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Hardware Complexity Driving Compiler Opportunity

Hardware complexity

▪ Modern compute complexity

▪ Accelerator compute complexity

▪ Domain specific compute complexity

Need for innovation in modern compilers and programming languages

▪ Hardware and accelerator abstractions

▪ Domain specific programming models

▪ Quality, reliability, scalability and performance
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LLVM Powering the Next Generation of 
Compilers
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Motivation

Why did we re-design our compilers leveraging LLVM?
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Leveraging & Contributing to LLVM

Why LLVM?
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Key Knowledge for Intel® Compilers Going Forward

▪ New underlying back-end compilation technology based on LLVM 

▪ Shipping today in Intel® oneAPI Base & HPC Toolkit for C/C++, SYCL, and 
Fortran

▪ Existing Intel proprietary “IL0” (icc, ifort) compilation technology compilers 
provided alongside new compilers – names using “Compiler Classic” to 
distinguish from new LLVM-based compilers

▪ Offload compute only with new LLVM-based compilers

Intel® C++ Compiler Classic has been deprecated as of Q3 2022 and is targeted to be removed 
from the oneAPI package in Q4 2023. Start migration from ICC to ICX now. 
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What’s New: Intel® oneAPI DPC++/C++ Compiler

Intel oneAPI DPC++/C++ Compiler (icx/dpcpp) – based on modern LLVM technology

▪ The Intel® oneAPI DPC++/C++ Compiler further improves accelerated computing support through the addition of newly added SYCL 
2020 and OpenMP 5.x features. 

▪ Support for the Intel® Data Center GPU Flex/Max Series (formerly Ponte Vecchio).

▪ Backend code generation and tuning for the 4th Gen. Intel® Xeon® Scalable Processors, Max Series CPUs (formerly Sapphire Rapids).

▪ Intel oneAPI DPC++/C++ Compiler now defaults to the more recent ISO C++17 language support.

▪ New standard features have been added and enhanced for C23, C++20, C++23.

▪ Intel® oneAPI DPC++/C++ Compiler plugin architecture allowed Codeplay to add 3rd party GPU support

Intel® C++ Compiler Classic (icc)

▪ The Intel C++ Compiler Classic (icc) has been deprecated and has entered Long-Term Support with 2023.0. Please start using Intel® 
oneAPI DPC++/C++ Compiler.

▪ The Intel C++ Compiler Classic (icc) has been updated to include recent versions of 3rd party components, which include functional 
and security updates.

Each icx/dpcpp update will provide more performance, C/C++ and 
SYCL  language, OpenMP, and new platform support  



17

ICC
options*

Options Mapping

clang++

*Not all ICC Classic options are accepted and/or implemented in ICX.
-# is useful ‘dryrun’ option

icpx -ipo -mprefer-vector-width=512   test.cpp

Compiler 
driver

LLVM
options

-flto -mprefer-vector-width=512 … test.cpp
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Not Supported Options

• Not all ICC Classic options are accepted and/or implemented in ICX

• Undocumented options from ICC Classic are NOT implemented

• Use –qnextgen-diag to emit a long list of ICC Classic options that are NOT 
accepted by ICX

• All Clang*/LLVM options for the Clang version included in ICX are accepted 
and implemented.

• Use -Xclang to pass Clang options to ICX (Windows, Linux)

• GNU* and Microsoft* compatible options are accepted by ICC Classic and ICX.
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Linux* icx (icc)

Disable optimization -O0

Optimize for speed (no code size increase) -O1

Optimize for speed (default) -O2

High-level loop optimization -O3

Create symbols for debugging -g

Multi-file inter-procedural optimization -ipo

Profile guided optimization (multi-step 
build)

-fprofile-generate (-prof-gen)

-fprofile-use (-prof-use)

Optimize for speed across the entire 
program (“prototype switch”)

-fast same as “-ipo -O3 -static -fp-model fast” 

(-ipo -O3 -no-prec-div –static -fp-model fast=2 -xHost)

OpenMP support -fiopenmp (-qopenmp)

Common optimization options
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• icx uses Link Time Optimization (LTO) technology (-flto)

• -ipo should be added to both compilation and linking steps (or replace original linker 
with the ‘lld –fuse-ld=lld’)

• Intel tools ‘xilink’, ‘xild’, and ‘xiar’ are removed from ICX and should be replaced in 
projects settings, makefiles, etc. with equivalent

• Binaries compiled with icc and icx and IPO are not compatible

.

• Use llvm-ar for libraries

• Make sure tools from bin-llvm folder are used

$ icpc -ipo -c hello.cpp
$ icpx -ipo hello.o -o hello
/usr/bin/ld: hello.o:(.data+0x0): undefined reference to 
`__must_be_linked_with_icc_or_xild'
clang-13: error: linker command failed with exit code 1 (use -v to see invocation)

$ icpx -ipo -c hello.cpp
$ icpc hello.o -o hello
hello.o: file not recognized: file format not recognized

Interprocedural Optimizations
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Floating Point Reproducibility Controls

• Default FP model: -fp-model fast=1

• No -fp-model consistent option

• Use -fp-model=precise -fimf-arch-consistency=true -no-fma

• No support for #pragma fenv_access

• Math library related features supported, e.g. -fimf-precision, -fimf-max-
error, etc.
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Looking for Best Compiler Options?
It depends!

▪ workload, hw, OS, compiler version, memory allocation, etc.

ICC:

SPECint®_rate_base_2017: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=4

SPECfp®_rate_base_2017:  -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch 
-ffinite-math-only -qopt-mem-layout-trans=4 

SPEC HPC2021:  -qopt-zmm-usage=high -Ofast -xCORE-AVX512 -qopenmp -ipo
-qopt-multiple-gather-scatter-by-shuffles -fimf-precision=low:sin,sqrt
[ for IFORT: -align array64byte -nostandard-realloc-lhs ]

ICX:

SPEC HPC2021:  -mprefer-vector-width=512 -Ofast -xCORE-AVX512 -ffast-math -fiopenmp -flto

-fimf-precision=low:sin,sqrt -funroll-loops 

[ for IFX: -align array64byte -nostandard-realloc-lhs ]


