/{print $1, "was born", $3 "."}' people.txt

Matching pattern in a field
awk -F';' '$3 ~ /193[0-9]/ {print $1, "was born", $3 "."}'

people.txt

80 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Awk variables

• It’s a programming language, of course it has them!

• They can be used in either PATTERN or ACTION parts of
the program.

• You can define your own.

• Some are predefined for you and can be used to change
program behavior (and some even change dynamically
with each read line).

81 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Awk variables
FS Field Separator (default ANY WHITESPACE)
OFS Output Field Separator (default SPACE)
NF Number of Fields in the current input record (line)
NR Number of Records (lines) in the input
FNR File Number of Records (in current file as

opposed to all input)
RS Record Separator (default NEWLINE)
ORS Output Record Separator (default NEWLINE)
$N Nth field of the line where N can be any number

(eg. $0 = entire line, $1 = first field,
$2 = second field and so on).
Expressions allowed: $(NF-3)

IGNORECASE If not zero, regexp matching is case insensitive
(default =0)

82 / 143

w/above!)

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Handy awk one-liners

awk 'NF>0 {print}' FILE Deletes all blank lines (by the book)
awk 'NF>0' FILE Deletes all blank lines (simpler)
awk 'NF' FILE Deletes all blank lines (simplest)
awk 'NF>4' FILE Prints all lines with more than 4 fields
awk '$NF>4' FILE Prints all lines with value of the last field >4 (note the difference
awk 'END{print $NF}' FILE Prints value of the last field of the last line
awk 'NR==25,NR==100' FILE Prints lines between 25 and 100
awk 'END{print}' FILE Prints the last line of the file
awk '$5==”abc123”' FILE Prints lines which have ’abc123’ in 5th field
awk 'BEGIN{ORS=”\n\n”}; print' FILE Double spaces the file
awk '{print $2,$1}' FILE Prints only 2nd and 1st fields (swapping columns)
awk '{$2=””; print}' FILE Prints the file without 2nd column
awk '/REGEX/' FILE Prints all the lines having REGEX
awk '!/REGEX/' FILE Prints all the lines not having the REGEX
awk '/AAA|BBB|CCC/' FILE Prints all the lines having either AAA, BBB or CCC
awk 'length>50' FILE Prints line having more than 50 characters
awk '/POINTA/,/POINTB/' FILE Prints section of file between POINTA and POINTB

83 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Change directories and look at file:

$ cd ~/unix101/data/
$ cat awkdata.txt

1. Print every line from the file.

2. Print the fields that contain the name and salary.

3. Print the list of employees who has employee id greater
than 200.

4. Print the list of employees in Technology department.

84 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
awk

Change directories and look at file:

$ cd ~/unix101/data/
$ cat awkdata.txt

Print a report as below

Name Designation Department
Thomas Manager Sales
Jason Developer Technology
Sanjay Sysadmin Technology
Nisha Manager Marketing
Randy DBA Technology
Report Generated

Salary
$5,000
$5,500
$7,000
$9,500
$6,000

85 / 143

Advanced Text Manipulation
sed

Acknowledgments

Logging In sed - (stream editor)
Text • Reads one or more text files line by line, makes changes
Manipulation

according to editing script, and writes the results to Regular
Expressions standard output.
Advanced
Text • Editing script can be defined to selectively
Manipulation
grep add/delete/modify fragments of text
awk
sed (paragraph/lines/words/characters) as needed.
Redirects and
Loops • Most commonly used to substitute (’s’) text matching a
Bash pattern:
Programming sed [OPTIONS] 's/REGEXP/REPLACEMENT/FLAGS' FILENAME
Conditionals sed [OPTIONS] 'ANCHOR s/REGEXP/REPLACEMENT/FLAGS' FILENAME
and Loops

(ANCHOR can be another regexp or some line numbers)

86 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
sed

Change directories:

$ cd ~/unix101/Shakespeare/

sed Examples:

sed 's/SCENE/Scene/' Othello.txt
sed '33 s/SCENE/Scene/' Othello.txt
sed '/Castle/ s/SCENE/scene/' Othello.txt

See handout for more practical examples and links.

87 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation
grep
awk
sed

Redirects and
Loops

Bash
Programming

Conditionals
and Loops

Advanced Text Manipulation
sed

Exercises:

1. What is the output on your screen of this command line:
echo hi | sed -e 's/HI/HO/'
a. ho
b. hi
c. HO
d. no output on screen
e. HI

2. Which sed command finds every line that ends in the
digits 123 and removes the first occurrence of the string
xyzzy from those lines:
a. /[0-9][0-9][0-9]$/s/xyzzy//
b. /xyzzy.*123$/123/
c. /123$/s/xyzzy//
d. s/^.*xyzzy. ∗ 123$/\1/
e. /xyzzy/s/[0-9][0-9][0-9]\$//

88 / 143

Redirects and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects
Pipes
For Loops

89 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

With every UNIX program three standard streams are created

• Standard output (stdout):
Normal output, printed to your screen

• Standard error (stderr):
Error messages, printed to your screen

• Standard input (stdin):
File for command to read in as input

Change directories:

$ cd ~/unix101/redirects/

90 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Using redirects and pipelines, we can redirect these streams
elsewhere such as to a file or another command.

Why?

• Your code or program spams your screen with a ton of
text and output. Rather than scrolling your screen for
hours, we can send output to a file. With the output in a
file, we can use one of the tools (or many others) we have
talked about so far to search for interesting lines.

• Send output of one command to another one for further
processing or refinement.

91 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Change output:

COMMAND > FILE

Take output of a command and put it into FILE, rather than
print it on your screen. This overwrites FILE if it is already
present, so be careful!

Example:

$ ls -l > out.log
$ cat out.log
total 0
-rw-r--r-- 1 ddietz rcacsupp 16 Jan 24 13:07 file1.txt

92 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Change input:

COMMAND < FILE

Take contents of FILE and feed it into a command. Some
commands, such as tr, cannot take a file name (like the
commands we have seen so far) as an argument so you must
feed it in by changing its standard input.

Example:

$ cat file1.txt
This is a file.
$ tr i u < file1.txt
Thus us a fule.

93 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Change input and output:

COMMAND < FILE > OTHERFILE

Example:

$ tr i u < file1.txt > out.log
$ cat out.log
Thus us a fule.

94 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Append to file rather than wipe out original:

COMMAND >> FILE

Example:

$ ls >> out.log
$ cat out.log
total 0
-rw-r--r-- 1 ddietz rcacsupp 16 Jan 24 13:07 file1.txt
total 0
-rw-r--r-- 1 ddietz rcacsupp 16 Jan 24 13:07 file1.txt

95 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Change standard error with 2>

$ ls -l notafile 2> error.log
$ cat error.log
ls: cannot access notafile: No such file or directory

Here notafile is a file that does not exist. This is done on
purpose to force an error message so that redirection of
standard error can be demonstrated. In real life, you probably
aren’t going to have errors on purpose, but should they occur
you may want the error messages saved into a separate file.

96 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Let’s combine them:

$ ls notafile file1.txt >& out.log
$ cat out.log
ls: cannot access notafile: No such file or directory
file1.txt

We force an error by purposely requesting a non-existent file in
addition to standard output with a real file. This generates two
separate streams that we can direct into a single file (instead of
printing both to your screen).

If your program generates a ton of output, it may be helpful to
put it into a file so that is easy to search through later.

97 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

Divide and conquer:

$ ls notafile file1.txt 2> error.log > out.log
$ cat error.log
ls: cannot access notafile: No such file or directory
$ cat out.log
file1.txt

We force an error by purposely requesting a non-existent file in
addition to standard output with a real file. This generates two
separate streams that we can direct into two separate files
(instead of printing both to your screen).

98 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Redirects

We can throw away errors with /dev/null

ls -l * 2>/dev/null

We can throw away everything too

ls -l * >& /dev/null

/dev/null is a special file on UNIX systems. Anything written is
thrown away (permanently). Perhaps your program generates a
ton of useless output. You could send the standard output into
the garbage, while keeping only the error messages.

99 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Pipes

We can tell one to go into the same place as another:
ls -l notafile file1.txt 2>&1 |less

Pipes will only send standard output into the next program.
Normally any messages to standard error will be printed on
your screen. By combining error into out, we can pipe error
messages into the next program instead of your screen.

100 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
Pipes

What if we have a chatty program, want to save the output in
a file for later viewing, but also want to monitor the progress of
the command in real-time? A special command called tee can
accomplish this.

$ ls notafile file1.txt 2>&1 | tee out.log
ls: cannot access notafile: No such file or directory
file1.txt
$ cat out.log
ls: cannot access notafile: No such file or directory
file1.txt

101 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
For Loops

We’ll discuss for loops more in bash programming, but they are
useful even on the command line

$ for i in "one" "two" "three"; do echo $i; done
one
two
three

102 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops
Redirects
Pipes
For Loops

Bash
Programming

Conditionals
and Loops

Redirects and Loops
For Loops

Command substitution (we’ll discuss more later on):

$ cd ~/unix101/redirects/
$ mkdir backup
$ ls *.*
error.log file1.txt out.log
$ for i in `ls *.*`; do cp "$i" backup/; done

This example takes each item from ls *.*, and runs a
command(s) on each file. Here we are copying each file into
the backup directory. Of course, this is very simplistic (you
could just do cp *.* backup/ but imagine you want to do
more complex operations on a list of files, and you don’t want
to type the same command a bunch of times.

Be very cautious of files with spaces in the name (don’t do it!)
as for iterates by spaces (remember awk).

103 / 143

Bash Programming

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Shell basics
Shell Types
Variables
String Operations
Arithmetic Operations
Command Substitution
Quoting Characters

104 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Shell basics

The first line of the shell script defines the program that
interprets the script

#!/bin/bash

End of a command using ; or a newline

#!/bin/bash
ls; pwd;
cd $HOME
ls

105 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Shell basics

Make the script FILENAME executable

$ chmod +x FILENAME

Execute a shell script script.sh in dir /path/to

$ /path/to/script.sh

Execute a shell script script.sh in your current working directory

$./script.sh

106 / 143

http:script.sh
http:path/to/script.sh
http:script.sh

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Shell basics

Exercise:

• Change to directory:

$ cd ~/unix101/scripts

• Check the permission of the script

$ ls -l script1
$ -rwxr-xr-x 1 gandino student 72 Feb 15 2016 script1
should have x!

• Try different ways to run the scripts

$ $HOME/unix101/scripts/script1
$./script1

107 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Shell Types

UNIX/Linux systems offer a variety of shell types

• bash (Bourne Again shell)

• csh or C Shell

• tcsh or TENEX C Shell

• sh or Bourne Shell

Note: different shells have different syntax to do the same
thing!

$ echo $SHELL
/usr/local/bin/bash

108 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Variables may be of different value types:

• Bash does not force variables to have types

• Operations on variables depend on the content of the
variables

• Depending on contents, variables are of 4 types:
• String
• Integer
• Constant
• Array

109 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Create variable named VARNAME and set equal to value, and
then print back the value of the variable:

$ VARNAME="value"
$ echo $VARNAME

Dereference the variable VARNAME by placing a $ in front

• No spaces around the = sign

• Variable names

• Case sensitive
• A combination of letters, numbers, and underscores; names

starting with numbers are invalid
• Avoid using reserved words: if, else, fi, for
• Avoid using environment variables: PATH, SHELL ... (see
printenv command)

110 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Variables in Bash have scope, or variables in Bash are only
accessible from specific environments:

• The variable created in your shell is only available to the
current shell (the one you are typing in, and only the one
you are typing in)

• Child processes of the current shell (such as a script you
are trying execute) will not see this variable

• To pass variables to subshells or scripts, we need to export
variables:

$ export VARNAME="value"

111 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Exercises:

• Check your current shell type and make sure it is bash

$ echo $SHELL

• Create a integer variable

$ INT1=765
$ echo $INT1

• Create a string variable

$ STR1="Hello World"
$ echo $STR1

112 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Arrays allow you to store a list of values inside a single variable:

• An array variable contains multiple values, index starts
from 0

• Array declaration

$ declare -a MYARRAY
$ MYARRAY=(value1 value2)

• declare -a MYARRAY declares MYARRAY as an array
variable, with no initial values

• MYARRAY=(value1 value2) assigns values to the array

113 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Once defined, elements of an array can be accessed in several
ways:

• Array elements reference

$ MYARRAY=(value1 value2 value3)
$ echo ${MYARRAY[*]}
$ echo ${MYARRAY[0]}
$ echo ${MYARRAY}

• ${MYARRAY[*]} refers to the whole array MYARRAY

• ${MYARRAY[0]} refers to the first element of MYARRAY

• ${MYARRAY} also refers to the first element of MYARRAY

114 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Individual elements of an array can be redefined at any time:

• Assign value to an array element

$ MYARRAY=(value1 value2 value3)
$ echo ${MYARRAY[0]}
value1
$ MYARRAY[0]=newval1
$ echo ${MYARRAY[0]}
newval1

• MYARRAY[index]=val assigns val to the element
MYARRAY[index]. val can be of any type such as a string
or number.

115 / 143

Bash Programming
Variables

Exercise; create an array:
• Name: ARRAY1

• 1st element is ”hello”

• 2nd element is 10

• 3rd element is 48

• 4th element is 20

• 5th element is ”world”

#Way 1:
$ declare -a ARRAY1
$ ARRAY1[0]="hello"
$ ARRAY1[1]=10
...
$ echo ${ARRAY1[*]}

#Way 2:
$ ARRAY1=("hello" 10 48 20 "world")
$ echo ${ARRAY1[*]}

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

116 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

There are some variables that Bash predefines for you:

• These variables can only be referenced
• $0, $1, $2 ...: positional parameters

• $0: the name of the executable as it was called
• $1: first command line argument that you gave to the

executable
• $2: second command line argument
• $#: number of command line parameters

• Example: positional.sh

117 / 143

http:positional.sh

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Variables

Exercise:

$ cat positional.sh
#!/bin/bash

positional.sh
This script reads first 3 positional parameters

and prints them out.

echo
echo "Name of the script being executed is $0"
echo
echo "$1 is the first positional parameter, \$1"
echo "$2 is the second positional parameter, \$2"
echo "$3 is the thrid positional parameter, \$3"
echo
echo "The total number of positional parameters is

$#."

• Execute positional.sh

• Execute positional.sh:
./positional.sh hello world

• Execute positional.sh:
./positional.sh "hello world"

• Execute positional.sh with 3
parameters
./positional.sh "hello world 10"
20 30

• Execute positional.sh with 5
parameters
./positional.sh hello world 10
20 30

• Bonus: echo $0

118 / 143

http:positional.sh
http:positional.sh
http:positional.sh
http:positional.sh
http:positional.sh

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
String Operations

Length of a variable ${#VAR}
$ echo $SHELL
/usr/local/bin/bash
$ echo ${#SHELL}
19

String concatenation STR="$STR1$STR2"

$ str1="Hello"
$ str2="World"
$ str="$str1 $str2"
$ echo "$str"
Hello World

119 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
String Operations

Substring extraction ${VAR:OFFSET:LENGTH}
• OFFSET: the index of the character the substring starts
from

• OFFSET starts from 0

• LENGTH: the number of characters to keep in the substring

• When LENGTH is omitted, the reminder of the string is
taken

$ MYSTRING="thisisaverylongname"
$ echo ${MYSTRING:4}
isaverylongname

$ echo ${MYSTRING:6:5}
avery

120 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
String Operations

Exercise; create a string variable:
• Name: STR
• Value: ”Welcome to Research Computing”

Create a substring of the STR variable:
• Name: SUB1
• Value: ”to Research”

Create a substring of STR variable:
• Name: SUB2:
• Value: ”Com”

$ STR="Welcome to Research Computing"
$ echo $STR
Welcome to Research Computing
$ SUB1=${STR:8:11}
to Research
$ SUB2=${STR:20:3}
Com

121 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Arithmetic Operations

Bash allows for simple integer arithmetic:

((EXPRESSION)) or let VAR=EXPRESSION
Spaces around EXPRESSION do not matter. Dereferencing
variables in EXPRESSION is optional. There is no overflow
checking, except for division by 0.

$ x=1
$ y=$((x+2))
$ echo $y
3

$ y=$(($x+2))
$ echo $y
3

$ let y=$x+2
$ echo $y
3

122 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Arithmetic Operations

Exercise:

• Create a variable named X and assign the value 10.

• Create a variable named Y and assign the value 3*X with (()).

• Create a variable named Z and assign the value as X*Y with let.

• Create a variable named W and assign the value as X+Z.

123 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Arithmetic Operations

Exercise:

• Create a variable named X and assign the value 10.

• Create a variable named Y and assign the value 3*X with (()).

• Create a variable named Z and assign the value as X*Y with let.

• Create a variable named W and assign the value as X+Z.

Answers:

$ X=10
$ Y=$((X*3))
$ echo $Y
30
$ let Z=$X*$Y
$ echo $Z
300
$ W=$(($X+$Z))
$ echo $W
310

124 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Command Substitution

Command substitution:

• Commands between backticks `` are replaced by the
output of the command, minus the trailing newline
characters

• variable=$(command), saving the output of a command
into a variable

$ date
Wed Feb 24 14:11:45 EST 2016

$ x=`date`
$ echo $x
Wed Feb 24 14:12:10 EST 2016

$ x=$(date)
$ echo $x
Wed Feb 24 14:12:25 EST 2016

125 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Quoting Characters

Escape characters remove the special meaning of a single
character that follows. Bash uses a non-quoted backslash \ as
the escape character.

Example: using \ to remove the special meaning of $
(dereference the variable year):

$ year=2016
$ echo $year
2016

$ echo \$year
$year

126 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Quoting Characters

Double quotes ” ” preserve the literal value of each character
enclosed with the quotes, except for $, backticks ` `, and
backslash \
A ” may occur between ” ”, by preceding it with \
$ and ` ` retain their special meaning within double quotes

$ year=2016
$ echo "$year"
2016

$ echo `date`
Wed Feb 24 14:11:45 EST 2016
$ echo "`date`"
Wed Feb 24 14:12:10 EST 2016

$ echo "\\"
\

127 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Quoting Characters

Single quotes ’ ’ preserve the literal value of each character
enclosed with the quotes.
A ’ may not occur between ’ ’, even when preceded by \
$ year=2016
$ echo $year
$ 2016

$ echo '$year'
$year

128 / 143

Bash Programming
Quoting Characters

Exercise:

• Test the difference of single and double quotes in your
terminal

$ STR1="Hello World"
$ LSTR1="MORE $STR1"
$ LSTR2='MORE $STR1'
$ echo $LSTR1
MORE Hello World
$ echo "$LSTR1"
MORE Hello World
$ echo "$LSTR2"
MORE $STR1

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

129 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming
Shell basics
Shell Types
Variables
String
Operations
Arithmetic
Operations
Command
Substitution
Quoting
Characters

Conditionals
and Loops

Bash Programming
Quoting Characters

Exercise:

• Test command substitution code in your terminal

$ SERVERNAME=$(hostname)
$ echo "Running command on $SERVERNAME...."
$ right_now=$(date +"%x %r %Z")
$ time_stamp="Updated on $right_now by $USER"
$ echo "$time_stamp"

• Use backticks in the command substitution code

$ SERVERNAME=`hostname`
$ echo "Running command on $SERVERNAME...."
$ right_now=`date +"%x %r %Z"`
$ time_stamp="Updated on $right_now by $USER"
$ echo "$time_stamp"

130 / 143

Conditionals and Loops

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
test [] [[]]
if; then; elif; else; fi
For loops (slight return)
break continue

131 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
test [] [[]]

Is the expression True or False?

String Comparisons
[[-n string]] Is string non-zero length
[[-z string]] Is string zero length
[[string1 = string2]] Equal
[[string1 != string2]] Not equal
[[string1 > string2]] Sorts after
[[string1 < string2]] Sorts before

132 / 143

Conditionals and Loops
test [] [[]]

Acknowledgments

Logging In Is the expression True or False?
Text
Manipulation

Numeric Comparisons – Note the operator syntax!
Regular
Expressions [[int1 -eq int2]] Equal
Advanced [[int1 -ne int2]] Not equal
Text
Manipulation [[int1 -lt int2]] Less than
Redirects and [[int1 -gt int2]] Greater than
Loops

[[int1 -le int2]] Less than or equal
Bash
Programming [[int1 -ge int2]] Greater than or equal
Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

133 / 143

Conditionals and Loops
test [] [[]]

Acknowledgments

Logging In Is the expression True or False?
Text
Manipulation

File and directory conditions
Regular
Expressions [[-d string]] Is string the name of a directory?
Advanced [[-f string]] Is string the name of a file?
Text
Manipulation [[-r string]] Is string the name of a readable file?
Redirects and [[-w string]] Is string the name of a writable file?
Loops

[[-x string]] Is string the name of an executable file?
Bash
Programming [[-s string]] Is string a file with non-zero size?
Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

134 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
if; then; elif; else; fi

if condition; then do-this; fi
if condition; then do-this; else do-that;fi

if condition
then do-this

elif other-condition
then do-that

else do-other-thing
fi

135 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
if; then; elif; else; fi

Condition can be result of [[]]

#!/bin/bash
if [[3 -eq 4]]
then

echo "Not Really"
else

echo "Math does work"
fi

Condition can also be success or failure of program.

#!/bin/bash
if grep -q "Laertes" Hamlet.txt
then

echo "yes it's there"
else

echo "no Laertes in sight"
fi

136 / 143

Conditionals and Loops
For loops (slight return)

#!/bin/bash

for arg in list
do
Commands ...

More commands ...
if [[$MOOD = "I feel like it"]]
then

Compound commands ...
fi

And other stuff ...
done

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

137 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
For loops (slight return)

Examples:

#!/bin/bash
for name in "Bill" "Joe" "Mary"
do

echo "Hi there, $name"
done

138 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
For loops (slight return)

Examples:
List can be a variable:

#!/bin/bash

FILES="Hamlet.txt Lear.txt"
SEARCH="Laertes"

for filename in $FILES
do

if grep -q $SEARCH $filename
then

echo "Found \"$SEARCH\" in $filename"
else

echo "No \"$SEARCH\" in $filename"
fi

done

139 / 143

Conditionals and Loops
For loops (slight return)

Examples:
List can be result of command – THIS IS USEFUL!!

#!/bin/bash

SEARCH="Laertes"

for filename in $(ls *.txt)
do

if grep -q "$SEARCH" $filename
then

echo "Found \"$SEARCH\" in $filename"
else

echo "No \"$SEARCH\" in $filename"
fi

done

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

140 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
break continue

break completely quits a loop.

$ for i in {1..25};do if [[$i -eq 12]];then break;fi;echo $i;done

With better style:

$ for i in {1..25}; do
> if [[$i -eq 12]]
> then break
> fi
> echo $i
> done

Notice that semicolon in the second example? Why is it there?

141 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
break continue

continue skips to the next item.

#!/bin/bash

for i in {1..25}
do

if [[$i -eq 12]]
then continue
fi

echo $i
done

142 / 143

Acknowledgments

Logging In

Text
Manipulation

Regular
Expressions

Advanced
Text
Manipulation

Redirects and
Loops

Bash
Programming

Conditionals
and Loops
test [] [[]]
if; then; elif;
else; fi
For loops (slight
return)
break continue

Conditionals and Loops
break continue

Exercises: change directory to the Shakespeare directory

1. Print only the names of files whose name (including any
extension) is longer than 8 characters.

2. Print only the names of files which are longer than 1000
bytes.

Extra credit Take-Home (there is no credit, sorry)
((man and man -k are your friends))

• Find the directory in your $PATH variable that contains
the largest number of files, and print the directory name
and number of files it contains.

143 / 143

	Acknowledgments
	Logging In
	Windows
	Mac
	Activity Files

	Text Manipulation
	wc
	cut
	sort
	uniq
	Exercises

	Regular Expressions
	Overview
	Simple Example
	Character Groups
	Quantifiers
	Character Classes
	Escaping
	Negating
	Anchors
	Grouping
	Modifiers
	References
	Exercises

	Advanced Text Manipulation
	grep
	awk
	sed

	Redirects and Loops
	Redirects
	Pipes
	For Loops

	Bash Programming
	Shell basics
	Shell Types
	Variables
	String Operations
	Arithmetic Operations
	Command Substitution
	Quoting Characters

	Conditionals and Loops
	test [] [[]]
	if; then; elif; else; fi
	For loops (slight return)
	break continue

