
Data Analytics & Classical ML

10

10

Intel® AI Analytics
Toolkit
Accelerate end-to-end AI and data analytics pipelines
with libraries optimized for Intel® architectures

Who needs this product?
Data scientists, AI researchers, ML and DL developers,
AI application developers

Top Features/Benefits

▪ Deep learning performance for training and inference with
Intel optimized DL frameworks and tools

▪ Drop-in acceleration for data analytics and machine
learning workflows with compute-intensive Python
packages

Deep Learning

Intel® Optimization for TensorFlow

Intel® Optimization for PyTorch

Intel® Neural Compressor

Model Zoo for Intel® Architecture

Machine Learning

Intel® Extension for Scikit-learn Intel-optimized XGBoost

Get the Toolkit HERE or via these locations

Intel® DevCloudIntel Installer Docker Apt, Yum Conda

CPU GPU

Hardware support varies by individual tool. Architecture support will be expanded over time.

Back to Domain-specific Toolkits for Specialized Workloads

Intel® AI Analytics Toolkit

Intel-optimized Python

Numba
Data Parallel

Python
NumPy SciPy Pandas

Data Analytics

Intel® Distribution of Modin OmniSci Backend

https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html#aikit
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

11

Intel® Distribution for Python

Vast Ecosystem Minimize Development CostMaximize Performance

Drop-in Python Replacement Familiar usage and compatibility

Operating Systems: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism,
Multithreading, Language Extensions

Near-native performance comes through
acceleration of core Python numerical packages

Accelerated NumPy/SciPy/scikit-learn with
oneMKL & oneDAL

Data analytics, machine learning & deep learning
with scikit-learn, XGBoost, Modin, daal4py

Scale with Numba*, Cython*, tbb4py, mpi4py, SDC

Optimized for latest Intel® architectures

Prebuilt optimized packages for numerical
computing, machine/deep learning, HPC, &
data analytics

Data-Parallel Python provides cross-
architecture XPU support

Conda build recipes included in packages

Free download & free for all uses including
commercial deployment

Supports Python 3

Supports conda & pip package managers

Packages available via conda, pip YUM/APT,
Docker image on DockerHub

Commercial support through the Intel®
oneAPI Base Toolkit

CPU Other accel.GPU

Developer Benefits

12

*

Intel® oneAPI Data Analytics Library (oneDAL)
Deploy High-Performance Data Science on CPUs and GPUs

Machine Learning & Data Analytics
Performance

▪ Helps applications deliver better predictions faster

▪ Optimizes data ingestion & algorithmic compute together for
highest performance

▪ Supports offline, streaming & distributed usage models to meet a
range of application needs

▪ Split analytics workloads between edge devices and cloud to
optimize overall application throughput

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering, Normalization

Aggregation, Dimension
Reduction

Summary Statistics,
Clustering, etc.

Machine Learning (Training)
Parameter Estimation, Simulation

Forecasting,
Decision Trees, etc.

Validation

Hypothesis Testing,
Model Errors

GPU Support with oneDAL

The following algorithms are supported:

▪ Statistical: Correlation, Low-order moments*

▪ Classification: Linear Regression*, Logistic Regression*, KNN, SVM

▪ Unsupervised Learning: K-means clustering, DBSCAN

▪ Classification & Regression: Random Forest

▪ Dimensionality Reduction: PCA

What's New: Full Support of scikit-learn1 1.2

Learn More & Download

* GPU implementation and existing oneDAL - oneAPI Initiative Specification represent a growing subset of CPU implementation.
1 Other names and brands may be claimed as the property of others

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal.html#gs.nnvg3c
https://spec.oneapi.io/versions/latest/elements/oneDAL/source/index.html

13

Current Data Loading & ETL Landscape
After a certain data size, need to change your API to handle more data

100 MB+ of Data

Increasing data size

Easy to use,
difficult to scale

Easy to scale,
difficult to use

14

Single Line Code Change for Infinite Scalability
▪No need to learn a new API to use Modin

Pandas* on Big Machine Modin on Big Machine

import modin.pandas as pd

15

NYCTaxi Workload Performance
Pandas vs Modin – Higher is Better

Configurations: For 20 million rows: Dual socket Intel(R) Xeon(R) Platinum 8280L CPUs (S2600WFT platform), 28 cores per socket, hyperthreading enabled, turbo mode enabled, NUMA nodes per socket=2, BIOS:
SE5C620.86B.02.01.0013.121520200651, kernel: 5.4.0-65-generic, microcode: 0x4003003, OS: Ubuntu 20.04.1 LTS, CPU governor: performance, transparent huge pages: enabled, System DDR Mem Config: slots / cap / speed: 12 slots / 32GB /
2933MHz, total memory per node: 384 GB DDR RAM, boot drive: INTEL SSDSC2BB800G7. For 1 billion rows: Dual socket Intel Xeon Platinum 8260M CPU, 24 cores per socket, 2.40GHz base frequency, DRAM memory: 384 GB 12x32GB DDR4 Samsung
@ 2666 MT/s 1.2V, Optane memory: 3TB 12x256GB Intel Optane @ 2666MT/s, kernel: 4.15.0-91-generic, OS: Ubuntu 20.04.4

0

2

4

6

8

10

12

14

16

18

20

Reading Q1 Q2 Q3 Q4

S
p

e
e

d
u

p

NYCTaxi (20 Million rows) - Performance

improvement with Modin+Omnisci

Pandas Modin+Omnisci

0

10

20

30

40

50

60

70

80

90

100

Reading Q1 Q2 Q3 Q4

S
p

e
e

d
u

p

NYCTaxi (1 Billion rows = 1.6 TB in mem) -

Performance improvement with

Modin+Omnisci – using 3TB Optane

Pandas Modin+Omnisci

Results have been estimated or simulated. Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.See Appendix for configurations

Dataset source: https://github.com/toddwschneider/nyc-taxi-data

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

https://github.com/toddwschneider/nyc-taxi-data
http://www.intel.com/benchmarks

16

16

Intel® Extension for Scikit-learn

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

from sklearnex import patch_sklearn

patch_sklearn()

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

Common Scikit-learn Scikit-learn with Intel CPU opts

Intel extension for sklearnScikit-learn mainline

Same Code,
Same Behavior

• Scikit-learn, not scikit-learn-like

• Scikit-learn conformance
(mathematical equivalence)
defined by Scikit-learn
Consortium,
continuously vetted by public CI

Intel Confidential

17

Intel® Extension for Scikit-learn* Performance

Testing Date: Performance results are based on testing by Intel as of March 21, 2023 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: bare metal (2.0 GHz Intel Xeon Platinum 8480+, two sockets, 56 cores per socket), 512 GB DDR5 4800MT/s, Python 3.10, scikit-learn 1.2.0, scikit-
learn-intelex 2023.0.1. Intel optimizations include use of multi-threading implementation for SKLearn algorithms (which are typically single-threaded), as well as other HW/SW optimizations.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not product or
component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/PerformanceIndex
http://www.intel.com/benchmarks

18

18

1 1 1 1 1

1.8

0.4
1.1

2.1

1.0

5.4

3.7

1.5

3.8

1.4

15.5

5.7

3.1

7.5

3.4

0

2

4

6

8

10

12

14

16

18

higgs1m Letters Airline-ohe MSRank-30K Mortgage

S
p

e
e

d
u

p
 v

s.
 0

.8
1

XGBoost fit - acceleration against baseline (v0.81) on Intel CPU

XGB 0.81 (CPU) XGB 0.9 (CPU) XGB 1.0 (CPU) XGB master 1.1 (CPU)

CPU configuration: c5.24xlarge AWS Instance, CLX 8275 @ 3.0GHz, 2 sockets, 24 cores per socket, HT:on, DRAM (12 slots / 32GB / 2933 MHz)

Installation: pip install xgboost

+ Reducing memory
consumption

Intel Confidential

XGBoost* fit CPU acceleration (“hist” method)

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

19

▪ Custom-trained XGBoost* and LightGBM* Models
utilize Gradient Boosting Tree (GBT) from Daal4Py
library for performance on CPUs

▪ No accuracy loss; 23x performance boost by simple
model conversion into daal4py GBT:

▪ Advantages of daal4py GBT model:

• More efficient model representation in memory

• Avx512 instruction set usage

• Better L1/L2 caches locality

No accuracy lost!

XGBoost* and LightGBM* Prediction
Acceleration with Daal4Py

Train common XGBoost model as usual
xgb_model = xgb.train(params, X_train)

import daal4py as d4p

XGBoost model to DAAL model
daal_model = d4p.get_gbt_model_from_xgboost(xgb_model)

make fast prediction with DAAL
daal_prediction = d4p.gbt_classification_prediction(…).compute(X_test, daal_model)

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

