Deep Learning Optimizations

intel.

® .
| nte | A | A a2 a | yt | CS Intel® Al Analytics Toolkit
T O O | |< | t W Machine Learning

A_Ccellerat_e end—'to—.end Aland data ahalyhcs pipelines Intel® Optimization for TensorFlow Intel® Extension for Scikit-learn Intel-optimized XGBoost
with libraries optimized for Intel® architectures
Intel® Optimization for Py Torch

Who needs this product? _—
Intel® Neural C Data Analytics
Data scientists, Al researchers, ML and DL developers,
Al application developers
Model Zoo for Intel® Architecture Intel® Distribution of Modin OmniSci Backend

Top Features/Benefits
Intel-optimized Python

= Deeplearning performance for training and inference with
Intel optimized DL frameworks and tools Dal’:/ ;aorillel

= Drop-in acceleration for data analytics and machine
learning workflows with compute-intensive Python
packages

dEceu i1

GPU

intel Hardware support varies by individual tool. Architecture support will be expanded over time.

Get the Toolkit HERE or via these locations

Intel Installer Apt, Yum Intel® DevCloud

Back to Domain-specific Toolkits for Specialized Workloads

Al

ANALYTICS
TOOLKIT

intel. =

https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html#aikit
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

Intel® oneAPI Deep Neural Network Library (oneDNN)

Deliver High Performance Deep Learning

Deep learning and Al ecosystem includes edge and datacenter
TensorFlow’ applications.

PyTorch’ « Open source frameworks (TensorFlow", PyTorch®, ONNX Runtime®)
* OEM applications (Matlab’, DL4J")
* Cloud service providers internal workloads
* Intel deep learning products (OpenVINO™, BigDL)

oneDNN is an open source performance library for deep learning
applications

Includes optimized versions of key deep learning functions

Abstracts out instruction set and other complexities of performance
optimizations
Same API for both Intel CPU’s and GPU's, use the best technology for

the job
Intel Intel Intel _Intel Intel)))
Ao Sole Aeon S gors Open for community contributions

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice Revision #20110804

intel.

22

Intel-optimized Deep Learning Frameworks

* Intel-optimized DL frameworks are drop-in replacement
* No front code change for the user
» Optimizations are upstreamed automatically

= | atest optimizations in extension libraries

Intel® Extension for | Intel® Extension
TensorFlow* for PyTorch*

TensorFlow* PyTorch*

T e 4==) O PyTorch

TensorFlow oneDNN

intel. =

Intel Contributions in Tensork

oneDNN
library
integrated

|

OW

Quantization
Introduced

Data type

optimizations

|

|

Al accelerator
support
(Intel® AMX)

287 |

28

released

TensorFlow 1.0

2819

2&20

2(#21

T
5

2022

-

Co-architected pluggable
device for new Al devices

~6 years of close collaboration between Intel and Google

o
2023

intel.

24

INntel® Extension for TensorFlow™ Architecture

Python API

Extension Intel Advanced c AP
Management Feature ustom
XPU Engine

XPU oneDNN Graph
R Custom
GPU CPU (Graph Optimization)

. . I Tensorflow™

Intel® Extension for TensorFlow* architecture ,
nie ension 1or | ensorriow

- Intel® Ext forT Flow*

intel. =

Major Optimization Methodologies

\4
= oneDNN Integration with TensorFlow
* Replaces compute-intensive standard e
TF ops with highly optimized custom oneDNN
ops
* Aggressive op fusions to improve performance FusedMatMul
of Convolutions and Matrix Multiplications GELU

= bfloatlé and 8-bit low precision data types
supported by SPR

 New matrix-based instructions set,
Intel AMX

intel. =2

BF16 API

1. Train with BF16 with AV X-512 Turned on by default

BF16 without AMX 4/ / after TF 2.11
os.environ["ONEDNN_MAX_CPU_TSA"] = "AVX512_BF16"

tf.config.optimizer.set_experimental_options({'auto_mixed precision_onednn_bfloatl6" :Truel})

transformer_layer = transformers.TFDistilBertModel.from_pretrained('distilbert-base-uncasad"')
tokenizer = transformers.DistilBertTokenizer.from_pretrained('distilbert-base-uncased")
model = build_model(transformer_layer, max_len=168@)

fine tune model according to disaster tweets dataset

if is_tune_model:
train_input = bert_encode(train.text.values, tokenizer, max_len=168)
train_labels = train.target.values
start_time = time.time()
train_history = model.fit{train_input, train_labels, walidation_split=8.2, epochs=1, batch_size=18)
end_time = time.time()

save model weights so we don't have to fine tune it every time

os.makedirs{save_weights_dir, exist_ok=True)
model.save_weights(save weights_dir + "/bfl6 _model weights.h5")

2. Train with BF16 with AMX

BF16 without AMX
os.environ["ONEDNN_MAX_CPU ISA"] = "AVX512 BF16"

BF16 with AMX

os.environ["ONEDNN_MAX_CPU_ISA"] = "AMX_BF16"

intel. =

BF16 API (cont.)

3. Inference with BF16 without AMX

Reload the model as the bflé model with AVX512 to compare inference time
os.environ["ONEDNN_MAX_CPU_ISA"] = "AVX512 BF1g"

tf.config.optimizer.set_experimental options({'auto _mixed precision_onednn_bfloatl6' :True})
bf16 _model noAmx = tf.keras.models.load model('models/my_saved model fp32')

bf1l6 model noAmx_export_path = "models/my saved model bflé nolmx"
bf1l6 model nofAmx.save(bfl6 model nofmx export path)

4. Inference with BF16 with AMX

Reload the model as the bfl6 model with AMX to compare inference time
os.environ["ONEDHMN_MAX CPU ISA"] = "AMX_BF16"
tf.config.optimizer.set_experimental options({'auto _mixed precision_onednn_bfloatl6' :True})
bfl6 model withAmx = tf.keras.models.load model('models/my saved model +p327)

bfl6 _model withAmx_ export path = "models/my_saved model bfl6 with_amx"
bf16 _model withAmx.save(bf1l6 _model withAmx_export_path)

intel. =z

TensorFlow Benchmark: SPR Inference (Batch Size =1)

Inference latency speedup: the higher the better

SPR TENSORFLOW INFERENCE LATENCY W/AMX

FP32 EBF16 MINT8

BF16: 2.00-6.90X
INTS8: 3.18-13.61X

RESNET50V1.5 3D-UNET SSD-RESNET34 BERTLARGE TRANSFORMER MLPERF
MODEL

13.61

SPEEDUP
6.63

4.40
3.82

3.18

2.00

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. intel 29
®

http://www.intel.com/benchmarks

Intel® Optimization for PyTorch* upstream

6th Gen Core

(FP32)

2"d Gen Xeon
VNNI (INT8)

3rd Gen Xeon
BF16

3rd Gen Xeon
10th Gen Core
VNNI (INT8)

4th Gen Xeon
Inte® AMX

2018

OneDNN
Default

2019

OneDNN
Blocked

Layout

2020

Training Opt,
DLRM opt

2021

XPU Device,
AMP

2022

2023

Channels Last,

oneDNN Fusion,

\%

Torchinductor-CPU,

GNN opt,

oneDNN Quant backend

oneDNN Graph

intel.

30

Intel® Optimization for PyTorch*

ECOSYSTEM

TorchServe Hl::iiieng DeepSpeed Lﬁ;;fr:fnr; PyG
FRAMEWORKS () PyTorch Intel® Extension for PyTorch*

LIBRARIES

Other names and brands may be claimed as the property of others

intel. =

Intel® Extension for Py Torch™ Architecture

Eager-Mode Graph-Mode
Custom Modules, Optmizers, Quantization Custom Fusion Passes oneDNN Fusion Passes
ATen Ops Graph Ops o)
c
=]
Custom Ops Custom Fused Ops oneDNN Fused Ops g
m
X
@
Kernels 5
o
=]

GPU Custom & | oneDNN GPU oneMKL GPU CPU Custom & oneDNN CPU oneMKL CPU
ATen Kernels Kernels Kernels ATen Kernels Kernels Kernels
SYCL oneDNN GPU oneMKL GPU
Language

SYCL Runtime
OpenMP* Thread Runtime
LevelZero Runtime

. Device-agnostic . GPU related . CPU related

oneDNN oneMKL Vectorization ATen

CPU CPU Parallel

OneAPI

intel. =

Major Optimization Methodologies

* (General performance optimization and Intel new feature enabling in
Py Torch upstream

« Additional performance boost and early adoption of aggressive
optimizations through Intel® Extension for Py Torch*

Operator Optimization Graph Optimization Runtime Extension
« Vectorization « Operator fusion « Thread affinity
 Parallelization « Constant folding « Memory allocation

Memory Layout
Low Precision

intel.

33

Training w/AMX BF16 on Intel Extension for

PyTorch

import torch
___import torchvision
import intel_extension_for_pytorch as ipex

LR = 8.881
DOWMLOAD = True
DATA = 'datasets/cifarld/"

transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms .Normalize((®.5, 8.5, 8.5), (8.5, 8.5, @.5))

1)

train_dataset = torchvision.datasets.CIFAR1E(
root=DATA,
train=True,
transform=transform,
download=00WNLOAD ,

}

train_loader = torch.utils.data.Dataloader(
dataset=train_dataset,
batch_size=128

model = torchvision.models.resnet58()

criterion = torch.nn.CrossEntropyloss()

optimizer = torch.optim.5GD({model.parameters{}), 1r = LR, momentum=@.93)
model. train(}

model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloatls)

for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero grad()

‘ DULpUL = mMOdelldsta)

with torch.cpu.amp.autocast():

loss = criterionf{output, target)
loss.backward()

optimizer.step()

print {batch_idx)

torch. save({

'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, ‘checkpoint.pth®)

intel.

34

Inference w/AMX BF16 on Intel Extension for

PyTorch

import torch
import torchvision.models as models

model = models.resnet5@8({weight=="ResMet5@ Weights . DEFAULT ')
model.eval()
data = torch.rand(l, 3, 224, 224)

import intel_extension_for_pytorch as ipex
model = ipex.optimize(model, dtype=torch.bfloatlés)

with torch.no_grad{), torch.cpu.amp.autocast():
model = torch.jit.trace(model, torch.rand(l, 3, 224, 224))
model = torch.jit.freeze(model)

model(data)

BERT

import torch
from transformers import BertModel

model = BertModel.from_pretrained("bert-base-uncased")
model.eval()

vocab_size = model.config.vocab_size

batch_size = 1

seq_length 512

data = torch.randint(vocab_size, size=[batch_size, seg_length])

¢ code changes #EsEEdasidg

import intel_extension_for_pytorch as ipex

model = ipex.optimize(model, dtype=torch.bfloatls)

with torch.no_grad(), torch.cpu.amp.autocast():

d = torch.randint({vocab_size, size=[batch_size, se=g_length])
model = torch.jit.trace{model, (d,), check_trace=False, strict=False)
model = torch.jit.freeze{model)

model{data)

intel.

35

Runtime Optimizations with Launch Script

» Automates configuration settings to optimize on topology
* OpenMP library: Intel OpenMP library, GNU OpenMP library
 Memory allocator: PyTorch default, Jemalloc, TCMalloc
* Number of instances: single, multiple

 Number of cores per instance

= Usage Guide with options and examples

» Sample Command

* ipexrun --ninstances 4 --ncore_per_instance 4 --enable _tcmalloc
${SCRIPT _PATH}

intel.

36

https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/launch_script.html

PyTorch Benchmark: SPR Inference (Batch Size =1)

Inference latency speedup: the higher the better

SPR PYTORCH INFERENCE LATENCY W/AMX

FP32 WMBF16 WINT8

13.66

<
—
[++]
— H
<
(-]
—
"
(]
IS (]
— — — — — —

RESNET50V1.5 RESNEXT101 SSD-RESNET34 MASKR-CNN BERTLARGE RNNT
MODEL

SPEEDUP
7.49
7.33

4.49
4

4.29
4
4.4

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

BF16: 4.29-6.91X
INT8: 7.33-13.66X

intel.

37

http://www.intel.com/benchmarks

Intel® Neural Compressor (INC)

Model

TensorFlow PyTorch ONNX MXNet

User-Facing APls

Compressions

Intel® Neural Compressor
Infrastructure

Quantization, Pruning, Knowledge Distillation, Graph Optimization, ...

Quantization Pruning Mix Precision
Post training static quantization magnitude pruning FP32 -> INT8/BF16
Post training dynamic quantization StTr:?;;iges Gradient sensitivity pruning FP32 -> BF16
Quantization-aware training Knowledge Distillation FP32 -> Opt Fp32

Backends

Hardware
platforms

TensorFlow, PyTorch, ONNX Runtime, MXNet, Engine

Intel CPU Intel GPU

https://github.com/intel/neural-compressor

Installation:

pip install neural-compressor
conda install neural-compressor -c conda-forge -c intel

intel.

38

https://github.com/intel/neural-compressor

IN'T 38 Quantized Inference Performance

Uses Intel® Optimization for Tensorflow and Intel® Neural Compressor

3.5

2.88

N
(0]

N

Optimized FP32
[N
[N tn

Throughput Scaling Relative to
o
(93]

® Perf Scale (INT8 / FP32) @ Accuracy Diff (FP32 - INT8)

INT8 Inference Throughput Scaling up to 2.8x and Accuracy Drop within 0.6%

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

2.25

0.5%

2.0%
1.6%
1.2%
0.8%
0.4%
0.0%
-0.4%
-0.8%
-1.2%
-1.6%
-2.0%

Accuracy Difference

intel.

39

http://www.intel.com/benchmarks

Model Zo0o

Language Modeling

Model
BERT large
BERT large

BERT large Sapphire
Rapids

BERT large Sapphire
Rapids

DistilBERT base

BERT base

BERT large

BERT large

DistilBERT base

RNN-T
RMNN-T
RoBERTa base

T5

Framework
TensorFlow

TensorFlow

Tensorflow

Tensorflow

Tensorflow

PyTorch

PyTorch

PyTorch

PyTorch

PyTorch
PyTorch
PyTorch

PyTorch

Mode
Inference

Training

Inference

Training

Inference

Inference

Inference

Training

Inference

Inference
Training
Inference

Inference

for Intel® Architecture

Model Documentation

FP32 BFloat16 FP16

FP32 BFloat16 FP16

FP32 BFloat16 Int8

BFloat32

FP32 BFloat16 BFloat32

FP32 BFloat16 Int8 FP16

FP32 BFloat16

FP32 Int8 BFloat16

BFloat32

FP32 BFloat16 BFloat32

FP32 Int8 BFloat16

BFloat32

FP32 BFloat16 BFloat32

FP32 BFloat16 BFloat32

FP32 BFloat16

FP32 Int8

Benchmark/Test Dataset

SQuAD

SQuUAD and MRPC

SQuAD

SQuAD

S5T-2

BERT Base SQuAD1.1
BERT Large SQuUAD1.1
preprocessed text

dataset

DistilBERT Base
SQuAD1.1

RNN-T dataset
RNN-T dataset

RoBERTa Base SQuAD 2.0

A 4

TensorFlow BERT Large inference

Description

This document has instructions for running BERT Large inference using Intel-optimized TensorFlow.

Datasets

BERT Large Data
Download and unzip the BERT Large uncased (whole word masking) model from the google bert repo. Then, download the Stanford Question

Answering Dataset (SQUAD) dataset file dev-v1.1.json into the wwm_uncased L-24 H-1824 A-16 directory that was just unzipped.

wget https://storage.googleapis.com/bert_models/2019_85_30/wwm_uncased_L-24 H-1024 A-16.zip]
unzip wem_uncased_L-24_H-1024 A-16.zip

wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-vi.1.json -P wwm_uncased_L-24 H-1824 A-16

Set the DATASET_DIR to point to that directory when running BERT Large inference using the SQuAD data.
Quick Start Scripts

Script name Description
profile.sh This script runs inference in profile mode with a default batch_size=32.

o n Runs realtime inference using a default batch_size=1 for the specified precision (fp32,
interence. sl . . .
bfloat16 or fp16). To run inference for throughtput, set BATCH SIZE environment variable.

intel.

40

Key Features & Benefits

= Accelerate end-to-end Al and Data Science pipelines and achieve drop-in acceleration with optimized
Python tools built using oneAPI libraries (i.e. oneMKL, oneDNN, oneCCL, oneDAL, and more)

= Achieve high-performance for deep learning training and inference with Intel-optimized versions of
TensorFlow and PyTorch, and low-precision optimization with support for int8 and bfloat16

= Expedite development by using the open-source pre-trained deep learning models optimized by Intel
for best performance via Model Zoo for Intel® Architecture

= Seamlessly scale Pandas workflows across multi-node dataframes with Intel® Distribution of Modin,
accelerate analytics with performant backends such as OmniSci

* Increase machine learning model accuracy and performance with algorithms in Scikit-learn and
XGBoost optimized for Intel architectures

= Supports cross-architecture development (Intel® CPUs/GPUs) and compute

intel.

Useful Links

= |ntel® Al Analvtics Toolkit (Al Kit)

" Intel® Extension for Py Torch*

® |Intel|® Extension for TensorFlow*

" Intel® Neural Compressor

" oneAPIl-samples GitHub
s Model Zoo for Intel® Architecture GitHub

intel.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-tensorflow
https://github.com/intel/neural-compressor
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/End-to-end-Workloads/LanguageIdentification
https://github.com/IntelAI/models

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration
details.
No product or component can be absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel. 4

OOOOOO

Questions”?

intel.

