Skip to main content

Generic SLURM Jobs

The following examples demonstrate the basics of SLURM jobs, and are designed to cover common job request scenarios. These example jobs will need to be modified to run your application or code.

Simple Job

Every SLURM job consists of a job submission file. A job submission file contains a list of commands that run your program and a set of resource (nodes, walltime, queue) requests. The resource requests can appear in the job submission file or can be specified at submit-time as shown below.

This simple example submits the job submission file hello.sub to the cpu queue on Gautschi and requests a single node:

#!/bin/bash
# FILENAME: hello.sub

# Show this ran on a compute node by running the hostname command.
hostname

echo "Hello World"

sbatch -A myallocation -p queue-name --nodes=1 --ntasks=1 --cpus-per-task=1 --time=00:01:00 hello.subĀ 
Submitted batch job 3521

For a real job you would replace echo "Hello World" with a command, or sequence of commands, that run your program.

After your job finishes running, the ls command will show a new file in your directory, the .out file:

ls -l
hello.sub
slurm-3521.out

The file slurm-3521.out contains the output and errors your program would have written to the screen if you had typed its commands at a command prompt:

cat slurm-3521.out 


gautschi-a001.rcac.purdue.edu 
Hello World

You should see the hostname of the compute node your job was executed on. Following should be the "Hello World" statement.

Multiple Node

In some cases, you may want to request multiple nodes. To utilize multiple nodes, you will need to have a program or code that is specifically programmed to use multiple nodes such as with MPI. Simply requesting more nodes will not make your work go faster. Your code must support this ability.

This example shows a request for multiple compute nodes. The job submission file contains a single command to show the names of the compute nodes allocated:

# FILENAME:  myjobsubmissionfile.sub
#!/bin/bash
echo "$SLURM_JOB_NODELIST"

sbatch --nodes=2 --ntasks=384 --time=00:10:00 -A myallocation -p queue-name myjobsubmissionfile.sub

Compute nodes allocated:

gautschi-a[014-015]

The above example will allocate the total of 384 CPU cores across 2 nodes. Note that if your multi-node job requests fewer than each node's full 192 cores per node, by default Slurm provides no guarantee with respect to how this total is distributed between assigned nodes (i.e. the cores may not necessarily be split evenly). If you need specific arrangements of your tasks and cores, you can use --cpus-per-task= and/or --ntasks-per-node= flags. See Slurm documentation or man sbatch for more options.

Directives

So far these examples have shown submitting jobs with the resource requests on the sbatch command line such as:

sbatch -A myallocation -p queue-name --nodes=1 --time=00:01:00 hello.sub

The resource requests can also be put into job submission file itself. Documenting the resource requests in the job submission is desirable because the job can be easily reproduced later. Details left in your command history are quickly lost. Arguments are specified with the #SBATCH syntax:

#!/bin/bash

# FILENAME: hello.sub

#SBATCH -A myallocation -p queue-name 

#SBATCH --nodes=1 --time=00:01:00 

# Show this ran on a compute node by running the hostname command.
hostname

echo "Hello World"

The #SBATCH directives must appear at the top of your submission file. SLURM will stop parsing directives as soon as it encounters a line that does not start with '#'. If you insert a directive in the middle of your script, it will be ignored.

This job can be then submitted with:

sbatch hello.sub

Interactive Jobs

Interactive jobs are run on compute nodes, while giving you a shell to interact with. They give you the ability to type commands or use a graphical interface in the same way as if you were on a front-end login host.

To submit an interactive job, use sinteractive to run a login shell on allocated resources.

sinteractive accepts most of the same resource requests as sbatch, so to request a login shell on the cpu account while allocating 2 nodes and 192 total cores, you might do:

sinteractive -A myallocation -p cpu -N2 -n384

To quit your interactive job:

exit or Ctrl-D

The above example will allocate the total of 384 CPU cores across 2 nodes. Note that if your multi-node job requests fewer than each node's full 192 cores per node, by default Slurm provides no guarantee with respect to how this total is distributed between assigned nodes (i.e. the cores may not necessarily be split evenly). If you need specific arrangements of your tasks and cores, you can use --cpus-per-task= and/or --ntasks-per-node= flags. See Slurm documentation or man salloc for more options.

Serial Jobs

This shows how to submit one of the serial programs compiled in the section Compiling Serial Programs.

Create a job submission file:

#!/bin/bash
# FILENAME:  serial_hello.sub

./serial_hello

Submit the job:

sbatch --nodes=1 --ntasks=1 --time=00:01:00 serial_hello.sub

After the job completes, view results in the output file:

cat slurm-myjobid.out

Runhost:gautschi-a009.rcac.purdue.edu
hello, world 

If the job failed to run, then view error messages in the file slurm-myjobid.out.

Link to section 'Collecting System Resource Utilization Data' of 'Monitoring Resources' Collecting System Resource Utilization Data

Knowing the precise resource utilization an application had during a job, such as CPU load or memory, can be incredibly useful. This is especially the case when the application isn't performing as expected.

One approach is to run a program like htop during an interactive job and keep an eye on system resources. You can get precise time-series data from nodes associated with your job using XDmod as well, online. But these methods don't gather telemetry in an automated fashion, nor do they give you control over the resolution or format of the data.

As a matter of course, a robust implementation of some HPC workload would include resource utilization data as a diagnostic tool in the event of some failure.

The monitor utility is a simple command line system resource monitoring tool for gathering such telemetry and is available as a module.

module load monitor 

Complete documentation is available online at resource-monitor.readthedocs.io. A full manual page is also available for reference, man monitor.

In the context of a SLURM job you will need to put this monitoring task in the background to allow the rest of your job script to proceed. Be sure to interrupt these tasks at the end of your job.

#!/bin/bash
# FILENAME: monitored_job.sh

 module load monitor 

# track per-code CPU load
monitor cpu percent --all-cores >cpu-percent.log &
CPU_PID=$!

# track memory usage
monitor cpu memory >cpu-memory.log &
MEM_PID=$!

# your code here

# shut down the resource monitors
kill -s INT $CPU_PID $MEM_PID

A particularly elegant solution would be to include such tools in your prologue script and have the tear down in your epilogue script.

For large distributed jobs spread across multiple nodes, mpiexec can be used to gather telemetry from all nodes in the job. The hostname is included in each line of output so that data can be grouped as such. A concise way of constructing the needed list of hostnames in SLURM is to simply use srun hostname | sort -u.

#!/bin/bash
# FILENAME: monitored_job.sh

 module load monitor 

# track all CPUs (one monitor per host)
mpiexec -machinefile <(srun hostname | sort -u) \
    monitor cpu percent --all-cores >cpu-percent.log &
CPU_PID=$!

# track memory on all hosts (one monitor per host)
mpiexec -machinefile <(srun hostname | sort -u) \
    monitor cpu memory >cpu-memory.log &
MEM_PID=$!

# your code here

# shut down the resource monitors
kill -s INT $CPU_PID $MEM_PID

To get resource data in a more readily computable format, the monitor program can be told to output in CSV format with the --csv flag.

monitor cpu memory --csv >cpu-memory.csv

For a distributed job you will need to suppress the header lines otherwise one will be created by each host.

monitor cpu memory --csv | head -1 >cpu-memory.csv
mpiexec -machinefile <(srun hostname | sort -u) \
    monitor cpu memory --csv --no-header >>cpu-memory.csv
Helpful?

Thanks for letting us know.

Please don't include any personal information in your comment. Maximum character limit is 250.
Characters left: 250
Thanks for your feedback.